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Lecture 1
Basics of MC

1. What is quantum Monte Carlo?
2. Essence of variational and projector Monte Carlo methods
3. Early history of MC and QMC.
4. Central limit theorem, Chebyshev inequality
5. Monte Carlo vs. deterministic integration

1 Importance Sampling

6. Pseudo-random vs. quasi-random numbers
7. Sampling nonuniform probability densities

1 Transformation method
2 Rejection method
3 Metropolis-Hastings algorithm (part of next lecture)

8. Unbiased estimators
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Lecture 2
Variational Monte Carlo and Metropolis-Hastings Algorithm

1. Ingredients needed for accurate and efficient variational Monte Carlo

2. Metropolis-Hastings Algorithm

1 Markov chains/matrices/kernels
2 Stationarity condition and detailed balance condition
3 Choice of acceptance matrix/kernel
4 Choice of proposal matrix/kernel
5 Various observations and connection to heat-bath/Gibbs sampler
6 Optimizing the Markov matrix for finite spaces

3. Estimating errors of autocorrelated variables

4. Example of a variational wavefunction

Optimization of Many-body Wavefunctions (if there is time)

1. Measures of goodness of many-body wave functions

2. Pros and cons of optimizing energy versus variance of energy

3. Optimization methods

1 Newton method
2 linear method
3 augmented hessian method
4 perturbation theory
5 stabilization
6 optimization of linear combination of energy and variance
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Lecture 3

1. Different requirements for trial versus guiding wave functions

2. Outline of variational and projector Monte Carlo methods

3. Importance sampling in projector Monte Carlo methods

4. Forms of projector Monte Carlo (PMC)

5. Manifestation of sign problem in different projector Monte Carlo methods

6. Full configuration interaction QMC (FCIQMC) and semistochastic QMC
(SQMC)

7. Fixed-node approximation in discrete-space projector Monte Carlo methods

8. Diffusion Monte Carlo without and with importance sampling

9. Expectation values of various classes of operators

10. Weighted branching random walks

11. Population control error and how to remove it

12. Pure state versus finite temperature MC methods. Schematic of VMC, PMC,
PIMC and reptation MC walks

13. Path-integral Monte Carlo (PIMC)

14. Reptation Monte Carlo (a hybrid between PMC and PIMC)
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What is Quantum Monte Carlo?
Stochastic implementation of the power method for projecting out the
dominant eigenvector of a matrix or integral kernel.

“Dominant state” means state with largest absolute eigenvalue.

If we repeatedly multiply an arbitrary vector, not orthogonal to the dominant
state, by the matrix, we will eventually project out the dominant state.

QMC methods are used only when the number of states is so large (> 1010)
that it is not practical to store even a single vector in memory. Otherwise use
exact diagonalization method, e.g., Lanczos. So, at each MC generation,
only a sample of the states are stored.

QMC methods are used not only in a large discrete space but also in a
continuously infinite space. Hence “matrix or integral kernel” above. In the
interest of brevity I will use either discrete or continuous language (sums and
matrices or integrals and integral kernels), but much of what is said will
apply to both situations.
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Definitions
Given a complete or incomplete basis: {|φi 〉}, either discrete or continuous

Exact |Ψ0〉 =
∑
i

ei |φi 〉, where, ei = 〈φi |Ψ0〉

Trial |ΨT 〉 =
∑
i

ti |φi 〉, where, ti = 〈φi |ΨT 〉

Guiding |ΨG 〉 =
∑
i

gi |φi 〉, where, gi = 〈φi |ΨG 〉

(If basis incomplete then “exact” means “exact in that basis”.)

ΨT used to calculate variational and mixed estimators of operators Â, i.e.,
〈ΨT|Â|ΨT〉/ 〈ΨT|ΨT〉 , 〈ΨT|Â|Ψ0〉/ 〈ΨT|Ψ0〉

ΨG used to alter the probability density sampled, i.e., Ψ2
G in VMC, ΨGΨ0 in

PMC.

ΨG must be such that gi 6= 0 if ei 6= 0. If ΨT also satisfies this condition
then ΨG can be chosen to be ΨT. Reasons to have ΨG 6= ΨT are: a) rapid
evaluation of “local energy”, b) have finite-variance estimators. To simplify
expressions, we use ΨG = ΨT or ΨG = 1 in what follows.
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Variational MC

EV =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

=

∑Nst

ij 〈ΨT|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

i 〈ΨT|φk〉 〈φk |ΨT〉

=

∑Nst

ij tiHij tj∑Nst

k t2
k

=
Nst∑
i

t2
i∑Nst

k t2
k

∑Nst

j Hij tj

ti

=
Nst∑
i

t2
i∑Nst

k t2
k

EL(i) =

[∑NMC

i EL(i)
]

Ψ2
T

NMC
→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)2

EL(i)

]
Ψ2

G[∑NMC

k

(
tk
gk

)2
]

Ψ2
G

Sample probability density function
g2
i∑Nst

k
g2
k

using Metropolis-Hastings, if ΨG complicated.

Value depends only on ΨT. Statistical error depend on ΨT and ΨG.

Energy bias and statistical error vanish as ΨT → Ψ0.

For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!

In fact need ΨG 6= ΨT at times to get finite variance. ΨG = ΨT does give unbiased estimator.
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Projector MC

Pure and Mixed estimators for energy are equal: E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

=
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

E0 =
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∑Nst

ij 〈Ψ0|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

k 〈Ψ0|φk〉 〈φk |ΨT〉

=

∑Nst

ij eiHij tj∑Nst

k ektk
=

Nst∑
i

ei ti∑Nst

k ektk

∑Nst

j Hij tj

ti

=
Nst∑
i

ei ti∑Nst

k ektk
EL(i) =

[∑NMC

i EL(i)
]

ΨTΨ0

NMC
→ΨG 6=ΨT

[∑NMC

i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

Sample eigi/
∑Nst

k ekgk using projector.

For exact PMC, value indep. of ΨT, ΨG, statistical error depends on ΨT, ΨG.
(For FN-PMC, value depends on ΨG, statistical error on ΨT,ΨG.)
(For FN-DMC, value depends on nodes of ΨG, statistical error on ΨT,ΨG.)
Statistical error vanishes as ΨT → Ψ0.
For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
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Variational and Projector MC

EV =

[∑NMC

i

(
ti
gi

)2
EL(i)

]
Ψ2

G[∑NMC

k

(
tk
gk

)2
]

Ψ2
G

(Value depends on ΨT, error ΨT,ΨG)

E0 =

[∑NMC

i

(
ti
gi

)
EL(i)

]
ΨGΨ0[∑NMC

k

(
tk
gk

)]
ΨGΨ0

(Value exact†. Error depends on ΨT,ΨG.)

EL(i) =

∑Nst

j Hij tj

ti

In both VMC and PMC weighted average of the configuration value of Ĥ aka
local energy, EL(i), but from points sampled from different distributions.

This is practical for systems that are large enough to be interesting if

1. ti = 〈φi |ΨT〉 can be evaluated in polynomial time, say N3

2. the sum in EL(i) can be done quickly, i.e., Ĥ is sparse (if space discrete)
or semi-diagonal (if space continuous).

† In practice, usually necessary to make approximation (e.g. FN) and value depends on ΨG.
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Variational Monte Carlo in Real Space
W. L. McMillan, Phys. Rev. 138, A442 (1965)

Monte Carlo is used to perform the many-dimensional integrals needed to
calculate quantum mechanical expectation values. e.g.

ET =

∫
dR Ψ∗T(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR

ψ2
T(R)∫

dRψ2
T(R)

HψT(R)

ψT(R)

=
1

N

∑
i

HΨT(Ri )

ΨT(Ri )
=

1

N

∑
i

EL(Ri )

Energy is obtained as an arithmetic sum of the local energies EL(Ri )
evaluated for configurations sampled from ψ2

T(R) using a generalization of
the Metropolis method. If ψT is an eigenfunction, the EL(Ri ) do not
fluctuate. Accuracy of VMC depends crucially on the quality of ψT(R).
Diffusion MC does better by projecting onto ground state.
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Rest of this lecture
Now that you know the essence of quantum Monte Carlo methods, for the
rest of this lecture we will discuss basic concepts that underlie both classical
and quantum Monte Carlo methods, e.g., the central limit theorem,
techniques for sampling various distributions, importance sampling for
reducing statistical error, calculation of unbiased estimator, ...

Then in the rest of the lectures we will continue our study of quantum
Monte Carlo methods.
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When to use Monte Carlo Methods
Monte Carlo methods: A class of computational algorithms that rely on
repeated random sampling to compute results.
A few broad areas of applications are:

1. physics
2. chemistry
3. engineering
4. finance and risk analysis

When are MC methods likely to be the methods of choice?

1. When the problem is many-dimensional and approximations that factor
the problem into products of lower dimensional problems are inaccurate.

2. A less important reason is that if one has a complicated geometry, a MC
algorithm may be simpler than other choices.

Obvious drawback of MC methods: There is a statistical error.
Frequently there is a tradeoff between statistical error and systematic error
and one needs to find the best compromise.
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Physics/Chemistry applications of Quantum Monte
Carlo

Some systems to which they have been applied are:

I strongly correlated systems (Hubbard, Anderson, t-J, ... models)
I quantum spin systems (Ising, Heisenberg, xy, ... models),
I liquid and solid helium, liquid-solid interface, droplets
I energy and response of homogeneous electron gas in 2-D and 3-D
I nuclear structure
I lattice gauge theory
I atomic clusters
I electronic structure calculations of atoms, molecules, solids, quantum

dots, quantum wires

I both to zero temperature (pure states) and finite temperature problems,
but in these lectures we will mostly discuss zero temperature methods
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MC Simulations versus MC calculations
One can distinguish between two kinds of algorithms:

1. The system being studied is stochastic and the stochasticity of the
algorithm mimics the stochasticity of the actual system. e.g. study of
neutron transport and decay in nuclear reactor by following the
trajectories of a large number of neutrons. Such problems are suitable
for MC algorithms in a very obvious way.

2. Much more interesting are applications where the system being studied
is not stochastic, but nevertheless a stochastic algorithm is the most
efficient, or the most accurate, or the only feasible method for studying
the system. e.g. the solution of a PDE in a large number of variables,
e.g., the solution of the Schrödinger equation for an N-electron system,
with say N = 100 or 1000. (Note: The fact that the wavefunction has a
probabilistic interpretation has nothing to do with the stochasticity of
the algorithm. The wavefunction itself is perfectly deterministic.)

I prefer to use the terminology that the former are MC simulations whereas
the latter are MC calculations but not everyone abides by that terminology.
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Early Recorded History of Monte Carlo
1777 Comte de Buffon: If a needle of length L is

thrown at random onto a plane ruled with straight lines a
distance d(d > L) apart, then the probability P of the

needle intersecting one of those lines is P = 2L
πd .

Laplace: This could be used to compute π (inefficiently).

1930s First significant scientific application of MC: Enrico Fermi
used it for neutron transport in fissile material.
Segre: “Fermi took great delight in astonishing his Roman
colleagues with his ”too-good-to-believe” predictions of
experimental results.”

1940s Monte Carlo named by Nicholas Metropolis and Stanislaw Ulam

1953 Algorithm for sampling any probability density
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(generalized by Hastings in 1970)

1962,1974 First PMC calculations, Kalos, and, Kalos, Levesque, Verlet.
1965 First VMC calculations (of liquid He), Bill McMillan.
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Central Limit Theorem
de Moivre (1733), Laplace (1812), Lyapunov (1901), Pólya (1920)

Let X1,X2,X3, · · · ,XN be a sequence of N independent random variables
sampled from a probability density function with a finite expectation value,
µ, and variance σ2. The central limit theorem states that as the sample size
N increases, the probability density of the sample average of these random
variables approaches the normal distribution, 1√

2πσ
e−(x−µ)2/(2σ2/N), with a

mean µ, and variance σ2/N, irrespective of the original probability density
function.

Law of Large Numbers
Cardano, Bernouli, Borel, Cantelli, Kolmogorov, Khinchin

Even if the variance is infinite, if the expected value is finite, the sample
means will converge to the expected value but usual error estimates go down
slower than 1/

√
N and do not imply usual confidence intervals. Beware of

skewed densities that have ∞ variance!
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Chebychev Inequality

The Central Limit Theorem by itself does not tell you how quickly the
averages converge to a Gaussian distribution.

For an arbitrary distribution with mean µ and variance σ2, we have much
weaker bounds given by Chebychev’s inequality:

The probability of a variable lying between µ− nσ and µ+ nσ is > 1− 1/n2.

Prob. of being within 1σ of µ is ≥ 0% versus 68.3% for Gaussian
Prob. of being within 2σ of µ is ≥ 75% versus 95.4% for Gaussian
Prob. of being within 3σ of µ is ≥ 89% versus 99.7% for Gaussian

The worst case occurs for a distribution with probability 1− 1/n2 at µ and
probability 1/2n2 at µ− nσ and µ+ nσ.
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Monte Carlo versus Deterministic Integration
methods

Deterministic Integration Methods:
Integration Error, ε, using Nint integration points:
1-dim Simpson rule: ε ∝ N−4

int , (provided derivatives up to 4th exist)

d-dim Simpson rule: ε ∝ N
−4/d
int , (provided derivatives up to 4th exist)

So, for a given error, N and so the computer time increases exponentially
with d , since N ∝ ( 1

ε )d/4.

Monte Carlo:
ε ∼ σ(Tcorr/Nint)

1/2, independent of dimension!, according to the central
limit theorem since width of gaussian decreases as (Tcorr/Nint)

1/2 provided
that the variance of the integrand is finite. (Tcorr is the autocorrelation
time.)

Roughly, Monte Carlo becomes advantageous for d > 8.
For a many-body wavefunction d = 3N and can be a few thousand!
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Scaling with number of electrons

Simpson’s rule integration

ε =
c

N
4/d
int

=
c

N
4/3Nelec

int

Nint =
(c

ε

) 3Nelec
4

exponential in Nelec

Monte Carlo integration

ε = σ

√
Nelec

NMC

NMC =
(σ
ε

)2
Nelec linear in Nelec

(For both methods, computational cost is higher than this since the cost of
evaluating the wavefunction increases with Nelec, e.g., as N3

elec, (better if one
uses “linear scaling”; worse if one increases Ndet with Nelec.))
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Monte Carlo Integration

I =

∫
V

f (x)dx = V f ± V

√
f 2 − f

2

N − 1

where f =
1

N

N∑
i

f (xi ), f 2 =
1

N

N∑
i

f 2(xi )

and the points xi are sampled uniformly in V .

Importance sampling

I =

∫
V

g(x)
f (x)

g(x)
dx =

(
f

g

)
±

√√√√( f
g

)2

−
(

f
g

)2

N − 1

where the probability density function g(x) ≥ 0 and
∫
V
g(x)dx = 1.

If g(x) = 1/V in V then we recover original fluctuations but if g(x) mimics f (x) then the
fluctuations are much reduced. Optimal g is |f |. Need: a) g(x) ≥ 0, b) know integral of
g(x), and, c) be able to sample it.

