Next:
5 HOW TO READ
Up:
manual
Previous:
4 References
Contents
1 Introduction to MOLPRO
2 MOLPRO on the WWW
3 Release Notes
4 References
Contents
5 HOW TO READ THIS MANUAL
6 GENERAL PROGRAM STRUCTURE
6.1 Running MOLPRO
6.2 Input format
6.3 Input structure
6.4 Expressions
6.5 Intrinsic functions
6.6 Files
6.7 Records
6.8 Restart
6.9 Data set manipulation
6.10 Memory allocation
6.11 Variables
6.12 Multiple passes through the input
6.13 Symmetry
6.14 Defining the wavefunction
6.15 Defining orbital subspaces
6.16 Selecting orbitals and density matrices (
ORBITAL
,
DENSITY
)
6.17 Summary of keywords known to the controlling program
6.18 Default procedures
7 INTRODUCTORY EXAMPLES
7.1 Using the molpro command
7.2 Simple SCF calculations
7.3 Geometry optimizations
7.4 CCSD(T)
7.5 CASSCF and MRCI
7.6 Tables
7.7 Procedures
7.8 Using default Procedures
7.9 Do loops
8 PROGRAM CONTROL
8.1 Starting a job (
***
)
8.2 Ending a job (
--
)
8.3 Restarting a job (
RESTART
)
8.4 Including secondary input files (
INCLUDE
)
8.5 Allocating dynamic memory (
MEMORY
)
8.6
DO
loops (
DO/ENDDO
)
8.7 Branching (
IF/ELSEIF/ENDIF
)
8.8 Procedures (
PROC/ENDPROC
)
8.9 Text cards (
TEXT
)
8.10 Checking the program status (
STATUS
)
8.11 Global Thresholds (
GTHRESH
)
8.12 Global Print Options (
GPRINT/NOGPRINT
)
8.13 One-electron operators and expectation values (
GEXPEC
)
9 FILE HANDLING
9.1
FILE
9.2
DELETE
9.3
ERASE
9.4
DATA
9.5 Importing and exporting binary data (
IMPORT, EXPORT
)
9.6 Assigning punch files (
PUNCH
)
9.7 MOLPRO system parameters (
GPARAM
)
10 VARIABLES
10.1 Setting variables
10.2 String variables
10.3 Macro definitions using string variables
10.4 Indexed Variables (Vectors)
10.5 Vector operations
10.6 Special variables
10.7 Displaying variables
10.8 Clearing variables
11 Integral-direct calculations (
GDIRECT
)
12 GEOMETRY SPECIFICATION AND INTEGRATION
12.1 Symmetry specification
12.2 Geometry specifications
12.3 Writing Gaussian, XMol or MOLDEN input (
PUT
)
12.4 Geometry Files
12.5 Lattice of point charges
12.6 Redefining atomic masses
12.7 Dummy centres
13 BASIS INPUT
13.1 Cartesian and spherical harmonic basis functions
13.2 The basis set library
13.3 Default basis sets
13.4 Primitive set definition
13.5 Contracted set definitions
13.6 Examples
14 EFFECTIVE CORE POTENTIALS
14.1 Input from ECP library
14.2 Explicit input for ECPs
14.3 Example for explicit ECP input
14.4 Example for ECP input from library
15 CORE POLARIZATION POTENTIALS
15.1 Input options
15.2 Example for ECP/CPP
16 THE SCF PROGRAM
16.1 Defining the wavefunction
16.2 Saving the final orbitals
16.3 Starting orbitals
16.4 Rotating pairs of orbitals
16.5 Using additional point-group symmetry
16.6 Expectation values
16.7 Miscellaneous options
17 THE DENSITY FUNCTIONAL PROGRAM
17.1 Density Functionals
17.2 Options
17.3 Examples
17.4 Numerical integration grid control (
GRID
)
18 ORBITAL LOCALIZATION
18.1 Defining the input orbitals (
ORBITAL
)
18.2 Saving the localized orbitals (
SAVE
)
18.3 Choosing the localization method (
METHOD
)
18.4 Delocalization of orbitals (
DELOCAL
)
18.5 Selecting the orbital space
18.6 Ordering of localized orbitals
18.7 Localization thresholds (
THRESH
)
18.8 Printing options (
PRINT
)
