**34- P. Chaquin, F. Fuster, "Quantification du caractère liant/antiliant d’une orbitale moléculaire et visualisation des orbitales atomiques participant à une orbitale moléculaire", Union des professeurs de physique et de chimie, 2024, 118, 409-419.**

**33- Novoa T, Laplaza R, Peccati F, Fuster F, Contreras-García J. The NCIWEB Server: "A Novel Implementation of the Noncovalent Interactions Index for Biomolecular Systems", Journal of chemical information and modeling, 2023 Aug 14;63(15):4483-4489. https://pubs.acs.org/doi/10.1021/acs.jcim.3c00271.**

**32- R. Laplaza; J. Contreras-Garcia; F. Fuster; F. Volatron; P. Chaquin "Dependence of hydrocarbon sigma CC bond strength on bond angles: the concepts of "inverted", "direct" and "superdirect" bonds", Computational and Theoretical Chemistry, volume 1207, January 2022, article 113505., https://doi.org/10.1016/j.comptc.2021.113505.**

**31- Laplaza R, Contreras-García J, Fuster F, Volatron François, Chaquin P. From “inverted” to “superdirect“ bonds: a general concept connecting substituent angles with sigma bond strengths. The case of the CC bonds in hydrocarbons. ChemRxiv. Cambridge: Cambridge Open Engage; 2021.https://chemrxiv.org/engage/chemrxiv/article-details/60d97aaa261611396a8c9bde**

*
The C-C bond energy with respect to geometry frozen fragments (BE) has been calculated for C2H6 as a function of θ = H-C-C angles. BE decreases rapidly when θ decreases from its equilibrium value to yield the so-called “inverted bonds” for θ < 90°; on the contrary BE increases with θ to yield somehow “superdirect” bonds, following a sigmoidal variation related to orbital overlap. The central bonds in Si2H6, Ge2H6 and N2H4 as well as the C-H bond in CH3-H behave similarly. The concept of “invertedness”/”directedness” is generalized to any CC sigma bond in hydrocarbons and characterized by the mean angle value <θ> of substituents. Using dynamic orbital forces (DOF) as indices, the intrinsic sigma bond energies are studied as a function of <θ> for 24 formally single bonds in a panel of 22 molecules. BE decreases from the strongest “superdirect” bonds in butadiyne, (<θ> = 180°) or tetrahedrylacetylene to the weakest “inverted bonds” in cyclobutene, tetrahedrane, bicyclobutane and [1.1.1]propellane (<θ> = 60°), following a sigmoidal variation.
*

**30- P. Chaquin, F. Volatron, F. Fuster, "Définir le caractère liant/antiliant d’une orbitale moléculaire : de l'amphi à la recherche", l'Actualité Chimique, 2020, 447, 28-37.**

**29- F. Fuster & P. Chaquin. "Analysis of carbon-carbon bonding in small hydrocarbons and dicarbon using dynamic orbital forces : Bond energies and sigma-pi partition. Comparison with sila compounds.", Int. J. Quant. Chem., 2019, 119(20).**

**28- R. Laplaza, J. Contreras-Garcia, F. Fuster, F. Volatron, P. Chaquin, "The ‘inverted Bonds’ revisited. Analysis of ‘in silico’ models and of [1.1.1]Propellane using Orbital Forces", Chem. Eur. J., 2019, 26(30), p. 6839-6845..**

**27- F. Chemla , F. Fuster , H. Gérard , A. Markovits , A. Naitabdi , R. Vuilleumier, "Un laboratoire pédagogique à grande échelle : les ateliers bidisciplinaires", l'Actualité
Chimique, Société Française de Chimie, octobre 2018, 433.**

**26- P. Chaquin, F. Fuster et F. Volatron, "Bonding/antibonding character of “lone pair” molecular orbitals from their energyderivatives; consequences for experimental data.", Int J Quantum Chem. 2018, 118, 1-12. **

**25- P. Chaquin, F. Fuster et F. Volatron, "Apprendre la chimie avec les orbitales - OrbiMol, une boîte à outils pédagogique ", Union des professeurs de physique et de chimie, 2018, 112, 1-12. Article invité pour le 1000e numéro.**

**24- P. Chaquin and F. Fuster, "Analysis of Reaction Processes based on the Evolution of Dynamic Orbital Force (DOF); Examples of Cycloadditions, SN2 Substitution, nucleophilic Addition and Hydrogen Transposition", ChemPhysChem, 2017, 18, 1-9.**

**23- E. Alikhani, F. Fuster, B. Madebene, S. J. Grabowski, "Topological Reaction Sites - Very Strong Chalcogen Bonds", Physical Chemistry Chemical Physics, 2014,16, 2430-2442.**

**22- P. Chaquin et F. Fuster, “Enseigner la Chimie
Organique avec les orbitales. Présentation d’une base de données d’orbitales
moléculaires”, l'Actualité
Chimique, 369, 2012.**
Version électronique ici

**21- Franck Fuster and Slawomir Grabowski “Intramolecular Hydrogen Bonds: the QTAIM and ELF
Characteristics”, Journal of Physical Chemistry A (2011), 115(35), 10078–10086.**