Importance sampling can turn an ∞−variance estimator into a finite variance one!
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Illustration of Importance Sampling

f (x) is the function to be integrated. g(x) is a function that is “similar” to
f (x) and has the required properties: a) g(x) ≥ 0, b) we know integral of
g(x), and, c) we know how to sample it.

∫
f (x)dx can be evaluated

efficiently by sampling g(x) and averaging f (x)/g(x).

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

f(
x
),

 g
(x

)

x

f(x)
g(x)
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Infinite variance estimators
When variance σ2 is finite, by the central limit theorem the average

FN =

∑N
i=1 f (xi )

N

converges for increasing N to a gaussian of width σN = σ/
√

N.
Since we have a gaussian distribution the probability of FN lying between
µ− nσN and µ+ nσN is erf(n/

√
2)

FN being within 1σN of the true mean is 68.3%
FN being within 2σN of the true mean is 95.4%
FN being within 3σN of the true mean is 99.7%.

What if the population variance σ2 =∞ but we do not know that
beforehand? The computed sample variance will ofcourse always be finite.
The practical signature of an infinite variance estimator is that the estimated
σ increases with sample size, N and tends to have upward jumps. So the
estimated error of the sample mean, σN = σ/

√
N, goes down more slowly

than 1√
N

, or even does not go down at all.

Cyrus J. Umrigar



Pseudo-random vs quasi-random numbers
Terrible misnomers!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x(i)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(
i+

1)

(Pseudo) Random Sequence

4096 Points of (Pseudo) Random Sequence

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x(i)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(
i+

1)

Quasi−Random Sobol Sequence

4096 Points of Quasi−Random Sobol Sequence

Reason why uniform grid is inefficient: Projection of N = nd points in d dimensions
onto a line maps nd−1 points onto a single point.
Reason why quasi-MC is more efficient than pseudo-MC in intermediate # of
dimensions (e.g. finance applications): Quasi-MC avoids clusters and voids.
Negatives for quasi-MC: Difficult to combine with importance sampling (needed for
spiky functions), cannot choose # of MC points freely.
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Sampling of arbitrary probability density functions

Infinite-variance estimators can be replaced by finite-variance estimators by
sampling the MC points from an appropriate probability density functions.

Techniques for sampling arbitrary probability density functions employ
standard random numbers generators that sample a uniform distribution in
[0, 1]. We study 3 techniques for sampling nonuniform distributions:

1. transformation method
2. rejection method
3. Metropolis-Hastings method

but first we say a few words about random number generators.
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Random Number Generators
Conventional random number generators generate random numbers
uniformly distributed on [0,1).
Of course no computer generated sequence of random numbers is truly
random. For one, the random numbers must repeat after a finite (though
hopefully very large) period. Also, if N bits are used to represent the random
numbers, then the number of different numbers generated can by no larger
than 2N .
Note however, that the period can be (and typically is for the better
generators) much larger than 2N .
Many different algorithms exist for generating random numbers, e.g., linear
congruential generators (with or without an additive constant), linear
feedback shift register, lagged Fibonacci generator, XORshift algorithm etc.
They are typically subjected to a battery of statistical tests, e.g., the Diehard
tests of Marsaglia. Of course no random number generator can pass all the
tests that one can invent, but hopefully the random number generator used
does not have correlations that could significantly impact the system being
studied.
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Random Number Generators
For many MC calculations it is the short-ranged correlations that matter
most, but one has to think for each application what is important. For
example, if one were studying an Ising model with a power of two number of
spins, it would be problematic to have random number generator that
generated numbers with bits that repeat at an interval of 2N .

In the old days, there were quite a few calculations that produced inaccurate
results due to bad random number generators. For example, the standard
generators that came with UNIX and with C were badly flawed. In the 1980s
a special purpose computer was built at Santa Barbara to study the 3-D
Ising model. However, at first it failed to reproduce the known exact results
for the 2-D Ising model and that failure was traced back to a faulty random
number generator. Fortunately, these days the standard random number
generators are much more reliable.
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Sampling random variables from nonuniform
probability density functions

We say x is sampled from f (x) if for any a and b in the domain,

Prob[a ≤ x ≤ b] =

∫ b

a

dx ′ f (x ′)

1) Transformation method (For many simple functions)
2) Rejection method (For more complicated functions)
3) Metropolis-Hastings method (For any function)

1) Transformation method: Perform a transformation x(ξ) on a uniform deviate ξ,
to get x sampled from desired probability density f (x).

|Prob(ξ)dξ| = |Prob(x)dx | conservation of probability

If we have sampled ξ from a uniform density (Prob(ξ) = 1) and we wish x to be
sampled from the desired density, f (x), then setting Prob(x) = f (x),∣∣∣∣dξdx

∣∣∣∣ = f (x)

Solve for ξ(x) and invert to get x(ξ), i.e., invert the cumulative distrib.
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Examples of Transformation Method

Example 1: f (x) = ae−ax , x ∈ [0,∞)∣∣∣∣dξdx

∣∣∣∣ = ae−ax , or, ξ = e−ax , i.e., x =
− ln(ξ)

a

Example 2: f (x) = x−1/2

2 , x ∈ [0, 1]∣∣∣∣dξdx

∣∣∣∣ =
x−1/2

2
, or ξ = x1/2, i.e., x = ξ2

Note that in this case we are sampling a probability density that is infinite at
0, but that is OK!

Example 3: f (x) = xe−x
2/2, x ∈ [0,∞)∣∣∣∣dξdx

∣∣∣∣ = xe−x
2/2, or, ξ = e−x

2/2, i.e., x =
√
−2 ln(ξ)
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Examples of Transformation Method
Example 4a: f (x) = e−x2/2

√
2π

, x ∈ (−∞,∞) (using Box-Müller method)

1

2π
e−(

x2
1
2

+
x2
2
2

) dx1 dx2 =

(
r e−

r2

2 dr

)(
dφ

2π

)

r =
√
−2 log(ξ1), φ = 2πξ2

x1 =
√
−2 log(ξ1) cos(2πξ2) , x2 =

√
−2 log(ξ1) sin(2πξ2)

(x1 and x2 are
uncorrelated)

Example 4b: f (x) ≈ e−x2/2
√

2π
, x ∈ (−∞,∞) (using central-limit theorem)

Since σ2 for uniform distribution about 0 is

∫ 1/2

−1/2
dx x2 =

1

12

x = lim
N→∞

√
12

N

(
N∑
i=1

ξi −
N

2

)
≈

12∑
i=1

ξi − 6
(avoids log, sqrt, cos, sin, but,
misses tiny tails beyond ±6)
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Rejection Method
We wish to sample f (x).
Find a function g(x) that can be sampled by another method (say transformation)
and that preferably mimics the behaviour of f (x).
Let C be an upper bound to the maximum value of f (x)/g(x).
Let C ≥ max(f (x)/g(x)).
Then f (x) is sampled by sampling g(x) and keep the sampled points with probability

P =
f (x)

Cg(x)

The efficiency of the method is the fraction of the sampled points that are kept.

Eff =

∫
dx

f (x)

Cg(x)
g(x)

=
1

C

Drawback: It is often hard to know C and a “safe” upperbound choice for C may
lead to low efficiency. An alternative is to associate weights with the sampled points.
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Importance Sampling for computing integrals
efficiently

Now that we know how to sample simple probability density functions, we
study how to use importance sampling to compute integrals more efficiently.
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Example of Importance Sampling to Calculate
Integrals More Efficiently

Suppose we wish to compute∫ 1

0
dx f (x) =

∫ 1

0
dx

1

xp + x
(=

log(2)

1− p
, but pretend not known)

Note that ∫ 1

0
dx(f (x))2 = ∞, (for p ≥ 0.5)

so if we estimate the integral by sampling points uniformly in [0, 1] then this
would be an infinite variance estimator and the error of the estimate will go
down more slowly than N−1/2. However, we can instead sample points from
the density

g(x) =
1− p

xp

Now the variance of f (x)/g(x) is finite and the error decreases as N−1/2,
and, with a small prefactor. (Still would not use this in 1D.)
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Homework Problem 1
Compute

I =

∫ 1

0
dx f (x) =

∫ 1

0
dx

1

xp + x
(=

log(2)

1− p
, but pretend not known) ≈

1

NMC

NMC∑
k=1

1

ξpk + ξk

with/without importance sampling, using for the importance sampling function

g(x) =
(1− p)

xp

To sample g(x):

∣∣∣∣dξdx
∣∣∣∣ = (1− p)x−p , i.e., ξ = x1−p , i.e., x = ξ

1
1−p

∫ 1

0
dx f (x) =

∫ 1

0
dx g(x)

f (x)

g(x)
=

∫ 1

0
dx

1− p

xp
1

(1− p)(1 + x1−p)

≈
1

NMC(1− p)

NMC∑
k=1

1

(1 + x1−p
k )

=
1

NMC(1− p)

NMC∑
k=1

1

(1 + ξk )

Do this for p = 0.25, 0.5, 0.75, 0.95 and NMC = 103, 104, 105, 106, 107, 108, 109.
Plot 2 graphs, each having 8 curves (4 values of p, and, with/without importance sampling):

1. Log of estimated 1-standard deviation statistical error versus log(NMC).
2. Actual error in I , with estimated 1-std. dev. statistical error as an error bar versus log(NMC).
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Homework Solution 1a
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Log10(N)

MC integral of 1/(x
p
+x) with and without importance sampling

p=0.25 with impor. sampl.
p=0.5 with impor. sampl.

p=0.75 with impor. sampl.
p=0.95 with impor. sampl.

p=0.25 no impor. sampl.
p=0.5 no impor. sampl.

p=0.75 no impor. sampl.
p=0.95 no impor. sampl.

Statistical errors ∼ NMC
−1/2 for all p with importance sampling but only for

p = 0.25 without importance sampling. For p = 1 even the integral is
infinite. For p = 0.95 no sign of convergence. Theorem about asymptotic
convergence of little practical utility.
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Homework Solution 1b
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Log10(N)

MC integral of 1/(x
p
+x) with and without importance sampling

p=0.25 with impor. sampl.
p=0.5 with impor. sampl.

p=0.75 with impor. sampl.
p=0.95 with impor. sampl.

p=0.25 no impor. sampl.
p=0.5 no impor. sampl.

p=0.75 no impor. sampl.
p=0.95 no impor. sampl.

For p = 0.95 all of the errors are negative. Occasional large positive errors will bring mean
to correct value. Usual error estimates are meaningless. The points with the larger errors
tend to have the smaller estimated errors! Weighting estimates by inverse variances is bad!!
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Unbiased Estimators
In this section, denote population means by brackets and sample means by bars.
Let f (x) be a random variable with probability density ρ(x).

Population mean: µ =

∫
dx f (x) ρ(x) ≡ 〈f 〉ρ

Population variance: σ2 =

∫
dx (f (x)− 〈f 〉ρ)2 ρ(x) = 〈f 2〉ρ − 〈f 〉2ρ

Estimator is unbiased if averaging over an infinite number of samples of size N gives the
same result as that from a single infinite sample. Can estimate mean and variance from
independent finite samples of size N, but the “obvious” estimators often have O(1/N)
errors, so we provide here estimators that are correct at least to O(1/N).

Unbiased estimator for 〈f 〉ρ :
1

N

N∑
i=1

f (xi ) ≡ fρ

Unbiased estimators for σ2 :
1

N

N∑
i=1

(f (xi )− 〈f 〉ρ)2 (but 〈f 〉ρ not known)

and
1

N − 1

N∑
i=1

(f (xi )− fρ)2 =
N

N − 1

(
f 2
ρ − fρ

2
)
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Estimating Unbiased Variance from Uncorrelated Samples

Let 〈f (x)〉 denote the population mean and f (x) denote the sample mean.
Then f 2 − (f )2 =〈∑

i f 2(xi )

N
−
[∑

i f (xi )

N

]2
〉

= 〈f 2〉 −

〈∑
i f 2(xi ) +

∑
i ,j 6=i

∑
j f (xi )f (xj)

N2

〉

Since f (xi ) and f (xj) are independent

RHS =

(
1− 1

N

)
〈f 2〉 − N(N − 1)

N2
〈f 〉2 =

N − 1

N
(〈f 2〉 − 〈f 〉2) =

N − 1

N
σ2

So, the unbiased estimate for σ2 is

σ2 ≈ N

N − 1

(
f 2 − (f )2

)
Loss of one degree of freedom because sample variance is computed relative
to sample mean rather than the true mean.
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Examples of Unbiased and Biased Estimators

ET =

∫
dRψT(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR

ψ2
T(R)∫

dRψ2
T(R)

HψT(R)

ψT(R)

=
1

N

N∑
i=1

HΨT(Ri )

ΨT(Ri )
=

1

N

N∑
i=1

EL(Ri ) unbiased

ET =

∫
dRψT(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR |ψT(R)|∫

dR |ψT(R)| sgn(ψT(R)) HψT(R)∫
dR |ψT(R)|∫

dR |ψT(R)| |ψT(R)|

=

∑N
i=1 sgn(ψT(R)) HΨT(Ri )∑N

i=1 |ψT(R)|
O
(

1
N

)
bias

Can do better by calculating covariances.

Cyrus J. Umrigar



Unbiased Estimators to O(1/N) of functions of
expectation values and their variance

〈x〉 ≡ population averages of x , i.e., true expectation value
x̄ ≡ average of x over sample of size N

Let F be a function of expectation values, {〈fi 〉}.
F
(
{f̄i}

)
is unbiased estimator for F ({〈fi 〉}) iff F is linear function of {〈fi 〉}.

In general

F ({〈fi 〉}) = F
(
{f̄i}

)
− 1

2

∑
i ,j

∂2F

∂fi∂fj

cov(fi , fj)

N
+ O

(
1

N2

)

var
(
F ({〈fi 〉})

)
=

∑
i ,j

∂F

∂fi

∂F

∂fj
cov(fi , fj) + O

(
1

N

)
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Unbiased Estimators to O(1/N) or better (cont)
Estim. of mean 〈f 〉ρ = fρ

Estim. of variance 〈f 2〉ρ − 〈f 〉2ρ =
N

N − 1

(
f 2
ρ − fρ

2
)

Estim. of error of sample mean =

√
1

N − 1

(
f 2
ρ − fρ

2
)

Estim. of covar. cov(f , g) ≡ 〈fg〉ρ − 〈f 〉ρ〈g〉ρ =
N

N − 1

(
fgρ − fρgρ

)
Estim. of product of expec. values 〈f 〉ρ〈g〉ρ = fρgρ −

1

N
cov(f , g)

Estim. of ratio of expec. values
〈f 〉ρ
〈g〉ρ

≈
fρ

gρ

1−
1

N

 σ2
g

〈g〉2ρ
−

cov(f , g)

〈f 〉ρ 〈g〉ρ


Var

(
fρ gρ

)
=

1

N
〈f 〉2ρ 〈g〉

2
ρ

 σ2
f

〈f 〉2ρ
+

σ2
g

〈g〉2ρ
+ 2

cov(f , g)

〈f 〉ρ 〈g〉ρ


Var

(
fρ

gρ

)
=

1

N

〈f 〉2ρ
〈g〉2ρ

 σ2
f

〈f 〉2ρ
+

σ2
g

〈g〉2ρ
− 2

cov(f , g)

〈f 〉ρ 〈g〉ρ

 .