19 THE MCSCF PROGRAM MULTI
19.1 Structure of the input
19.2 Defining the orbital subspaces
19.3 Defining the optimized states
19.4 Defining the configuration space
19.5 Restoring and saving the orbitals and CI vectors
19.6 Selecting the optimization methods
19.7 Calculating expectation values
19.8 Miscellaneous options
19.9 Coupled-perturbed MCSCF
19.10 Optimizing valence bond wavefunctions
19.11 Hints and strategies
19.12 Examples
20 THE CI PROGRAM
20.1 Introduction
20.2 Specifying the wavefunction
20.3 Additional reference symmetries
20.4 Options
20.5 Miscellaneous thresholds
20.6 Print options
20.7 Examples
21 MULTIREFERENCE RAYLEIGH SCHRÖDINGER PERTURBATION THEORY
21.1 Introduction
21.2 Excited state calculations using
RS2
21.3 Modified Fock-operators in the zeroth-order Hamiltonian.
21.4 Level shifts
21.5 Integral direct calculations
21.6 Options for CASPT2 and CASPT3
22 MØLLER PLESSET PERTURBATION THEORY
22.1 Expectation values for MP2
23 THE CLOSED SHELL CCSD PROGRAM
23.1 Coupled-cluster, CCSD
23.2 Quadratic configuration interaction, QCI
23.3 Brueckner coupled-cluster calculations, BCCD
23.4 Singles-doubles configuration interaction, CISD
23.5 Examples
23.6 Excited states using linear response
(CCSD-LR, EOM-CCSD)
24 OPEN-SHELL COUPLED CLUSTER THEORIES
25 LOCAL CORRELATION TREATMENTS
25.1 Introduction
25.2 Getting started
25.3 Doing it right
25.4 Further commands
25.5 Options
25.6 Additional options available on the
ATTENUATE
card
26 THE FULL CI PROGRAM
26.1 Defining the orbitals
26.2 Occupied orbitals
26.3 Frozen-core orbitals
26.4 Defining the state symmetry
26.5 Printing options
26.6 Interface to other programs
26.7 Example
27 PROPERTIES AND EXPECTATION VALUES
27.1 The property program
27.2 Distributed multipole analysis
27.3 Mulliken population analysis
27.4 Finite field calculations
27.5 Relativistic corrections
27.6 CUBE -- dump density or orbital values
28 DIABATIC ORBITALS
29 NON ADIABATIC COUPLING MATRIX ELEMENTS
29.1 The DDR procedure
30 QUASI-DIABATIZATION
31 THE VB PROGRAM CASVB
31.1 Structure of the input
31.2 Defining the CASSCF wavefunction
31.3 Other wavefunction directives
31.4 Defining the valence bond wavefunction
31.5 Recovering CASSCF CI vector and VB wavefunction
31.6 Saving the VB wavefunction
31.7 Specifying a guess
31.8 Permuting orbitals
31.9 Optimization control
31.10 Point group symmetry and constraints
31.11 Wavefunction analysis
31.12 Controlling the amount of output
31.13 Service mode
31.14 Examples
32 SPIN-ORBIT-COUPLING
32.1 Introduction
32.2 Calculation of SO integrals
32.3 Calculation of individual SO matrix elements
32.4 Calculation and diagonalization of the entire SO-matrix
32.5 Modifying the unperturbed energies
32.6 Examples
33 ENERGY GRADIENTS AND GEOMETRY OPTIMIZATION
33.1 The gradient program
33.2 Geometry optimization
33.3 Examples
33.4 Vibrational Frequencies (
FREQUENCIES
)
34 ORBITAL MERGING
34.1 Defining the input orbitals (
ORBITAL
)
34.2 Moving orbitals to the output set (
MOVE
)
34.3 Adding orbitals to the output set (
ADD
)
34.4 Defining extra symmetries (
EXTRA
)
34.5 Defining offsets in the output set (
OFFSET
)
34.6 Projecting orbitals (
PROJECT
)
34.7 Symmetric orthonormalization (
ORTH
)
34.8 Schmidt orthonormalization (
SCHMIDT
)
34.9 Rotating orbitals (
ROTATE
)
34.10 Initialization of a new output set (
INIT
)
34.11 Saving the merged orbitals
34.12 Printing options (
PRINT
)
34.13 Examples
35 MATRIX OPERATIONS
35.1 Calling the matrix facility (
MATROP
)
35.2 Loading matrices (
LOAD
)
35.3 Saving matrices (
SAVE
)
35.4 Adding matrices (
ADD
)
35.5 Trace of a matrix or the product of two matrices (
TRACE
)
35.6 Setting variables (
SET
)
35.7 Multiplying matrices (
MULT
)
35.8 Transforming operators (
TRAN
)
35.9 Transforming density matrices into the MO basis (
DMO
)
35.10 Diagonalizing a matrix
DIAG
35.11 Generating natural orbitals (
NATORB
)
35.12 Forming an outer product of two vectors (
OPRD
)
35.13 Forming a closed-shell density matrix (
DENS
)
35.14 Computing a fock matrix (
FOCK
)
35.15 Computing a coulomb operator (
COUL
)
35.16 Computing an exchange operator (
EXCH
)
35.17 Printing matrices (
PRINT
)
35.18 Printing diagonal elements of a matrix (
PRID
)
35.19 Printing orbitals (
PRIO
)
35.20 Assigning matrix elements to a variable (
ELEM
)
35.21 Reading a matrix from the input file (
READ
)
35.22 Writing a matrix to an ASCII file (
WRITE
)
35.23 Examples
35.24 Exercise: SCF program
A. Installation of MOLPRO
A..1 Obtaining the distribution files
A..2 Installation from source files
A..3 Miscellaneous configuration issues
A..4 Installation of documentation
B. Recent Changes
B..1 New features of MOLPRO2000
B..2 Facilities that were new in MOLPRO98
Index
P.J. Knowles and H.-J. Werner
molpro-support@tc.bham.ac.uk
Mar 8, 2000