**20- Fernandez,
Sebastien; Markovits, Alexis; Fuster, Franck; Minot, Christian, “First Row
Transition Metal Atom Adsorption on Defect-Free MgO(100) Surface ”, Journal
of Physical Chemistry C (2007), 111(18), 6781-6788.**

**19- Philippe
Soler, Jacqueline Bergès, Franck Fuster, Hilaire Chevreau, “Dynamical
hydrogen-induced electronic relocalization in S2H2 and S2H2 ^{-}“, Chemical Physics Letters, (2005), Volume
411, Issues 1-3, , Pages 117-12.**

**18- Alikhani, M.
E.; Fuster, F.; Silvi, B; “What Can Tell the Topological Analysis of ELF on
Hydrogen Bonding? “, Structural Chemistry (2005), 16(3), 203-210.**

**17- Soler,
Philippe; Fuster, Franck; Chevreau, Hilaire, “Fast topological analysis of 2D
and 3D grids of data: Application to the Atoms in Molecule (AIM) and the
Electron Localization Function (ELF)”, Journal of Computational Chemistry
(2004), 25(15), 1920-1925.**

**16- Fuster,
Franck; Dezarnaud-Dandine, Christine; Chevreau, Hilaire; Sevin, Alain, “A
theoretical study of the bonding in NO, (NO)2, (NO)2- and (NO)22- using a
topological analysis of the electron localization function”, Physical
Chemistry Chemical Physics (2004), 6(13), 3228-3234.**

**15- Silvi, B.;
Pilme, J.; Fuster, F.; Alikhani, M. E. “What can tell topological approaches on
the bonding in transition metal compounds”, NATO Science Series, II:
Mathematics, Physics and Chemistry (2003), 116(Metal-Ligand Interactions),
241-284.**

**14- Silvi,
Bernard; Kryachko, Eugene S.; Tishchenko, Oksana; Fuster, Franck; Nguyen, Minh
Tho, “Key properties of monohalogen substituted phenols: interpretation in
terms of the electron localization function”, Molecular Physics (2002),
100(11), 1659-1675. **

**13- F. Ample, D.
Currulla, F. Fuster, A. Clotet and J. M. Ricart, "Adsorption of CO and CN ^{-}
on transition metal surfaces: a comparative study of the bonding
mechanism", Surface Science (2002), 497(1-3), 139-154.**

**12- H.
Chevreau, F. Fuster et B. Silvi, “Chemical bond: myth or reality? topological
methods of bond description. Théorie topologique de la liaison
chimique : le Lewis moderne ", L'actualité Chimique,
Société Française de Chimie (2001), (3), 15-22. **
Version électronique ici

**11- R. Llusar, A.
Beltran, J. Andrés, F. Fuster and B. Silvi, " Topological Analysis of
Multiple Metal-Metal Bonds in Dimers of the M _{2}(Formamidinate)_{4}
Type with M= Nb, Mo, Tc, Ru, Rh and Pd", Journal of Physical
Chemistry A,105, 9460-9466 (2001).**

**10- F. Fuster, B.
Silvi, S. Berski et Z. Latajka, " Topological aspects of protonation and
hydrogen bonding: the dihydrogen bond case", Journal of Molecular
Structure, 555, 75-84 (2000).**

**9- F. Fuster, A.
Sevin et B. Silvi, "Determination of substitutional sites in heterocycles
from the topological analysis of the electron localization function
(ELF)", Journal of Computational Chemistry, 21, 509-514 (2000).**

**8- F. Fuster, A.
Sevin et B. Silvi, "Topological analysis of the electron localization
function (ELF) applied to the electrophilic aromatic substitution", Journal
of Physical Chemistry A, 104 (4), 852-858 (2000).**

**7- F. Fuster et B.
Silvi, "Determination of proton sites in bases from topological
rules.", Chemical Physics, 252, 279-287 (2000).**

**6- F. Fuster et B.
Silvi , " Does Topological approach characterize the hydrogen bond
? ", Theoretical Chemistry Accounts, , 104 (1), 13-21 (2000).**

**5- J. Bergés, F.
Fuster, J.-P. Jacquot, B. Silvi et C. Houée-Levin " Influence of
protonation on the stability of disulfide radicals ", Intenational
Journal of Nuclear Research (Nukleonika) (2000), 45(1), 23-29.**

**4- S. Noury, X.
Krokidis, F. Fuster et B. Silvi, "Computational tools for the electron
localization function topological analysis", Computer and Chemistry,
23(6), 597-604 (1999).**

**3- L. Joubert, B.
Silvi, G. Picard et F. Fuster, " Topological analysis of the Electron
Localization Function : a help for understanding the complex structure of
cryolitic melts " Journal of the Electrochemical Society, 146
(6), 2180-2183 (1999).**

**2- L. Joubert, G.
Picard, B. Silvi et F. Fuster, " Electron Localization Function view
of bonding in selected Aluminium Fluoride molecules. ", Journal of
Molecular Structure (Theochem), 463 (1-2), 75-80 (1999).**

**1- F.
Fuster, B. Silvi, G. Picard et L. Joubert, " ELF characterization of
iono-covalent Bondings in Aluminium(III) chloride-fluoride
complexes ", Light Metals 1998, édité par B. Welch, (Metals &
Marerails Society, Warrendale, PA :The Minerals), 555-558.**