Note that the product, fρgρ is unbiased if cov(f , g) = 0, but the ratio
fρ
gρ

has O(1/N) bias even if

cov(f , g) = 0. The ratio has no bias (and no fluctuations) when f and g are perfectly correlated.

In practice replace population means by sample means on RHS.
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Unbiased Estimators of autocorrelated variables
Independent samples:

Estim. for error of sample mean ∆f =

√
1

N − 1

(
f 2
ρ − fρ

2
)

Autocorrelated samples (e.g. from Metropolis):

Estim. for error of sample mean ∆f =

√
1

Neff − 1

(
f 2
ρ − fρ

2
)

where

Neff =
N

(1 + 2τf )
≡ N

Tcorr

τf =

∑∞
t=1

[
〈f1f1+t〉ρ − 〈f 〉

2
ρ

]
σ2
f

If samples are indep., 〈f1f1+t〉ρ = 〈f 〉2ρ and integrated autocorrelation time τf = 0.
Since the relevant quantity for MC calculations is (1 + 2τf ) ≡ Tcorr we will refer to
it as the autocorrelation time of f , though this is not standard usage.
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Lecture 2
Variational Monte Carlo and Metropolis-Hastings Algorithm
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Variational Monte Carlo in Real Space
W. L. McMillan, Phys. Rev. 138, A442 (1965)

Monte Carlo is used to perform the many-dimensional integrals needed to
calculate quantum mechanical expectation values. e.g.

ET =

∫
dR Ψ∗T(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR

ψ2
T(R)∫

dRψ2
T(R)

HψT(R)

ψT(R)

=
1

N

∑
i

HΨT(Ri )

ΨT(Ri )
=

1

N

∑
i

EL(Ri )

Energy is obtained as an arithmetic sum of the local energies EL(Ri )
evaluated for configurations sampled from ψ2

T(R) using a generalization of
the Metropolis method. If ψT is an eigenfunction the EL(Ri ) do not
fluctuate. Accuracy of VMC depends crucially on the quality of ψT(R).
Diffusion MC does better by projecting onto ground state.
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Three ingredients for accurate Variational Monte
Carlo

1. A method for sampling an arbitrary wave function Metropolis-Hastings.
2. A functional form for the wave function that is capable of describing the

correct physics/chemistry.
3. An efficient method for optimizing the parameters in the wave functions.
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Metropolis-Hastings Monte Carlo
Metropolis, Rosenbluth2, Teller2, JCP, 21 1087 (1953)

W.K. Hastings, Biometrika, 57 (1970)

Metropolis method originally used to sample the Boltzmann distribution.
This is still one of its more common uses.

General method for sampling any known discrete or continuous density.
(Other quantum Monte Carlo methods, e.g., diffusion MC, enable one to
sample densities that are not explicitly known but are the eigenstates of
known matrices or integral kernels.)

Metropolis-Hastings has serial correlations. Hence, direct sampling methods
preferable, but rarely possible for complicated densities in many dimensions.
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Metropolis-Hastings Monte Carlo (cont)
A Markov chain is specified by two ingredients:
1) an initial state
2) a transition matrix M(Rf |Ri) (probability of transition Ri → Rf .)

M(Rf |Ri) ≥ 0,
∑
Rf

M(Rf |Ri) = 1. Column-stochastic matrix

To sample ρ(R), start from an arbitrary Ri and evolve the system by repeated
application of M that satisfies the stationarity condition (flux out of state Ri equals
flux into Ri):∑

Rf

M(Rf |Ri) ρ(Ri) =
∑
Rf

M(Ri|Rf) ρ(Rf) = ρ(Ri) ∀ Ri

i.e., ρ(R) is a right eigenvector of M with eigenvalue 1.
Stationarity ⇒ if we start with ρ, will continue to sample ρ.
Want more than that: any initial density should evolve to ρ.

lim
n→∞

Mn(Rf |Ri) δ(Ri) = ρ(Rf), ∀ Ri.

i.e., ρ should be the dominant right eigenvector.
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Metropolis-Hastings Monte Carlo (cont)

Want that any initial density should evolve to ρ.

lim
n→∞

Mn(Rf |Ri)δ(Ri) = ρ(Rf), ∀ Ri.

ρ should be the dominant right eigenvector. Additional conditions needed to guarantee this.

A nonnegative matrix M is said to be primitive if ∃ n such that Mn has all elements
positive.

(Special case of) Perron-Frobenius Theorem: A column-stochastic primitive matrix has a
unique dominant eigenvalue of 1, with a positive right eigenvector and a left eigenvector
with all components equal to 1 (by definition of column-stochastic matrix).

In a finite space, necessary and sufficient conditions are that Markov matrix M is primitive.
(Same ideas in continuous space (matrix → integral kernel) but statements and proofs
trickier.)

In practice, length of Monte Carlo should be long enough that there be a significant
probability of the system making several transitions between the neighborhoods of any pair
of representative states that make a significant contribution to the average. This ensures
that states are visited with the correct probability with only small statistical fluctuations.
For example in a double-well system many transitions between the 2 wells should occur,
but we can choose our proposal matrix to achieve this even if barrier between wells is high.
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Metropolis-Hastings Monte Carlo (cont)
Construction of M

Need a prescription to construct M, such that ρ is its stationary state. Impose detailed
balance condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf)

Detailed balance more stringent than stationarity condition.
Detailed balance is not necessary but provides way to construct M.
Write elements of M as product of elements of a proposal matrix T and an acceptance
Matrix A,

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri)

M(Rf |Ri) and T (Rf |Ri) are stochastic matrices, but A(Rf |Ri) is not.
Detailed balance is now:

A(Rf |Ri) T (Rf |Ri) ρ(Ri) = A(Ri|Rf) T (Ri|Rf) ρ(Rf)

or
A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
.
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Metropolis-Hastings Monte Carlo (cont)
Choice of Acceptance Matrix A

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
.

Infinity of choices for A. Any function

F

(
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

)
= A(Rf |Ri)

for which F (x)/F (1/x) = x and 0 ≤ F (x) ≤ 1 will do.
Choice of Metropolis et al. F (x) = min{1, x}, maximizes the acceptance:

A(Rf |Ri) = min

{
1,

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}
.

Other less good choices for A(Rf |Ri) have been made, e.g. F (x) = x
1+x

A(Rf |Ri) =
T (Ri|Rf) ρ(Rf)

T (Ri|Rf) ρ(Rf) + T (Rf |Ri) ρ(Ri)
.

Metropolis: T (Ri|Rf) = T (Rf |Ri), Hastings:T (Ri|Rf) 6= T (Rf |Ri)
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Metropolis-Hastings Monte Carlo (cont)
Choice of Proposal Matrix T

So, the optimal choice for the acceptance matrix A(Rf |Ri) is simple and
known.
However, there is considerable scope for using one’s ingenuity to come up
with good proposal matrices, T (Rf |Ri), that allow one to make large moves
with large acceptances, in order to make the autocorrelation time small.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

CJU, PRL 71, 408 (1993)

A(Rf |Ri) = min

{
1,

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}

Use freedom in T to make
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
≈ 1.

T (Rf |Ri) ∝ ρ(Rf) optimal if T (Rf |Ri) can be sampled over all space – usually not the
case. And if it is, then one would not use Metropolis-Hastings in the first place.

Otherwise, let T (Rf |Ri) =
S(Rf |Ri)∫

dRf S(Rf |Ri)
≈ S(Rf |Ri)

S(Ri|Ri)Ω(Ri)

S(Rf |Ri) is non-zero only in domain D(Ri) of volume Ω(Ri) around Ri).

A(Rf ,Ri)

A(Ri,Rf)
=

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
≈ Ω(Ri)

Ω(Rf)

S(Ri|Ri)

S(Rf |Rf)

S(Ri|Rf)

S(Rf |Ri)

ρ(Rf)

ρ(Ri)

from which it is apparent that the choice

S(Rf |Ri)
∝∼
√
ρ(Rf)/Ω(Rf) yields A(Rf ,Ri)/A(Ri,Rf) ≈ 1.
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

To be more precise, if the log-derivatives of T (Rf |Ri) equal those of
√
ρ(Rf)/Ω(Rf) at Rf =Ri, the

average acceptance goes as 1−O(∆m), where ∆ is the linear dimension of D(Ri).

In general, m=2, but if D(Ri) is inversion symmetric with Ri at its center, then m=3.

Considerable improvement compared to using a symmetric S(Rf |Ri) or choosing S(Rf |Ri)
∝∼ ρ(Rf)

for either of which m=1.

Another possible choice, motivated by (DMC) is

T (Rf |Ri) =
1

(2πτ)3/2
exp

[
−(Rf − Ri − V(Ri)τ)2

2τ

]
, V(Ri) =

∇Ψ(Ri)

Ψ(Ri)

Advantage: allows Metropolis Monte Carlo and diffusion Monte Carlo programs to share almost all

the code.

m = 2 for this choice of T , so such an algorithm is more efficient than one with a symmetric

S(Rf |Ri) or one for which S(Rf |Ri)
∝∼ ρ(Rf), but less efficient than one for which

S(Rf |Ri)
∝∼
√
ρ(Rf)/Ω(Rf).

These arguments are rigorous only in the small-step limit and are applicable only to functions with

sufficiently many derivatives within D(Ri). In practice these ideas yield large reduction in the

autocorrelation time provided that we employ a coordinate system such that ρ has continuous

derivatives within D(Ri).
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Choice of Proposal Matrix T in Metropolis-Hastings (cont)

Another possible choice, motivated by (DMC) is

T (Rf |Ri) =
1

(2πτ)3/2
exp

[
−(Rf − Ri − V(Ri)τ)2

2τ

]
, V(Ri) =

∇Ψ(Ri)

Ψ(Ri)

Advantage: allows Metropolis Monte Carlo and diffusion Monte Carlo
programs to share almost all the code.
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Metropolis-Hastings Monte Carlo (cont)
Some Observations about Metropolis-Hastings Method

1. To sample states with relative density ρ it is not necessary to know the
normalization of ρ. Metropolis automatically samples ρ(Ri)/

∫
dRf ρ(Rf). So,

it is useful for calculating quantities of the form∫
dRi e(Ri) ρ(Ri)∫

dRf ρ(Rf)

which is the form encountered in quantum mechanics and statistical

mechanics, but not for doing importance sampling to calculate

∫
dRi f (Ri),

unless one has a g(Ri) that not only mimics f (Ri) but whose integral is known.

2. The variance of the estimate for the expectation value 〈X 〉 is given by

1

N/Tcorr − 1

(∑
X (Ri)

2

N
−
(∑

X (Ri)

N

)2
)
.

That is, the effective number of configurations Neff is smaller than N by a
factor of Tcorr, which we define to be the autocorrelation time.
(Tcorr is related to integrated autocorrelation time, Tcorr = 1 + 2tcorr.)
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Metropolis-Hastings Monte Carlo (cont)

Some Observations about Metropolis-Hastings Method

3. The rate of convergence to the desired density and the autocorrelation
time of estimates of observables is governed by the sub-dominant
eigenvalues of M. In practice reduce Tcorr by inventing large moves that
have large acceptance probabilities.

4. Folklore: when one can choose from a range of proposal matrices, the
optimal one has an average acceptance ratio close to 1/2.
Reasonable choice in absence of any information, but in fact the optimal
choice may have an average acceptance that is anywhere between zero
and one.
I have found instances where the optimum is as small as 0.2 or as large
as 0.9.
A much better criterion is to maximize the rate at which the system
diffuses through configuration space 〈A(Rf |Ri)(Rf − Ri)

2〉.
The real measure of goodness is of course to minimize the
autocorrelation time for the observables of interest.
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Metropolis-Hastings Monte Carlo (cont)
Some Observations about Metropolis-Hastings Method

5. One often employs elementary transition matrices Mi that are
non-ergodic to construct a compound transition matrices M that is
ergodic.
Two sorts of combinations are often useful:

1 M =
∏n

i=1 Mi . Sequential updating. e.g. Ising spins on lattice sites or the
electrons in electronic structure.

2 M =
∑n

i=1 ciMi , ci ≥ 0 (independent of the current state) and∑n
i=1 ci = 1. Choose the transitions Mi randomly with probabilities ci .

Sometimes one needs to make moves in a space that has both discrete
and continuous components (e.g., spin or particle permutations and
space). The individual Markov matrices may make transitions in only one
of these spaces and therefore is not ergodic but the compound transition
matrix is ergodic.
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Metropolis-Hastings Monte Carlo (cont)
Some Observations about Metropolis-Hastings Method

7. The Gibbs sampler or heat bath algorithm can be considered to be a
special case of the (generalized) Metropolis method. T (Rf |Ri) ∝ ρ(Rf)
for only a small set of accessible states in a domain D(Ri) in the
neighborhood of Ri:

T (Rf |Ri) =

{
ρ(Rf)/

∑
ρ(Rf) if Rf ε D(Ri)

0 otherwise

If the sum over the accessible states from Ri and Rf is the same, the
acceptance is unity.

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
= 1 .

The heat bath algorithm frequently used for lattice models where the
normalization constant can be easily computed, e.g. Potts model.

One may ask, how are all states accessed if accessible states from Ri and Rf are the same? 1st it is only the sum that must be the

same. 2nd it is OK because one may be cycling through the spins.
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Optimizing the Markov matrix (discrete space)

Note that it was necessary to compute all the ρi in the thermalized space to
do heat bath and this can be expensive if this space is not small. If one
decides to incur this expense, then one can in fact do better than heat-bath
by making all except one of the diagonal moves be zero as follows.

do j =1 ,n

S< =
∑j−1

k=1 M(k, j)

S> =
∑n

k=j+1 π(k)

if (j 6= n) then
M(j + 1 : n , j) = π(j + 1 : n) (1− S<)/S>
M(j , j + 1 : n) = M(j + 1 : n , j) π(j) / π(j + 1 : n)
M(0, 0) = 0

else
M(n, n) = 1− S<

endif
enddo

Whereas the heat-bath matrix has one eigenvalue 1 and the rest zero, this
matrix has one eigenvalue one and the rest negative. So, there are negative
correlations (a good thing!) in this small space.
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Optimizing the Markov matrix (discrete space)
1. Order states in order of increasing probability.

2. Starting with first column, make diagonal element zero and rescale the subdiagonal
elements so that column adds up to 1.

3. After fixing each column, the corresponding row is determined by detailed balance.

4. For the last column there are no sub diagonal elements so the diagonal element is set
by the condition that the column adds up to 1.

The new matrix has only one nonzero diagonal element – the last one. This procedure can
be performed on any Markov matrix and the result will be different, but starting from the
heat-bath matrix is probably a good choice.
Example: Suppose heat-bath matrix is

M =

 0.1667 0.1667 0.1667
0.3333 0.3333 0.3333
0.5000 0.5000 0.5000


which of course has eigenvalues 1, 0, 0.
The optimized matrix is

M =

 0.0000 0.2000 0.2000
0.4000 0.0000 0.5333
0.6000 0.8000 0.2667


which has eigenvalues 1., -0.2, -0.533333
Cute but probably not very useful since space must be small to construct this M.
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Metropolis-Hastings Monte Carlo (cont)
Autocorrelation time

N Monte Carlo steps = Nb blocks × Ns steps/block
Assume Nb is large enough that the block averages are nearly independent.

