Density Functional Theory for the Modeling of Photophysical Properties of Molecular Compounds

Ilaria Ciofini
Institut de Recherche de Chimie Paris, Paris, France.
Mercredi 25 Mai 2016, 11h00
bibliothèque LCT, tour 12 - 13, 4ème étage

The performances of Density Functional Theory (DFT) and Time Dependent DFT (TD-DFT) in the prediction of ground and excited state properties of molecular systems (both fully organic or containing d transition metals) will be reviewed by selected examples of compounds used in molecular devices with application ranging from hybrid photovoltaic cells to molecular devices [1-3].
Special emphasis will be devoted to the possibility of providing a realistic description of the environmental effects (ex. solvent, absorption on a surface, encapsulation, molecular crystals) on the overall photophysical properties of these systems by the means of theoretical methods ranging from continuum polarisable models for solvent, cluster approaches, QM/QM' to fully periodic calculations [4-5].
Finally, the possibility of using density based descriptors [6-7] both to quantify the extent and magnitude of transferred charge associated to a charge transfer (CT) excitation [8-10] and to describe excited state reactions and interconversions [11-14] will be illustrated.

[1] T. Le Bahers, F. Labat, T. Pauporté, P. P. Lainé, I. Ciofini. J. Am. Chem. Soc.Chem. 133, 8005 (2011).
[2] F. Labat, T. Le Bahers, I. Ciofini, C. Adamo Acc. Chem. Res. 45 (2012), 1268-1277.
[3] T. Le Bahers, T. Pauporté, P. P. Lainé, F. Labat, C. Adamo, I. Ciofini J.Phys. Chem. Lett. (Perspective Article) 4 (2013) 1044-1050.
[4] G. García, I. Ciofini, M. Fernández-Gómez, C. Adamo J. Phys. Chem. Lett. 4 (2013) 1239-1243.
[5] D. Presti, F. Labat, A. Pedone, M. J. Frisch, H. P. Hratchian, I. Ciofini, M. C. Menziani, C Adamo J. Chem. Theory Comput. 10 (2014) 5577-5585.
[6] T. Le Bahers, C. Adamo, I. Ciofini J. Chem. Theory Comput. 7 (2011) 2498-2506.
[7] C. Adamo, T. Le Bahers, M. Savarese, L. Wilbraham, G. García, R. Fukuda, M. Ehara, N. Rega, I. Ciofini Coord. Chem. Rev. accepted
[8] M. Ehara, R. Fukuda, C. Adamo, I. Ciofini J. Comput. Chem. 34 (2013) 2498-2501.
[9] G. García, C. Adamo, I. Ciofini Phys. Chem. Chem. Phys. 15 (2013) 20210-20219.
[10] T. Le Bahers, E. Brémond, I. Ciofini, C. Adamo Phys. Chem. Chem. Phys. 136 (2014) 14435-14444.
[11] M. Savarese, P. A. Netti, C. Adamo, N. Rega, I. Ciofini J. Phys. Chem. B 117 (2013) 16165-16173.
[12] M. Savarese, U. Raucci, C. Adamo, P. Netti, I. Ciofini, N. Rega Phys. Chem. Chem. Phys. 16 (2014) 20681-20688.
[13] L. Wilbraham, M. Savarese, N. Rega, C. Adamo, I. Ciofini J. Phys. Chem. B 119 (2015) 2459-2466.
[14] U. Raucci, M. Savarese, C. Adamo, I. Ciofini, N. Rega J. Phys. Chem. B 119 (2015) 2650-2657.