High-Valent Fluorinated TM Complexes for Trifluoromethylation (TM = Ni, Cu, Ag)
Noel Nebra
Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR CNRS 5069), Toulouse, France
Mercredi 2 juillet 2025, 11H00
Bibiothèque du LCT, Couloir 12-13, 4ème étage, Campus Pierre et Marie Curie
Fluorine atoms drastically affect the biological properties of organic synthons,[1] with the trifluoromethyl group occupying a preferential place in drug and agrochemical design. The creation of C-CF3 bonds via cross-coupling reactions thus represents an appealing strategy to build molecular complexity. In marked contrast, unfortunately, the C-CF3 bond formation via reductive elimination (R.E.) from well-defined [R-TM-CF3] fragments remains a challenging task. An original approach to circumvent this bottleneck resides in the building of high-valent [R-TM-CF3] organometallics, which are more prone to get reduced and may eventually lead to the key R.E. step easier (Figure 1). In this communication, an expeditious entry to high oxidation state MCF3 compounds (M = NiIV, CuIII, AgIII), together with their application in trifluoromethylation and C-heteroatom bond formation, will be disseminated.[2-4] More precisely, this seminar deals with the authentication of MCF species, alongside their crucial role in trifluoromethylation reactions via uncommon 2e- redox shuttles. The singular bonding of high-valent MCF3 complexes displaying an Inverted Ligand Field (ILF) electronic structure [5] will be briefly discussed, and unprecedented reactivity studies supporting this ILF electronic structure will be presented.
![[Picture]](Fig-Noel_Nebra.jpg)
Figure 1. Guiding principle of this talk: Synthesis of high oxidation state MCF3 complexes via 2e- oxidation step and subsequent use for synthetic purposes (trifluoromethylation).
_________________________________
References :
[1] (a) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881; (b) O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111, 4475; (c) T. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470.
[2] (a) N. M. Camasso, M. S. Sanford, Science 2015, 347, 1218; (b) J. R. Bour, N. M. Camasso, M. S. Sanford, J. Am. Chem. Soc. 2015, 137, 8034; (c) F. D'Accriscio, P. Borja, N. Saffon-Merceron, M. Fustier-Boutignon, N. Mézailles, N. Nebra, ACIE 2017, 56, 12898.
[3] (a) N. Nebra, V. V. Grushin, J. Am. Chem. Soc. 2014, 136, 16998; (b) A. M. Romine, N. Nebra, A. I. Konovalov, E. Martin, J. Benet-Buchholz, V. V. Grushin, ACIE 2015, 54, 2745; (c) D. Joven-Sancho, A. Echeverri, N. Saffon-Merceron, J. Contreras-Garcia, N. Nebra, ACIE 2024, 63, e202319412.
[4] (a) Z. Lu, S. Liu, Y. Lan, X. Leng, Q. Shen, Organometallics 2021, 40, 1713; (b) L. Demonti, N. Saffon-Merceron, N. Mézailles, N. Nebra, CChem. Eur. J. 2021, 27, 15396.
[5] (a) R. Hoffmann, S. Alvarez, C. Mealli, A. Falceto, T. J. Cahill, III, T. Zeng, G. Manca, Chem. Rev. 2016, 116, 8173; (b) S. N. MacMillan, K. M. Lancaster, ACS Catal. 2017, 7, 1776.