Ē = average of EL over the N MC steps
σ = rms fluctuations of individual EL

σb = rms fluctuations of block averages of EL

Effectively, N/Tcorr independent measurements of EL

Define Tcorr as

err(Ē ) =
σ√

Nb × Ns

√
Tcorr =

σb√
Nb

⇒ Tcorr = Ns

(σb
σ

)2 Choose Ns � Tcorr, say, 100 Tcorr.
If Ns ≈ 10Tcorr, Tcorr underest. ≈ 10%.
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Metropolis-Hastings Monte Carlo (cont)
Autocorrelation time

N Monte Carlo steps = Nb blocks × Ns steps/block
Assume Nb is large enough that the block averages are nearly independent.

Ē = average of EL over the N MC steps
σ = rms fluctuations of individual EL

σb = rms fluctuations of block averages of EL

Effectively, N/Tcorr independent measurements of EL

Define Tcorr as

err(Ē ) =
σ√
N

Tcorr
− 1

=
σb√

Nb − 1

⇒ Tcorr =
N − Tcorr

Nb − 1

(σb

σ

)2

≈ Ns

(σb

σ

)2 Choose Ns � Tcorr, say, 100 Tcorr.

If Ns ≈ 10Tcorr, Tcorr underest. ≈ 10%.
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Blocking Analysis for error of mean of autocorrelated variables

Compute recursively and plot

1

Nb(Nb − 1)

Nb∑
i=1

(mi − Ē)2

for various blocking levels, Ns = 1, 2, 22, 23, ..., N/2
If the variables were uncorrelated to begin with then these estimates of the error would be
equal aside from statistical fluctuations.
If they are autocorrelated, the estimated error will grow and the flatten out when the block
means become uncorrelated, which assumes that N � Tcorr.
Assuming that block means are independent Gaussian variables (they are not at the lower
blocking levels), the estimated uncertainty of the error is

error estim√
2(Nb − 1)

using the fact that the probability density function of the sum of squares of Nb − 1 normal
standard deviates has variance 2(Nb − 1).
A reasonable choice of blocking level is the highest one for which the increase in the
estimate for the error is larger than the increase in the estimate for the uncertainty in the
error. It is possible to get a somewhat better estimate by predicting the shape of the curve
and extrapolating when say N < 1000Tcorr.
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Blocking Analysis for error of mean of autocorrelated variables

In variational Monte Carlo, Tcorr is usually very small if one makes an
intelligent choice for the proposal matrix. With the algorithm we typically
use Tcorr < 2 even for systems with say 100 electrons!

However, in some of the projector Monte Carlo methods (e.g. FCIQMC and
SQMC) that we discuss next, Tcorr can be much larger, even for much
smaller systems. Further, in these methods one needs to use a large
population of walkers, so it becomes expensive to have a large number of
Monte Carlo steps. In the next viewgraph, a blocking analysis for a run with
Tcorr ≈ 1000 and N = 223 is shown.
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Blocking Analysis for error of mean of autocorrelated variables
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Lecture 3
Optimization of Many-body Wavefunctions
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Functional form of Trial Wave Function
One of the great advantages of QMC is that one has a great deal of freedom
in the functional form of the trial wavefunction. This is in contrast to other
methods where one is largely restricted to using linear combinations of
determinants, and, furthermore the orbitals in these determinants have to be
expanded in basis functions, such as gaussians or planewaves, that are
amenable to analytic integration.
In QMC one has can utilize one’s intuition about the physics or chemistry of
the problem to come up with good functional forms for the wavefunction.
These functional forms may have several parameters, whose values are not
know a priori, so powerful methods for optimizing these parameters have
been developed.
Some innovative functional forms that have been used are:

1. Antisymmetrized geminal power times Jastrow Sorella, Casula
2. Pfaffian times Jastrow Schmidt, Mitas and coworkers
3. Inhomogeneous backflow times Jastrow Needs and coworkers

Next we discuss what is probably the most commonly used functional form –
multideterminant expansion times Jastrow.
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Functional form of Trial Wave Function

ΨT =

(∑
n

dnD↑n D↓n

)
× J (ri , rj , rij)

• Determinants:
∑

n dnD↑n D↓n
D↑ and D↓ are determinants of single-particle orbitals φ for up (↑) and down
(↓) spin electrons respectively.
The single-particle orbitals φ are given by:

φ(ri ) =
∑
αk

ckα Nkαr
nkα−1
iα e−ζkα riα Ylkαmkα

(̂riα)

• Jastrow: J (ri , rj , rij) =
∏
αi exp (Aαi )

∏
ij exp (Bij)

∏
αij exp (Cαij)

Aαi ⇒ electron-ion correlation
Bij ⇒ electron-electron correlation
Cαij ⇒ electron-electron-ion correlation

dn, ckα , ζkα and parms in J are optimized.

∼ Natomtype of J parms.
∼ Natomtype of ζkα parms.
∼ N2

atom of ckα parms.
∼ eNatom of dn parms.
Power of QMC:
J parms. do work of dn parms.
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Optimization of many-body wavefunctions

Standard methods do not work for the wavefunctions we are interested in.
For example, they work for linear combinations of determinants but not for
linear combinations of determinants multiplied by a Jastrow factor.

But is it a worthwhile expenditure of effort to optimize wavefunctions?
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Almost all errors reduced by optimizing trial
wavefunctions

1. Statistical error (both the rms fluctuations of EL and the
autocorrelation time)

2. EVMC

3. Fixed-node error in EDMC (nodes move during optimization). Fixed
node errors can be LARGE. For C2, FN error for 1-det wavefn is 1.3 eV
for total energy and 0.7 eV for well-depth. However, optimized multidet.
wavefn has FN error that is better than chemical accuracy (1 kcal/mole
= 0.043 eV/molecule).

4. Time-step error in DMC
5. Population control error in DMC
6. Pseudopotential locality error in DMC when using nonlocal

pseudopotentials
7. Error of observables that do not commute with the Hamiltonian (mixed

estimators, 〈Ψ0|Â|ΨT 〉 not exact even for nodeless ψ0, ψT) if one does
not use forward/side walking.
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Choices to be made when optimizing trial
wavefunctions

1. What precisely do we want to optimize – the objective function or
measure of goodness?

2. What method do we use to do the optimization? If more than one
method is applied to the same objective function, they will of course
give the same wavefunction, but the efficiency with which we arrive at
the solution may be much different.

3. When we test to see if the proposed new parameters are better than the
old ones, do we test on a fixed sample of MC points or draw new MC
points each time?
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Measures of goodness of variational wave functions

min EVMC =
〈ψT|H|ψT〉
〈ψT|ψT〉

= 〈EL〉|ψT|2

min σ2
VMC =

〈ψT|(H − ET)2|ψT〉
〈ψT|ψT〉

=
〈
E 2

L(Ri )
〉
|ψT|2

− 〈EL(Ri )〉2|ψT|2

max Ω2 =
| 〈ψFN|ψT〉 |2

〈ψFN|ψFN〉 〈ψT|ψT〉
=

〈
ψFN
ψT

〉2

|ψT|2〈∣∣∣ψFN
ψT

∣∣∣2〉
|ψT|2

min EDMC =
〈ψFN|H|ψT〉
〈ψFN|ψT〉

= 〈EL〉|ψFNψT|

For an infinitely flexible wave function all optimizations will yield the exact

wavefunction (except that minimizing σ could yield an excited state) but for
the imperfect functional forms used in practice they differ.
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Progress in optimization of Many-Body
Wavefunctions

Naive energy optim. → Variance optim. → Efficient energy optim.

− 1988 naive energy optimization, few (∼ 3) parameters

1988 − 2001 variance optimization, ∼ 100 parameters
could be used for more, but, variance does not couple strongly to some parameters

2001 − efficient energy optimization, ∼ 1000’s of parameters
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Optimization of Many-Body Wavefunctions

A major advantage of quantum Monte Carlo methods is that there is no
restriction on the form of ψT(R). Hence any insight one may have, as
regards the nature of the many-body correlations, can be built into ψT(R)
and tested. To exploit this freedom it is necessary to have a method for
optimizing arbitrary wavefunctions.
First thought: Minimize the energy on MC sample.

Ē =

Nconf∑
i=1

HψT(Ri ; {p})
ψT(Ri ; {p})

wi , wi =

∣∣∣∣ΨT(Ri )

Ψ0
T(Ri )

∣∣∣∣2
/

Nconf∑
i=1

∣∣∣∣ΨT(Ri )

Ψ0
T(Ri )

∣∣∣∣2
Second thought: Minimize the variance of the local energy.

σ2 =

Nconf∑
i=1

(
HψT(Ri ; {p})
ψT(Ri ; {p})

− Ē

)2

wi

Third thought: Minimize the energy using MC but not on MC sample.
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Variance vs. Energy

σ2 =

Nconf∑
i=1

(
HΨT(Ri )

ΨT(Ri )
− Ē

)2

Ē =

Nconf∑
i=1

HΨT(Ri )

ΨT(Ri )

Optimized

Variance

Energies

Original

Energies

Energy
Optimized

Energies

E
av

E
av Eexact
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Take-home Message

Energy optimization methods that minimize the energy
evaluated on finite sample will yield poor energies on other
samples, unless the sample used to do the minimization is
very large.
So, efficient energy optimization methods do NOT optimize
the energy evaluated on a finite sample, although they do
minimize the energy in the limit of an infinite sample.
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Advantages of Energy (or Mixed) Optim. vs.
Variance Optim.

1. Want lowest energy; fluctuations are of secondary importance. Energy
and variance do not always go hand-in-hand enough.

2. Some parameters couple more strongly to energy than variance.
3. Some variance-optimized parameters make wave function too extended.
4. Hellman-Feynman theorem can be used for forces (when combined with

variance reduction methods).
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Optimization Methods

The optimization methods we use are based on standard methods:

1. Levenberg-Marquardt method
2. Newton method
3. Linear method (though with significant extension to nonlinear

parameters)
4. Perturbation theory

However, all of them need additional ingredients to work with stochastic
methods, and these ingredients improve the efficiency of the method by
several orders of magnitude!
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Newton Method
Calculate gradient g and Hessian h of objective function and update parameters:

pnext = pcurrent − h−1g

or more efficiently (O(N2
p ) vs. O(N3

p )) find parameter changes, δp, by solving linear
equations:

h δp = −g,

Optimization of Jastrow and determinantal parameters encounter different problems.

Jastrow: For the form of the Jastrow we use and the systems we study the
eigenvalues of the Hessian span 10-12 orders of magnitude. So using steepest
descent is horribly slow and using the Hessian, or a reasonable approximation to it,
is essential even if there were no statistical noise.

determinantal: The eigenvalues of the Hessian span only 1-2 orders of magnitude.
However, the Hessian has terms involving

∂ψ
∂pi

ψ

that diverge as ψ → 0. The strongest divergence among various terms cancels.
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Energy Minimization via Newton
Lin, Zhang, Rappe, JCP 2000; CJU, Filippi, PRL 2005

Ē =
〈ψ|H|ψ〉
〈ψ|ψ〉

= 〈EL〉ψ2 ; EL(R) =
Hψ(R)

ψ(R)

Energy gradient components, Ēi :

Ēi =
〈ψi |Hψ〉+ 〈ψ|Hψi 〉

〈ψ|ψ〉
− 2
〈ψ|H|ψ〉 〈ψ|ψi 〉
〈ψ|ψ〉2

=
〈ψi |Hψ〉+ 〈ψ|Hψi 〉

〈ψ|ψ〉
− 2

Ē 〈ψ|ψi 〉
〈ψ|ψ〉

= 2
〈ψi |Hψ〉 − Ē 〈ψ|ψi 〉

〈ψ|ψ〉
(by Hermiticity)

=

〈
ψi

ψ
EL +

Hψi

ψ
− 2Ē

ψi

ψ

〉
ψ2

= 2

〈
ψi

ψ
(EL − Ē )

〉
ψ2

Is blue or green expression better for MC?

Green is better because it is a zero-variance expression in the limit that ψ is the
exact ground state (CJU, Filippi, PRL 2005) Moreover it is simpler and faster.
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Energy Minimization via Newton
Lin, Zhang, Rappe, JCP 2000; CJU, Filippi, PRL 2005

Ē =
〈ψ|H|ψ〉
〈ψ|ψ〉

= 〈EL〉ψ2 ; EL(R) =
Hψ(R)

ψ(R)

Energy gradient components, Ēi :

Ēi =
〈ψi |Hψ〉+ 〈ψ|Hψi 〉

〈ψ|ψ〉
− 2
〈ψ|H|ψ〉 〈ψ|ψi 〉
〈ψ|ψ〉2

=
〈ψi |Hψ〉+ 〈ψ|Hψi 〉

〈ψ|ψ〉
− 2

Ē 〈ψ|ψi 〉
〈ψ|ψ〉

= 2
〈ψi |Hψ〉 − Ē 〈ψ|ψi 〉

〈ψ|ψ〉
(by Hermiticity)

=

〈
ψi

ψ
EL +

Hψi

ψ
− 2Ē

ψi

ψ

〉
ψ2

= 2

〈
ψi

ψ
(EL − Ē )

〉
ψ2

Is blue or green expression better for MC?
Green is better because it is a zero-variance expression in the limit that ψ is the
exact ground state (CJU, Filippi, PRL 2005) Moreover it is simpler and faster.
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Energy Minimization via Newton
CJU, Filippi, PRL 2005

Energy hessian components, Eij :

Ēi = 2
〈ψi |Hψ〉 − Ē 〈ψ|ψi 〉

〈ψ|ψ〉
≡ 2

〈
ψiψ(EL − Ē)

〉
〈ψ2〉

Eij = 2

[〈
(ψijψ + ψiψj )(EL − Ē)

〉
+
〈
ψiψ(EL,j − Ēj )

〉
− Ēi

〈
ψψj

〉
〈ψ2〉

]

= 2

[〈(
ψij

ψ
+
ψiψj

ψ2

)
(EL − Ē)

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

Ēj −
〈
ψj

ψ

〉
ψ2

Ēi +

〈
ψi

ψ
EL,j

〉
ψ2

]
.

What can be done to improve this expression?

1) Symmetrize – but this does not reduce fluctuations much

2) Noting that 〈EL,j 〉ψ2 =

〈
ψ2
(

Hψ
ψ

)
j

〉
〈ψ2〉 =

〈
ψ2
(

Hψj
ψ
−
ψj

ψ2 HΨ
)〉

〈ψ2〉 = 〈ψHψi−ψiHψ〉
〈ψ2〉 = 0 by

hermiticity of Ĥ, and, that the fluctuations of the covariance 〈ab〉 − 〈a〉〈b〉 are smaller than those

of the product 〈ab〉, when
√
〈a2〉 − 〈a〉2 � |〈a〉| and 〈b〉 = 0 on ∞ sample but 〈b〉 6= 0 on finite

sample, replace〈
ψi

ψ
EL,j

〉
ψ2

→
1

2

(〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈
EL,j

〉
ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈
EL,i

〉
ψ2

)

3) Too hard to describe here.
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Energy Minimization via Newton
CJU, Filippi, PRL 2005

Energy hessian components, Eij :

Ēi = 2
〈ψi |Hψ〉 − Ē 〈ψ|ψi 〉

〈ψ|ψ〉
≡ 2

〈
ψiψ(EL − Ē)

〉
〈ψ2〉

Eij = 2

[〈
(ψijψ + ψiψj )(EL − Ē)

〉
+
〈
ψiψ(EL,j − Ēj )

〉
− Ēi

〈
ψψj

〉
〈ψ2〉

]

= 2

[〈(
ψij

ψ
+
ψiψj

ψ2

)
(EL − Ē)

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

Ēj −
〈
ψj

ψ

〉
ψ2

Ēi +

〈
ψi

ψ
EL,j

〉
ψ2

]
.

What can be done to improve this expression?

1) Symmetrize – but this does not reduce fluctuations much

2) Noting that 〈EL,j 〉ψ2 =

〈
ψ2
(

Hψ
ψ

)
j

〉
〈ψ2〉 =

〈
ψ2
(

Hψj
ψ
−
ψj

ψ2 HΨ
)〉

〈ψ2〉 = 〈ψHψi−ψiHψ〉
〈ψ2〉 = 0 by

hermiticity of Ĥ, and, that the fluctuations of the covariance 〈ab〉 − 〈a〉〈b〉 are smaller than those

of the product 〈ab〉, when
√
〈a2〉 − 〈a〉2 � |〈a〉| and 〈b〉 = 0 on ∞ sample but 〈b〉 6= 0 on finite

sample, replace〈
ψi

ψ
EL,j

〉
ψ2

→
1

2

(〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈
EL,j

〉
ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈
EL,i

〉
ψ2

)

3) Too hard to describe here.
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Energy Minimization via Newton
CJU, Filippi, PRL 2005

Energy hessian components, Eij :

Ēi = 2
〈ψi |Hψ〉 − Ē 〈ψ|ψi 〉

〈ψ|ψ〉
≡ 2

〈
ψiψ(EL − Ē)

〉
〈ψ2〉

Eij = 2

[〈
(ψijψ + ψiψj )(EL − Ē)

〉
+
〈
ψiψ(EL,j − Ēj )

〉
− Ēi

〈
ψψj

〉
〈ψ2〉

]

= 2

[〈(
ψij

ψ
+
ψiψj

ψ2

)
(EL − Ē)

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

Ēj −
〈
ψj

ψ

〉
ψ2

Ēi +

〈
ψi

ψ
EL,j

〉
ψ2

]
.

What can be done to improve this expression?

1) Symmetrize – but this does not reduce fluctuations much

2) Noting that 〈EL,j 〉ψ2 =

〈
ψ2
(

Hψ
ψ

)
j

〉
〈ψ2〉 =

〈
ψ2
(

Hψj
ψ
−
ψj

ψ2 HΨ
)〉

〈ψ2〉 = 〈ψHψi−ψiHψ〉
〈ψ2〉 = 0 by

hermiticity of Ĥ, and, that the fluctuations of the covariance 〈ab〉 − 〈a〉〈b〉 are smaller than those

of the product 〈ab〉, when
√
〈a2〉 − 〈a〉2 � |〈a〉| and 〈b〉 = 0 on ∞ sample but 〈b〉 6= 0 on finite

sample, replace〈
ψi

ψ
EL,j

〉
ψ2

→
1

2

(〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈
EL,j

〉
ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈
EL,i

〉
ψ2

)

3) Too hard to describe here.

Cyrus J. Umrigar



Energy Minimization via Newton

Ēij = 2

[〈(
ψij

ψ
+
ψiψj

ψ2

)
(EL − Ē )

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

Ēj −
〈
ψj

ψ

〉
ψ2

Ēi

]

+

〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈EL,j〉ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈EL,i 〉ψ2

= 2

[〈(
ψij

ψ
− ψiψj

ψ2

)
(EL − Ē )

〉
ψ2

(0 for pi linear in exponent)

+2

〈(
ψi

ψ
−
〈
ψi

ψ

〉
ψ2

)(
ψj

ψ
−
〈
ψj

ψ

〉
ψ2

)(
EL − Ē

)〉
ψ2

]

+

〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈EL,j〉ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈EL,i 〉ψ2 .

1) Blue and green terms are zero variance estimators.
2) Red terms are not, but, additional terms =0 for infinite sample and cancel most
of the fluctuations for a finite sample.
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Energy optimization of determinantal parameters via
Newton

Different issues arise in optimizing Jastrow parameters and determinantal parameters:

Jastrow: eigenvalues of Hessian have a range of 11 orders of magnitude!

Determinantal parameters: divergences in elements of Hessian and Hamiltonian matrices.

Ēi = 2

〈
ψi

ψ
(EL − Ē)

〉
ψ2

(by Hermiticity).

Linear divergence – no problem since weighted by |ψ|2.

Ēij = 2

[〈(
ψij

ψ
+
ψiψj

ψ2

)
(EL − Ē)

〉
ψ2 −

〈
ψi

ψ

〉
ψ2

Ēj −
〈
ψj

ψ

〉
ψ2

Ēi

]

+

〈
ψi

ψ
EL,j

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈EL,j〉ψ2 +

〈
ψj

ψ
EL,i

〉
ψ2

−
〈
ψj

ψ

〉
ψ2

〈EL,i 〉ψ2

Leading divergences (3rd -order) cancel! (They cancel in the linear method too.) 2nd order

divergences would give ∞ variance, but in practice do not seem to be problematic. Do 2nd

order ones cancel?
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Variance minimization via Newton
The parameters pi in a real-valued trial wave function ψ are varied to minimize the
variance of the local energy,

σ2 =

∫
d3NR ψ2(EL − Ē)2∫

d3NR ψ2
=
〈

(EL − Ē)2
〉
ψ2
.

EL = Hψ/ψ is the local energy; Ē = 〈EL〉
The derivative wrt pi , is

(σ2)i = 2

[ 〈
EL,i (EL − Ē)

〉
ψ2 +

〈
ψi

ψ
E 2
L

〉
ψ2

−
〈
ψi

ψ

〉
ψ2

〈
E 2
L

〉
ψ2
− 2Ē

〈
ψi

ψ
(EL − Ē)

〉
ψ2

]
.

Note, the above is a zero-variance expression for the gradient.
If we ignore change in ψ and minimize on fixed MC pts. (no reweighting):

(σ2)i = 2
〈
EL,i (EL − Ē)

〉
ψ2 = 2

〈
(EL,i − Ēi )(EL − Ē)

〉
ψ2

and setting Eij = EL,ij = 0 (Levenberg-Marquardt approximation) we get the (+ve definite)
approx. to Hessian:

(σ2)ij = 2
〈
(EL,i − Ēi )(EL,j − Ēj)

〉
ψ2 .

This simple hessian works as well or better than the hessian we tried that does not make
either approximation.
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Linear method for linear parameters
Symmetric or nonsymmetric H?

1) true H is symmetric:

True Hij =

∫
d3NR ψi (R) Ĥ ψj(R) symmetric

MC estim. Hij =

NMC∑
n=1

ψi (Rn)

ψ(Rn)

(
Ĥψj(Rn)

ψ(Rn)

)
nonsymmetric

MC estim. Hij =
1

2

NMC∑
n=1

(
ψi (Rn)

ψ(Rn)

Ĥψj(Rn)

ψ(Rn)
+

Ĥψi (Rn)

ψ(Rn)

ψj(Rn)

ψ(Rn)

)
symmetric

2) Minimizing the energy evaluated on a finite sample, i.e., minimizing the Rayleigh
quotient, ∂E/∂pk = 0, even with nonsymmetric H evaluated on finite sample, gives
generalized eigenvalue equation with symmetric H:

E = min
p

pTHp

pTSp
= min

p

∑
ij piHijpj∑
ij piSijpj

∂E

∂pk
= 0 =⇒

(∑
ij

piSijpj

)(∑
j

Hkjpj +
∑
i

piHik

)
−

(∑
ij

piHijpj

)(
2
∑
j

Skjpj

)
= 0

(H + HT)

2
p = ESp
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Nonsymm. H satisfies strong zero-variance principle

M. P. Nightingale and Melik-Alaverdian, PRL, 87, 043401 (2001).

Nightingale’s strong zero-variance principle:
If the states ψi (R) are closed under Ĥ then the values of the optimized parameters using
nonsymmetric Hij are independent of the MC sample

Proof: If closed ∃ {pj} s.t. Ĥ

Np∑
j=1

pj |ψj〉 = E

Np∑
j=1

pj |ψj〉

× 〈ψi |Rn〉 〈Rn|/ 〈ψ|Rn〉2 and sum over NMC pts. (not complete sum over R states),
sampled from |ψ(R)|2:

Np∑
j=1

pj

NMC∑
n=1

〈ψi |Rn〉
〈ψ|Rn〉

〈Rn|Ĥ|ψj〉
〈Rn|ψ〉︸ ︷︷ ︸

Hij

= E

Np∑
j=1

pj

∑NMC
n=1 〈ψi |Rn〉 〈Rn|ψj〉
〈ψ|Rn〉 〈Rn|ψ〉︸ ︷︷ ︸

Sij

Np∑
i=1

Hijpj = E

Np∑
i=1

Sijpj

H is nonsymmetric H of previous slide. Becomes symmetric when
∑
→
∫

.
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Nonsymm. H satisfies strong zero-variance principle
On the other hand, if the states ψi (R) are not closed under Ĥ then the values of the
optimized parameters using nonsymmetric Hij depend on the MC sample. In that
case, the best one can do is to find a linear combination that minimizes 〈∆|∆〉:

Ĥ

Np∑
j=0

pj |ψj〉 = E

Np∑
j=0

pj |ψj〉+ |∆〉

Now ∫
dR 〈ψi |R〉 〈R|∆〉 = 〈ψi |∆〉 = 0

but
NMC∑
n=1

〈ψi |Rn〉 〈Rn|∆〉 6= 0

So, if one does the complete sum over states (the integral) one gets the usual
generalized eigenvalue equation but summing over a finite set of MC points yields
parameters {p} that depend on the sampled points. In practice, the nonsymmetric
H reduces fluctuations in parameter values by 1-2 orders of magnitude (reduces
computer time by 2-4 orders of magnitude) when one has good wavefunctions.
Cyrus J. Umrigar



Convergence of energy with symmetric and nonsymmetric

Hamiltonians
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Linear method for nonlinear parameters
Toulouse, CJU, JCP (2007,2008); CJU et al., PRL, 87, 043401 (2007).

Make linear-order Taylor expansion of Ψ (use Ψi = ∂Ψ/∂pi as basis):

Ψlin = Ψ0 +

Nparm∑
i=0

∆pi Ψi , (Normalization: ∆p0 = 1)

Ψ0 ≡ Ψ(p0,R) = current wave function
Ψlin = next linearized wave function
Ψi = derivative of Ψ at p0, wrt i th parameter.
No unique way to obtain new nonlinear parameters.
The simplest procedure: is pnew

i = pi + ∆pi . Will not work in general. What can
one do?
More complicated procedure: fit wave function form to optimal linear combination.
Simpler, yet efficient approach, freedom of norm to make linear approximation
better

Ψ̄(p,R) = N(p) Ψ(p,R), N(p0) = 1

Ψ̄i (p0,R) = Ψi (p0,R) + Ni (p0)Ψ(p0,R)

Note, Ni = 0 for linear parameters by definition.
Cyrus J. Umrigar



Change of normalization
Toulouse, CJU, JCP (2007,2008); CJU et al., PRL, 87, 043401 (2007).

Ψ̄(p,R) = N(p) Ψ(p,R), N(p0) = 1

Ψ̄i = Ψi + NiΨ0

Ψ = Ψ0 +

Nparm∑
i=1

δpiΨi

Ψ̄ = Ψ0 +

Nparm∑
i=1

δp̄i Ψ̄i =

1 +

Nparm∑
i=1

Niδp̄i

Ψ0.+

Nparm∑
i=1

δp̄iΨi

Since Ψ and Ψ̄ are the optimal linear combin., they are the same aside from normalization

δpi =
δp̄i

1 +
∑Nparm

i=1 Niδp̄i
=⇒ δp̄i =

δpi

1−
∑Nparm

i=1 Niδpi
. (1)

One can get δp̄i directly from solving the eigenvalue problem in the renormalized basis or
get δpi from eigenvalue problem in the original basis and use the above transformation. In
either case, use δp̄i to update the parameters, pnew

i = pi + δp̄i .

The denominator in Eq. 1 can be +ve, -ve or zero! So, predicted parameter changes can
change sign depending on normalization!! Of course for the linear parameters it does not
matter since all it implies is a change in the normalization of new wavefunction, but for
nonlinear parameters the change is crucial! If all parm. linear, δp̄i = δpi , since all Ni = 0.
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General semiorthogonalization
How to choose Ni ?

Toulouse, CJU, JCP (2007,2008); CJU et al., PRL, 87, 043401 (2007).

Ψ̄(p,R) = N(p) Ψ(p,R), N(p0) = 1

Ψ̄i = Ψi + NiΨ0

Choose Ni such that the derivatives are orthogonal to a linear combination of Ψ0 and Ψlin.〈
ξ

Ψ0

|Ψ0|
+ s(1− ξ)

Ψlin

|Ψlin|

∣∣∣∣Ψi + NiΨ0

〉
= 0

Solving for Ni we get
[
s = 1(−1) if 〈Ψ0|Ψlin〉 = 1 +

∑
j S0j∆pj > 0(< 0)

]
,

Ni = −
ξDS0i + s(1− ξ)(S0i +

∑
j Sij∆pj)

ξD + s(1− ξ)(1 +
∑

j S0j∆pj)

where D =
|Ψlin|
|Ψ0|

=

(
1 + 2

∑
j

S0j∆pj +
∑
i,j

Sij∆pi∆pj

)1/2
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Semiorthogonalization in the linear method

∆Ψ.5Ψ
lin

.5

Ψi

0

Ψ
lin

0

∆Ψ
0

Ψ
lin

lin

1

Ψ

0

Ψ
0

0
Ψ

∆Ψ

∆Ψ

Ψi
Ψ

i Ψ i

Ψi

ξ

∆Ψ i

ξ

Ψ
lin

ξ
the linear wavefn.

the change in the wavefn.

derivative of the wavefn. wrt parameter p_i

the initial wavefn.

1

1

.5

Comparison of semiorthogonalizations with xi = 1, 0.5, 0

versus no semiorthogonalization

Figure :

Ψξ
i lie on line parallel to Ψ0.

∆p is the ratio of a red
arrow to the corresponding
blue arrow.
It can go from −∞ to∞ for
different choices of ξ!
Can be 0 for ξ = 0
Can be ∞ for ξ = 1
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Semiorthogonalization in the linear method

Ψ0 is the initial wave function, Ψζ
i is the derivative of the wave function wrt

parameter pi for ζ. If superscript ζ is omitted that denotes that no
semiorthogonalization is done. Then

Ψlin = Ψ0 +

Nparm∑
i=1

∆Ψζ
i = Ψ0 +

Nparm∑
i=1

∆pζi Ψζ
i , ∆pζi =

∆Ψζ
i

Ψζ
i

Note that ||∆Ψζ || is smallest for ζ = 1 and that ||Ψ0.5
lin || = ||Ψ0||.

Also note that when there is just 1 parameter (can be generalized to > 1):
1. In the limit that Ψlin ‖ Ψi , ∆pi = ±∞
2. In the limit that Ψlin ⊥ Ψ0, ∆p1

i = ±∞ because ∆Ψ1 =∞, and,
∆p0

i = 0 because Ψ0
i =∞

3. ∆p0.5
i is always finite

Note that ∆pζi decreases as ζ decreases from 1 to 0. In Fig. 1, ∆pi is > 1
for ζ = 1, and, < 1 for ζ = 0.5, 0.
Also note that in Fig. 1 if we rotate Ψlin such that ∇Ψ·Ψ0

||∇Ψ||||Ψ0|| >
Ψlin·Ψ0
||Ψlin||||Ψ0||

then ∆pi has the opposite sign as ∆pζi !
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Variance Minimization via Linear method
Toulouse, CJU, J. Chem. Phys., 128, 174101 (2008)

Can one use the linear method to optimize the variance?

Suppose we have some quadratic model of the energy variance to minimize

Vmin = min
∆p

{
V0 + gT

V ·∆p +
1

2
∆pT · hV ·∆p

}
, (2)

where V0 = 〈Ψ0|(Ĥ − E0)2|Ψ0〉 is the energy variance of the current wave function |Ψ0〉,
gV is the gradient of the energy variance with components gV ,i = 2〈Ψi |(Ĥ − E0)2|Ψ0〉 and
hV is some approximation to the Hessian matrix of the energy variance. Then, one could
instead minimize the following rational quadratic model (augmented hessian method)

Vmin = min
∆p

(
1 ∆pT

)( V0 gT
V /2

gV /2 hV /2 + V0S

)(
1

∆p

)
(

1 ∆pT
)( 1 0T

0 S

)(
1

∆p

) ,

which agrees with the quadratic model in Eq. (2) up to second order in ∆p, and which
leads to the following generalized eigenvalue equation(

V0 gT
V /2

gV /2 hV /2 + V0S

)(
1

∆p

)
= Vmin

(
1 0T

0 S

)(
1

∆p

)
.

Hence, we can use linear method to optimize a linear combination of energy and variance!
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Connection between Linear and Newton methods
Toulouse, CJU, J. Chem. Phys., 128, 174101 (2008)

In semiorthogonal basis with ξ = 1, linear eqs. are:(
E0 gT/2

g/2 H

)(
1

∆p

)
= Elin

(
1 0T

0 S

)(
1

∆p

)
, (3)

Defining, ∆E = Elin − E0 ≤ 0, the 1st and 2nd eqs. are:

2∆E = gT ·∆p, 1st eq. (4)
g

2
+ H∆p = ElinS∆p 2nd eq. (5)

i.e., 2
(
H− ElinS

)
∆p = −g, (6)

This can be viewed as the Newton method with an approximate hessian,
h = 2(H− ElinS) which is nonnegative definite. (It has all nonnegative eigenvalues
since we are subtracting out the lowest eigenvalue.) This also means that the linear
method can be stabilized in much the same way as the Newton method.

Note that 2(H− ElinS) = 2(H− E0S−∆E S) and 2(H− E0S) is the approximate
hessian of Sorella’s stochastic reconfiguration with approximate hessian (SRH)
method (which converges more slowly that our linear and Newton methods). The
present method provides an automatic stabilization of the SRH method by a positive
definite matrix −∆E S making the hessian nonnegative definite.
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Perturbation Theory in an arbitrary nonorthogonal basis

Toulouse, CJU, J. Chem. Phys., 126, 084102 (2007)
.
Given a Hamiltonian Ĥ and an arbitrary nonorthogonal basis, {|Ψi 〉}, use perturbation
theory to get approximate eigenstates of Ĥ.
Define dual basis:

〈
Ψ̄i |Ψj

〉
= δij and zeroth order Hamiltonian, Ĥ(0):

〈Ψ̄i | =

Nopt∑
j=0

(S−1)ij〈Ψj |, Ĥ(0) =

Nopt∑
i=0

Ei |Ψi 〉〈Ψ̄i |

First order perturbation correction is

|Ψ(1)〉 = −
Nopt∑
i=1

|Ψi 〉
Nopt∑
j=1

(S−1)ij
〈Ψj |Ĥ|Ψ0〉
Ei − E0

Want Ĥ and Ĥ(0) close – choose Ei so Ĥ and Ĥ(0) have same diagonals

Ei =
〈Ψi |Ĥ|Ψi 〉
〈Ψi |Ψi 〉

If the Ei are evaluated without the Jastrow factor then this is the same as the perturbative
eff. fluct. pot. (EFP) method of Schautz and Filippi and Scemama and Filippi.
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Stabilization
If far from the minimum, or, NMC, is small, then the Hessian, Ēij , need not
be positive definite (whereas variance-minimization Levenberg-Marquardt Ēij

is positive definite).

Even for positive definite Ēij , the new parameter values may make the wave
function worse if quadratic approximation is not good.

Add adiag to the diagonal elements of the Hessian. This shifts the
eigenvalues by the added constant. As adiag is increased, the proposed
parameter changes become smaller and rotate from the Newtonian direction
to the steepest descent direction, but in practice adiag is tiny.

The linear method and the perturbative method can be approximately recast
into the Newton method. Consequently we can use the same idea for the
linear and perturbative methods too.
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Stabilization with Correlated Sampling

Each method has a parameter adiag that automatically adjusts to make the
method totally stable:

1. Do a MC run to compute the gradient and the Hessian (or overlap and
Hamiltonian).

2. Using the above gradient and Hessian (or overlap and Hamiltonian), use
3 different values of adiag to predict 3 different sets of updated
parameters.

3. Do a short correlated sampling run for the 3 different wave functions to
compute the energy differences for the 3 wave functions more accurately
than the energies themselves.

4. Fit a parabola through the 3 energies to find the optimal adiag.
5. Use this optimal adiag to predict a new wave function, using the

gradient and Hessian computed in step 1.
6. Loop back
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Comparison of Newton, linear and perturbative
methods

Programming effort and cost per iteration:

1. Newton method requires ψ, ψi , ψij , Ĥψ, Ĥψi .

2. Linear method requires ψ, ψi , Ĥψ, Ĥψi .
3. Perturbative method requires ψ, ψi , Ĥψ, Ĥψi .

Perturbative method with approx. denom., and, SR require ψ, ψi , Ĥψ.

Convergence with number of iterations:

1. Newton and linear methods converge in 2-10 iterations for all
parameters (CSF, orbital and Jastrow), but sometimes orbitals and
exponents can take much longer.

2. Perturbative method converges in 2-10 iterations for CSF and orbital
parameters but is very slow for Jastrow because eigenvalues of Hessian
for Jastrow span 10-12 orders of magnitude. (Perturbative method can
be viewed as Newton with crude Jastrow.)
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Things to note

Eigenvalues of Ēij for Jastrow parameters typically span 10-12 orders of
magnitude. So steepest descent would be horribly slow to converge!

Linear and Newton methods can be used for all parameters, even basis-set
exponents.

Take Home Message:
Any method that attempts to minimize the energy, by
minimizing the energy evaluated on a set of MC points, will
require a very large sample and be highly inefficient.
Each of the 3 methods presented above avoids doing this.
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Optimization of linear combination of energy and
variance

Energy Minimum

Variance Minimum

1. Can reduce the variance,
without sacrificing
appreciably the energy, by
minimizing a linear
combination, particularly
since the ratio of hard to
soft directions is 11 orders
of magnitude.

2. Easy to do – obvious for
Newton. Not obvious, but
easy to do for linear
method as shown above.

3. Measure of efficiency of the
wave function is σ2Tcorr.
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Lectures 4 and 5
Projector MC (PMC)

Path-integral MC (PIMC)
Reptation MC
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The problem

We wish to find the lowest energy eigenstate(s) of a (Hamiltonian) matrix.

If the number of basis states is sufficiently small that one can store a vector
(say < 1010), then one can use a deterministic iterative method, such as the
power method or the Lanczos method.

Quantum Monte Carlo: If the space is larger than this, even infinite, one can
use a stochastic implementation of the power method. At any instant in
time only a random sample of the vector is stored in computer memory, and
the solution is given by the time-average.
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Definitions
Given a complete or incomplete basis: {|φi 〉}, either discrete or continuous

Exact |Ψ0〉 =
∑
i

ei |φi 〉, where, ei = 〈φi |Ψ0〉

Trial |ΨT 〉 =
∑
i

ti |φi 〉, where, ti = 〈φi |ΨT 〉

Guiding |ΨG 〉 =
∑
i

gi |φi 〉, where, gi = 〈φi |ΨG 〉

(If basis incomplete then “exact” means “exact in that basis”.)

ΨT used to calculate variational and mixed estimators of operators Â, i.e.,
〈ΨT|Â|ΨT〉/ 〈ΨT|ΨT〉 , 〈ΨT|Â|Ψ0〉/ 〈ΨT|Ψ0〉

ΨG used to alter the probability density sampled, i.e., Ψ2
G in VMC, ΨGΨ0 in

PMC. Affects only the statistical error of VMC and PMC methods.

ΨG must be such that gi 6= 0 if ei 6= 0. If ΨT also satisfies this condition
then ΨG can be chosen to be ΨT. To simplify expressions, we use ΨG = ΨT

or ΨG = 1 in what follows.
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Variational MC

EV =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

=

∑Nst
ij 〈ΨT|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

i 〈ΨT|φi 〉 〈φi |ΨT〉

=

∑Nst
ij tiHij tj∑Nst

i t2
i

=

∑Nst
i g 2

i
t2
i

g2
i

∑Nst
j Hij tj
ti∑Nst

i g 2
i
t2
i

g2
i

=

∑Nst
i g 2

i
t2
i

g2
i

EL(i)∑Nst
i g 2

i
t2
i

g2
i

=

[∑NMC
i

t2
i

g2
i

EL(i)
]

Ψ2
G[∑NMC

i
t2
i

g2
i

]
Ψ2

G

≡

〈
t2
i

g2
i

EL(i)
〉

Ψ2
G〈

t2
i

g2
i

〉
Ψ2

G

Sample probability density function
g2
i∑Nst

k g2
k

using Metropolis-Hastings.

Value depends only on ΨT. Statistical error depend on ΨT and ΨG.
Energy bias and statistical error vanish as ΨT → Ψ0.
For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
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Projector MC

Pure and Mixed estimators for energy are equal: E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

=
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

E0 =
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∑Nst

ij 〈Ψ0|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

i 〈Ψ0|φi 〉 〈φi |ΨT〉

=

∑Nst

ij eiHij tj∑Nst

i ei ti
=

∑Nst

i eigi
ti
gi

∑Nst
j Hij tj

ti∑Nst

i eigi
ti
gi

=

∑Nst

i eigi
ti
gi

EL(i)∑Nst

i eigi
ti
gi

=

[∑NMC

i
ti
gi

EL(i)
]

ΨGΨ0[∑NMC

i
ti
gi

]
ΨGΨ0

≡

〈
ti
gi

EL(i)
〉

ΨGΨ0〈
ti
gi

〉
ΨGΨ0

Sample eigi/
∑Nst

k ekgk using projector.

For exact PMC, value indep. of ΨT, ΨG, statistical error depends on ΨT, ΨG.
(For FN-PMC, value and statistical error depends on ΨT,ΨG.)
(For FN-DMC, value depends on ΨG, statistical error on ΨT,ΨG.)
Statistical error vanishes as ΨT → Ψ0, since EL,i = E0, indep. of i .
For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
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Variational and Projector MC

EV =

[∑NMC
i

t2
i
gi

EL(i)
]

ΨG[∑NMC
i

t2
i
gi

]
ΨG

=

[∑NMC
i

t2
i

g2
i

EL(i)
]

Ψ2
G[∑NMC

i

t2
i

g2
i

]
Ψ2
G

(Value depends on ΨT, error on ΨT,ΨG)

E0 =

[∑NMC
i ti EL(i)

]
Ψ0[∑NMC

i ti
]

Ψ0︸ ︷︷ ︸
”no imp. sampl.”

=

[∑NMC
i

ti
gi

EL(i)
]

ΨGΨ0[∑NMC
i

ti
gi

]
ΨGΨ0︸ ︷︷ ︸

”imp. sampl.”

(Value exact†, error depends on ΨT,ΨG.)

EL(i) =

∑Nst
j Hij tj

ti
(Note: EL(i) is ∞ if ti = 0, but, tiEL(i) is finite.)

In both VMC and PMC compute weighted average of the configuration value of Ĥ
aka local energy, EL(i), but from points sampled from different distributions.

This is practical for systems that are large enough to be interesting if

1. ti = 〈φi |ΨT〉 can be evaluated in polynomial time, say N3

2. the sum in EL(i) can be done quickly, i.e., Ĥ is sparse (if space discrete) or
semi-diagonal (if space continuous).

† In practice, usually necessary to make fixed-node approximation.
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Importance Sampling in Projector Monte Carlo

If ∑
j

Pijej = ei

the similarity transformed matrix with elements P̃ij =
giPij

gj
has eigenstate

with elements giei :∑
j

P̃ij(gjej) =
∑
j

(
giPij

gj

)
(gjej) = giei
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Projector MC

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

Projector is any function of the Hamiltonian that maps the ground state
eigenvalue of Ĥ to 1, and the highest eigenvalue of Ĥ to an absolute that is
< 1 (preferably close to 0).

Exponential projector: P̂ = eτ(ET 1̂−Ĥ)

Linear projector: P̂ = 1̂ + τ(ET 1̂− Ĥ)
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Projector Monte Carlo Methods
The amplitudes of Ψ0 in the chosen basis are obtained by using a “Projector”, P̂,
that is a function of the Hamiltonian, Ĥ, and has Ψ0 as its dominant state.

Various Projector Monte Carlo Methods differ in:
a) form of the projector, and,
b) space in which the walk is done (single-particle basis and quantization).
(1st-quantized ≡ unsymmetrized basis, 2nd -quantized ≡ antisymmetrized basis.)

Method Projector SP Basis Quantiz

Diffusion Monte Carlo eτ(ET 1̂−Ĥ) r 1st

GFMC (Kalos, Ceperley, Schmidt) 1
1̂−τ(ET 1̂−Ĥ)

r 1st

LRDMC (Sorella, Casula) 1̂ + τ(ET 1̂− Ĥ) ri 1st

PMC/FCIQMC/SQMC 1̂ + τ(ET 1̂− Ĥ) φorthog
i 2nd

phaseless AFQMC (Zhang, Krakauer) eτ(ET 1̂−Ĥ) φnonorthog
i 2nd

1 + τ(ET 1̂− Ĥ) and 1
1̂−τ(ET 1̂−Ĥ)

can be used only if the spectrum of Ĥ is bounded.
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Sign Problem in DMC

P̂(τ) = eτ(ET 1̂−Ĥ)

Walk is done in the space of the 3N coordinates of the N electrons.

〈R|P̂(τ)|R ′〉 ≈ e

−(R−R ′)2

2τ +

(
ET−

V(R)+V(R ′)
2

)
τ

(2πτ)3N/2 is nonnegative.

Problem: However, since the Bosonic energy is always lower than the
Fermionic energy, the projected state is the Bosonic ground state.

Fixed-node approximation
All except a few calculations (release-node, Ceperley) are done using FN
approximation. Instead of doing a free projection, impose the boundary
condition that the projected state has the same nodes as the trial state
ΨT(R).
This gives an upper bound to the energy and becomes exact in the limit that
ΨT has the same nodes as Ψ0.
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Sign Problem in 1st Quantization and R space

Fermi ground state
Bose ground state

Trial state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state

Cyrus J. Umrigar



Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state

Problem: In large space walkers rarely meet and cancel, so tiny signal/noise! Further, if

there are many cancellations, eventually there will be exclusively walkers of one sign only

and a purely Bosonic distribution.
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Sign Problem in 2nd quantization

It would appear from the above discussion that one could eliminate the sign
problem simply by using an antisymmetrized basis. In that case there are no
Bosonic states or states of any other symmetry than Fermionic, so there is
no possibility of getting noise from non-Fermionic states.

Wrong!
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Sign Problem in 2nd quantization
Walk is done in the space of determinants.

Since Bosonic and other symmetry states are eliminated, there is some hope of having a
stable signal to noise, but there is still a sign problem.

Problem: Paths leading from state i to state j can contribute with opposite sign. Further,
Ψ and −Ψ are equally good.

The projector in the chosen 2nd -quantized basis does not have a sign problem if:
The columns of the projector have the same sign structure aside from an overall sign, e.g.

PΨ =


+ − + +
− + − −
+ − + +
+ − + +




+
−
+
+

 =


+
−
+
+


or equivalently:
It is possible to find a set of sign changes of the basis functions such that all elements of
the projector are nonnegative.

The sign problem is an issue only because of the stochastic nature of the algorithm.
Walkers of different signs can be spawned onto a given state in different MC generations.
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Sign Problem in orbital space and 2nd Quantization

FCIQMC (Booth, Thom, Alavi, JCP (2009)
When walk is done in space of determinants of HF orbitals, it is practical to
have a population that is sufficiently large that cancellations can result in a
finite signal to noise ratio. Once a critical population size is reached the
probability of sign flips of the population rapidly become very small.

Initiator approximation (Cleland, Booth, Alavi, JCP (2010)
The required population size can be greatly reduced by allowing only
determinants occupied by more than a certain number of walkers to spawn
progeny on unoccupied determinants.

Becomes exact in the limit of infinite population size.

In subsequent papers they published FCIQMC calculations on various
molecules, the homogeneous electron gas, and, real solids. Largest system
has as many as 10108 states. (Note, however, that what matters is not the
number of states, but, the number of states that have significant
occupation.)
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Sign Problem in FCIQMC/SQMC

Spencer, Blunt, Foulkes, J. Chem. Phys. (2012)

Kolodrubetz, Spencer, Clark, Foulkes, J. Chem. Phys. (2013)

1. The instability gap is given by the difference in the dominant
eigenvalues of the projector, and, those of the projector with all
off-diagonal elements replaced by their absolute values.

2. More than 1 Hartree product in a given initial determinant may connect
via P (or H) to a given Hartree product in a final determinant. The
instability gap is smaller in 2nd quantization than in 1st quantization if
there are internal cancellations within these contributions, otherwise it is
the same as in 1st quantization.
For example, it is the same in lattice real-space Coulomb systems, real-
and momentum-space Hubbard models, but, is different for
orbital-space Coulomb systems.

Cyrus J. Umrigar



Sign Problem in FCIQMC/SQMC

These papers did not point out that even when the instability gap is the
same, there are two important advantages of 2nd quantization:

1. Since the Hilbert space is N! times smaller in 2nd quantization,
cancellation are much more effective.

2. In first quantization, one of the two Bosonic populations will dominate
and the signal to noise will go to zero even in the limit of an infinite
population, unless additional steps are taken to prevent that.

Using a large population and cancellations, it is possible to
get a finite signal to noise ratio in 2nd quantization but not
in 1st quantization (unless some further constraints are
imposed).

Original attempts at using cancellation to control sign problem (in
continuum problems): Mal Kalos and coworkers (David Arnow (1982),
Shiwei Zhang, Francesco Pederiva, ...)
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History of Projector Quantum Monte Carlo
1962 Kalos invents Green’s function MC for continuum problems
1974 Kalos, Leveque, Verlet invent another Green’s function MC for

continuum problems
1983 Blankenbecler and Sugar invented Projector MC for 1-D lattice

model (no sign problem)
1984 Ceperley, Alder invent release-node method (converges before noise

blows up for some systems)
1989 Trivedi and Ceperley, Heisenberg antiferromagnet (no sign problem)
1994 Bemmel, et al., invent fixed-node approximation for lattice Fermions
many Kalos discusses cancellations of +ve and −ve walkers in continuum

for controlling sign problem, but gets it to work for toy problems only
2009 Booth, Thom, Alavi, get cancellations to work in finite basis, but

number of walkers very large, exponential cost
2010 Cleland, Booth, Alavi, introduce systematically improvable initiator

approximation that greatly reduces population size,
exponential cost, reduced exponent
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Semistochastic Quantum Monte Carlo (SQMC)

Frank Petruzielo, Adam Holmes, Hitesh Changlani, Peter Nightingale, CJU, PRL 2012

SQMC is hybrid of Exact Diagonalization and QMC

Exact diagonalization has no statistical error or sign problem but is limited to a
small number of states (∼ 1010 on a single core).

QMC has statistical errors and a sign problem but can employ a much larger number
of states.

SQMC combines to some extent the advantages of the above by doing a
deterministic projection in a small set of important states and stochastic projection
in the rest of the space. It has a much smaller statistical error than stochastic
projection and can employ a large number of states.

More generally Semistochastic Projection is an efficient way to find the dominant

eigenvalue and corresponding expectation values of any large sparse matrix that has

much of its spectral weight on a manageable number of states.
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Semistochastic Projection

The part of the projection with both indices in the deterministic part is done
deterministically. The part of the projection with either index in the
stochastic part is done stochastically.

P = PD + PS

PDij =

{
Pij , i , j ∈ D

0, otherwise
PS = P − PD
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Diagonal elements in PS

The contribution to the total walker weight on |φj〉, with j ∈ S, is

Pjjwj(t) = [1 + τ(ET − Hjj)] wj(t)

Off-diagonal elements in PS

Weight wi is divided amongst ni = max(bwie, 1) walkers of wt. wi/ni .
For each walker on |φi 〉, a move to |φj〉 6= |φi 〉 is proposed with probability
Tji > 0, (

∑
j Tji = 1), where T is the proposal matrix.

The magnitude of the contribution to the walker weight on |φj〉 from a single
walker on |φi 〉 is {

0, i , j ∈ D
Pji

Tji

wi (t)
ni (t) = −τ Hji

Tji

wi (t)
ni (t) otherwise

Cyrus J. Umrigar



Elements in PD

The contribution to the weight on |φj〉, with j ∈ D, is∑
i∈D

PDji wi (t).

PD is stored and applied as a sparse matrix
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Semistochastic Projection

Walkers have a label (bit string of orbital occupation numbers) and signed
real weights.

Project Do deterministic and stochastic projection

Sort Walker labels are sorted.

Merge Walkers on the same determinant are merged

Initiator The initiator criterion is used to discard some walkers.

Join Because we use real weights, there are many walkers with small weights.
Join stochastic space small wt. walkers on different determinants (in
unbiased way).

Update Energy Use stored EL components to update energy estimator. So
EL never needs to be computed during body of run.

The only additional steps are the deterministic projection and the “join” step.
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SQMC
Precompute:
Before MC part of the calculation do following:

1. Choose the deterministic space D and precompute matrix elements of
projector, P, between all pairs of deterministic determinants.

2. Choose the trial wave function, ΨT, and precompute the local energy
components of all determinants connected to those in ΨT.
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Efficiency gain for C2 (3− ζ basis)

from semistochastic projection and ΨT
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Wavefns. with 165 or 1766 dets. containing some 4th-order excit. are much more

efficient than wavefn. with 4282 dets. containing only upto 2nd -order excit.
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Discrete-space fixed-node approximation

Even with the semistochastic approach, calculating the exact energy when
there is a sign problem is prohibitely expensive if a very large number of
states contribute significantly. In that case, one can do approximate
calculations using the fixed-node method.
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Discrete-space fixed-node approximation
ten Haaf, Bemmel, Leeuwen, van Saarloos, Ceperley, PRB (1995)

Starting from importance sampled P̃ji = gjPji/gi , define P̃FN
ji and corresponding H̃FN

ji ,

P̃FN
ji =


P̃ji , j 6= i , P̃ji ≥ 0,

0, j 6= i , P̃ji < 0,

Pii +
∑

k min(P̃ki , 0) j = i ,

Note that PFN
L,i =

∑
j P̃

FN
ji =

∑
j P̃ji = PL,i , so Ĥ and ĤFN have the same local energies.

If there is no sign problem, then all the elements of P̃ are nonnegative. Changing the sign of a basis state changes the sign of the

corresponding row and column of P (aside from the diagonal element) but P̃ is unchanged because the corresponding element of

ΨG also changes.

Algorithm 1: ten Haaf et al.

1. Propose move from i to j 6= i with probability Tji =
max(P̃ji ,0)∑′
k max(P̃ki ,0)

2. Give walker on chosen state weight, wi

(∑′
k max(P̃ki , 0)

)
3. Give walker on state i weight, wi

(
Pii +

∑′
k min(P̃ki , 0)

)
where the prime on the sum indicates that j = i is omitted from the sum. The diagonal

could become negative, especially on high-lying states (both because Pii and gi are small),

so use small τ and possibly place lower bound on |gi | to ensure that it does not.
Cyrus J. Umrigar



Discrete-space fixed-node approximation

Algorithm 2: Kolodrubetz, Clark, PRB 2012
1. Propose move from i to j 6= i with any probability Tji

2. Give walker on chosen state weight, wi

(
max(P̃ji ,0)

Tji

)
3. Give walker on state i weight, wi

(
Pii +

min(P̃ji ,0)
Tji

)
Advantage: It is no longer necessary to perform the sum

∑′

k max(P̃ki , 0),
which can be very expensive if the number of connections to state i is large.

Disadvantage: If one makes a simple choice such as Tji = 1/Nconnections

(uniform moves) then it becomes necessary to use even smaller τ than in the
previous algorithm, because the walker is no longer moving preferentially to
states with large |P̃ji | and so, when it does move there, it makes a larger
contribution, which is problematic if the contribution is negative.

Solution: Instead of using the linear projector, 1̂ + τ(ET 1̂− Ĥ) devise an
exact (i.e. no Trotter time-step error) algorithm to sample the exponential

projector eτ(ET 1̂−Ĥ). In certain areas of QMC, such algorithms are called
“continuous time methods”. We will not discuss this further in these lectures.
Cyrus J. Umrigar



Desirable properties of fixed-node approximations

For the moment, assume ΨG = ΨT.

Property discrete-space continuous-real-space

2nd -quant. FN 1st -quant. FN-DMC

Exact distribution in ΨG → Ψ0 limit Y Y

Exact energy when sign of ΨG = ΨT correct ∀ states Na Y

FN energy lower than variational energy EFN ≤ EV Y Y

EFN ≥ E0 Y Y

Projector elements do not become negative for large τ N Y

No time-step error Y N

a Because P̃ may have sign-flip elements even when sign of ΨG = ΨT correct on all states.

Now we prove the 4 properties with Y in the discrete-space column.
The last of these is obvious.
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Desirable properties of fixed-node approximations

Gives exact distribution in ΨG → Ψ0 limit
The FN approx. makes 2 changes to the weight on a state i .
1) Enhances the weight on state i because it acquires no negative contributions
from connected states.
2) Reduces the weight on state i because negative weight that would have gone to
other states is now put back on state i .
The expected values of these 2 contributions are:

−
′∑
j

P̃ijg
2
j = −

′∑
j

giPijgj

and

′∑
j

P̃jig
2
i =

′∑
j

giPijgj

where the prime on the sum indicates that we sum over negatively connected states
only. Since P is symmetrical, these 2 contributions cancel and the equilibrium
distribution is unchanged by the fixed node approx. in the ΨG = Ψ0 limit.
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Desirable properties of fixed-node approximations

EFN ≤ EV

EFN = 〈ΨFN |HFN |ΨFN〉 ≤ 〈ΨT|HFN |ΨT〉 = 〈ΨT|H|ΨT〉 = EV
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Desirable properties of fixed-node approximations
EFN ≥ E0

Consider an arbitrary wavefunction, |Ψ〉 =
∑

i ci |φi 〉

〈Ψ|HFN − H|Ψ〉 =
∑
i

ci

′∑
j

(
Hji

gj

gi
ci − Hjicj

)
prime means only sum over sign-flip terms

=

′∑
{i,j}

Hji

[
c2
i

gj

gi
+ c2

j

gj

gi
− 2cicj

]
summing over pairs

=

′∑
{i,j}

|Hji |
[

c2
i

∣∣∣∣gj

gi

∣∣∣∣+ c2
j

∣∣∣∣gi

gj

∣∣∣∣− 2cicjsgn(Hji )

]
since only sign-flip terms appear

=

′∑
{i,j}

|Hji |

[
ci

√∣∣∣∣gj

gi

∣∣∣∣− sgn(Hji )cj

√∣∣∣∣gi

gj

∣∣∣∣
]2

≥ 0

So

EFN = 〈ΨFN |HFN |ΨFN〉 ≥ 〈ΨFN |H|ΨFN〉 ≥ 〈Ψ0|H|Ψ0〉 = E0
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Comparison of DMC with FCIQMC/SQMC

DMC (walk in electron coordinate space) FCIQMC/SQMC (walk in determin. space)

Severe Fermion sign problem due to growth Less severe Fermion sign problem due to
of Bosonic component relative to Fermionic. opposite sign walkers being spawned on

the same determinant

Fixed-node approximation needed for Walker cancellation plus initiator
stable algorithm. approximation needed for stable algorithm.
Exact if ΨT nodes exact. Exact in ∞-population limit.

Infinite basis. Finite basis. (Same basis set dependence
as in other quantum chemistry methods.

Computational cost is low-order polynomial Computational cost is exponential in N but
in N with much smaller exponent than full CI

Energy is variational Energy not variational but DM variant is

Need to use pseudopotentials for large Z . Can easily do frozen-core
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Diffusion Monte Carlo
i.e., P̂(τ) = exp(τ(ET − Ĥ)), |φi 〉 = |R〉 , walkers are 1st-quantized

The imaginary-time evolved state |Ψ(t)〉 is

|Ψ(t)〉 = e−Ĥt |Ψ(0)〉 =
∑
i

e−Ĥt |Ψi 〉 〈Ψi |Ψ(0)〉 =
∑
i

e−Ei t |Ψi 〉 〈Ψi |Ψ(0)〉

=
∑
i

ci (t) |Ψi 〉,

ci (t) = ci (0)e−Ei t , ci (0) = 〈Ψi |Ψ(0)〉. Expon. decay of excited states

Emix = lim
t→∞

〈ΨT|Ĥe−Ĥt |ΨT〉
〈ΨT|e−Ĥt |ΨT〉

=
〈ΨT|Ĥ|Ψ0〉
〈ΨT|Ψ0〉

= E0
〈ΨT|Ψ0〉
〈ΨT|Ψ0〉

= E0

The mixed estimator for the energy is exact (for Bosonic ground states) but
expectation values of operators that do not commute with the energy are not.
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Diffusion Monte Carlo
In DMC the MC walk is in real space, so introducing resolution of identity in
terms of the complete set of position eigenstates,〈

R ′|Ψ(t)
〉

=

∫
dR 〈R ′|e−Ĥt |R〉 〈R|Ψ(0)〉

Ψ(R ′, t) =

∫
dR G (R ′,R, t) Ψ(R, 0)

where G (R ′,R, t) = 〈R ′|e−Ĥt |R〉 is called the Green’s function or the
real-space representation of the imaginary-time-evolution operator.
Introducing complete sets of Ĥ eigenstates,

G (R ′,R, t) ≡ 〈R ′|e−Ĥt |R〉 =
∑
i

〈
R ′|Ψi

〉
〈Ψi |e−Ĥt |Ψi 〉 〈Ψi |R〉

=
∑
i

Ψi (R ′) e−Ei t Ψ∗i (R) spectral representation

but this is not of practical utility since Ψi (R) are unknown.
Note that G (R ′,R, 0) =

∑
i Ψi (R ′) Ψ∗i (R) = δ(R ′ − R).
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Diffusion Monte Carlo
Do not know 〈R ′|e−Ĥt |R〉 exactly, but can evaluate Grewt(R ′,R, t) ≡ 〈R ′|e−V̂ t |R〉
exactly, if V̂ is local in real space, Gdiffusion(R ′,R, t) ≡ 〈R ′|e−T̂ t |R〉 exactly by
introducing momentum representation

But, e−tĤ 6= e−tT̂ e−tV̂ , so repeatedly use short-time approx., t = Mτ .

G (R ′,R, t) = 〈R ′|
(

e−tĤ/M
)M
|R〉

=

∫
dR1 · · · dRM−1 〈R ′|e−τ Ĥ |RM−1〉 〈RM−1|e−τ Ĥ |RM−2〉 · · · 〈R1|e−τ Ĥ |R〉

e−τ Ĥ ≈ e−τ T̂ e−τ V̂ + O(τ 2) Trotter breakup

e−τ Ĥ ≈ e−τ V̂/2e−τ T̂ e−τ V̂/2 + O(τ 3)

Since the potential energy is diagonal in position space, introducing 2 resolutions of
the identity,

〈R ′|e−τ Ĥ |R〉 = e−τ(V (R ′)+V (R))/2 〈R ′|e−τ T̂ |R〉︸ ︷︷ ︸
next viewgr

+ O(τ 3)
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Short-time Green’s function – Kinetic term
Since the kinetic energy is diagonal in momentum space, we can evaluate

〈R ′|e−τ T̂ |R〉 by introducing complete sets of momentum eigenstates

〈R ′|e−τ T̂ |R〉 =

∫
dP ′ dP

〈
R ′|P ′

〉
〈P ′|e−τ T̂ |P〉 〈P|R〉

=
1

(2π~)3N

∫
dP ′ dP e

−iP ′·R ′
~ δ(P ′ − P) e

−τP2

2m e
iP·R
~

=
1

(2π~)3N

∫
dP e

iP·(R−R ′)
~ e

−τP2

2m

=
1

(2π~)3N
e
−m(R−R ′)2

2~2τ

∫
dP e

τ
2m

(iP+ m
~τ (R−R ′))2

=
( m

2π~2τ

) 3N
2

e−
m

2~2τ
(R−R ′)2

=
e−

1
2τ

(R−R ′)2

(2πτ)
3N
2

3N-dim gaussian of width
√
τ in a.u.
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Diffusion Monte Carlo – Short-time Green’s function
Putting the two pieces together

G (R ′,R, τ) = 〈R ′|eτ(ET−Ĥ)|R〉 ≈ 1

(2πτ)3N/2
e

[
− (R ′−R)2

2τ
+
{
ET− (V(R ′)+V(R))

2

}
τ

]
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Diffusion Monte Carlo – Short-time Green’s function
Can get the same result directly from the imaginary time Schrödinger Eq:

−1

2
∇2ψ(R, t) + (V(R)− ET)ψ(R, t) = −∂ψ(R, t)

∂t

Combining the diffusion Eq. and the rate Eq. Green’s functions:

G (R ′,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R ′−R)2

2τ +
{
ET− (V(R ′)+V(R))

2

}
τ

]

The wavefunction,ψ(R ′, t + τ), evolves according to the integral eqquation,

ψ(R ′, t + τ) =

∫
dR G (R ′,R, τ)ψ(R, t).

Columns of G (R ′,R, τ) are not normalized to 1, so weights and/or branching are
needed.
The potential energy V can diverge to ±∞, so the fluctuations in the weights
and/or population are huge!
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Expectation values

There is an additional problem that the contribution that various MC points
make to expectation values is proportional to ΨT(R):

E =

∫
dRΨ0(R)H(R)ΨT(R)∫

dRΨ0(R)ΨT(R)

≈
∑NMC

i H(R)ΨT(R)∑NMC
i ΨT(R)

This is inefficient for Bosonic systems, and is impossible for Fermionic
systems since one gets 0/0.
The problems on previous viewgraph and this one are solved (at the price of
biased expectation values) by using importance sampling and fixed-node
boundary conditions with the approximate wavefunctions ΨT(R). In the limit
that ΨT → Ψ0 the weights of the walkers do not fluctuate at all and every
MC point contributes equally to the expectation values.

In order to have finite variance, it is necessary that ΨT never be nonzero where ΨG is zero. In fact
the usual practice in DMC is ΨG = ΨT and so in this section we will not distinguish between them.
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Diffusion Monte Carlo – Importance Sampled
Green’s Function

Importance sampling: Multiply imaginary-time the Schrödinger equation

−1

2
∇2Ψ(R, t) + (V(R)− ET)Ψ(R, t) = −∂Ψ(R, t)

∂t

by ΨT(R) and rearranging terms we obtain

−∇
2

2
(ΨΨT) + ∇ ·

(
∇ΨT

ΨT
ΨΨT

)
+

(
−∇2ΨT

2ΨT
+ V︸ ︷︷ ︸

EL(R)

−ET

)
(ΨΨT) = −∂(ΨΨT)

∂t

defining f (R, t) = Ψ(R, t)ΨT(R), this is

−1

2
∇2f︸ ︷︷ ︸

diffusion

+ ∇ ·
(
∇ΨT

ΨT
f

)
︸ ︷︷ ︸

drift

+ (EL(R)− ET) f︸ ︷︷ ︸
growth/decay

= −∂f
∂t

Since we know the exact Green function for any one term on LHS, an approximation is:

G̃(R ′,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R ′−R−Vτ)2

2τ
+
{
ET−

(EL(R ′)+EL(R))
2

}
τ

]
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Diffusion Monte Carlo with Importance Sampling

Putting the drift, diffusion and reweighting Green’s functions together,

G̃ (R ′,R, τ) ≈
∫

dR′′ Grew(R ′,
τ

2
) Gdif(R ′,R′′, τ) Gdri(R′′,R, τ) Grew(R ′,

τ

2
)

G̃ (R ′,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R ′−R−Vτ)2

2τ
+

{
ET−

(EL(R ′)+EL(R))

2

}
τ

]

The importance-sampled Green function has EL(R) in the reweighting factor,
which behaves MUCH better than the potential, V (R). V (R) diverges to
±∞ at particle coincidences whereas EL(R) goes to a constant, E0, as
ΨT → Ψ0. In addition it has a drift term that keeps the particles in the
important regions, rather than relying on the reweighting to achieve that.

Even this does not always work. Why?

The above importance sampled Green function leads to an “infinite variance”
estimate for systems other than Bosonic ground states!!
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Singularities of Green’s function
CJU, Nightingale, Runge, JCP 1993

Region Local energy EL Velocity V
Nodes EL ∼ ± 1

R⊥
for ΨT V ∼ 1

R⊥
EL = E0 for Ψ0 for both ΨT and Ψ0

e-n and e-e EL ∼ 1
x if cusps not imposed V has a discontinuity

concidences EL finite if cusps are imposed for both ΨT and Ψ0

EL = E0 for Ψ0

All the above infinities and discontinuities cause problems, e.g.,∫ a

0
dx EL =

∫ a

0
dx

(
1

x

)
= ±∞∫ a

0
dx E 2

L =

∫ a

0
dx

(
1

x

)2

=∞

Modify Green’s function, by approximately integrating EL and V over path,
taking account of the singularities, at no additional computational cost.
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Nonanalyticity of velocity near a node
CJU, Nightingale, Runge, JCP 1993

Linear approximation to ΨT (knowing V = ∇ΨT/ΨT):

ΨT(R ′) = ΨT(R) +∇ΨT(R) · (R ′ − R)

∝ 1 + V · (R ′ − R)

The average velocity over the time-step τ is:

V̄ =
−1 +

√
1 + 2V 2τ

V 2τ
V→

{
V if V 2τ � 1√

2
τ V̂ if V 2τ � 1

Infinite local energy near node
Make similar improvement to the growth/decay term of the Green’s function
by averaging of the local energy over time-step τ .
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Discontinuity of velocity at particle coincidences
The e-N coincidence is more important than e-e coincidences because the
wavefunction is larger in magnitude there.
Sample from linear combination of drifted Gaussians and exponential centered on
nearest nucleus.

Infinite local energy near particle coincidences
Kato, Pure Appl. Math (1957), Pack and Byers-Brown, JCP, (1966), 2nd order, Tew, JCP (2008)

Impose e-N and e-e cusp conditions on the wavefunction, so that divergence in
potential energy is exactly canceled by divergence in kinetic energy.

Ψ =
∞∑
l=0

l∑
m=−l

r l flm(r) Y m
l (θ, φ)

flm(r) ≈ f 0
lm

[
1 +

qiqjµij r

l + 1
+ O(r 2)

]
with f 0

lm being the first term in the expansion of flm(r).
Familiar example: e-N cusp for s-state of Hydrogenic atom is −Z . e-e cusps are 1/2 and

1/4 for ↑↓ and ↑↑ respectively. (This is why we chose two of the parameters in the

wavefunction in the lab to be -2 and 1/2.)
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Combining with Metropolis to reduce time-step error
Reynolds, Ceperley, Alder, Lester, JCP 1982

−1

2
∇2f︸ ︷︷ ︸

diffusion

+ ∇ ·
(
∇ψT

ψT
f

)
︸ ︷︷ ︸

drift

+ (EL(R)− ET) f︸ ︷︷ ︸
growth/decay

= −∂f

∂t

If we omit the growth/decay term then |ΨT|2 is the solution.
But we can sample |ΨT|2 exactly using Metropolis-Hastings! So, view G (R ′,R, t)
as being the proposal matrix T (R′,R) and introduce accept-reject step after drift
and diffusion steps.
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Relationship of G̃ (R ′,R, τ) to G (R ′,R, τ)
G̃ (R ′,R, τ) is a similarity transform of G (R ′,R, τ) by a diagonal matrix, as
discussed when introducing importance sampling at beginning of this lecture in
discrete notation.

Ψ(R ′, τ) =

∫
dR G (R ′,R, τ) Ψ(R, 0)

ΨT(R ′)Ψ(R ′, τ) = ΨT(R ′)

∫
dR G (R ′,R, τ) Ψ(R, 0)

=

∫
dR ΨT(R ′)G (R ′,R, τ)

1

ΨT(R)︸ ︷︷ ︸
G̃(R ′,R,τ)

ΨT(R)Ψ(R, 0)

f (R ′, τ) =

∫
dR G̃ (R ′,R, τ) f (R, 0)

where G̃ (R ′,R, τ) = ΨT(R ′)G (R ′,R, τ)
1

ΨT(R)

Note: Both G (R ′,R, τ) and G̃ (R ′,R, τ) can be for either free or fixed-node
boundary conditions. The approximate G̃ (R ′,R, τ) derived a few viewgraphs back is
for fixed-node boundary conditions.
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Question to think about before next lecture
In variational (Metropolis) Monte Carlo we have a single unweighted walker.
(We could use many walkers but there is no reason to, and in fact it would
be slightly less efficient because of the time spent equilibrating multiple
walkers.)
In projector Monte Carlo methods, we use multiple weighted walkers.
Why?
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Expectation values of operators

We wish to compute the pure (as opposed to mixed) expectation value

〈A〉pure =
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

We consider various cases in order of increasing difficulty:
M.P. Nightingale, in Quantum Monte Carlo Methods in Physics and Chemistry, edited by

M.P. Nightingale and CJU

1. Â commutes with with Ĝ or equivalently Ĥ and is near-diagonal in
chosen basis. (mixed expectation value)

2. Â is diagonal in chosen basis. (forward/future walking) Liu, Kalos, and

Chester, PRA (1974)

3. Â is not diagonal in chosen basis, but, Aij 6= 0 only when Gij 6= 0.
(forward/future walking)

4. Â is not diagonal in chosen basis. (side walking) Barnett, Reynolds, Lester,

JCP (1992)
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Expectation values of operators
Factor the elements of the importance-sampled projector, G̃ (R ′,R), as products of

elements of a stochastic matrix/kernel (elements are nonnegative and elements of

column sum to 1), T̃ (R ′,R), and a reweight factor, w(R ′,R).

G̃ (R ′,R) = T̃ (R ′,R)w(R ′,R)

In the case of DMC

T̃ (R ′,R) = Gdif(R ′,R ′′) Gdrift(R ′′,R) =
1

(2πτ)3N/2
e−

(R ′−R−Vτ)2

2τ

w(R ′,R) = e

{
ET−

(EL(R ′)+EL(R))

2

}
τ

For discrete state space and sparse H, define

T̃ (R ′,R) =
G̃ (R ′,R)∑

R ′′ G̃ (R ′′,R)

w(R ′,R) = w(R) =
∑
R ′′

G̃ (R ′′,R)
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1) Â commutes with with Ĥ and is near-diagonal in
chosen basis

By near diagonal we mean that either:

1. In discrete space Â is sufficiently sparse that when walker is at state i ,
AL,i =

∑
j gjAji/gi can be computed sufficiently quickly, or

2. In continuous space Â has only local and local-derivative terms, e.g.,
−1
2

∑
i ∇2

i + V (R).

Since Â commutes with with Ĥ the mixed estimator equals the pure
estimator

〈A〉mix =
〈Ψ0|Â|ΨT〉
〈Ψ0|ΨT〉

=
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

= 〈A〉pure
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1) Â commutes with with Ĥ and is near-diagonal in
chosen basis

〈A〉 =
〈ΨT|Â|Ψ0〉
〈ΨT|Ψ0〉

=
〈ΨT|ÂG p(τ)|ΨT〉
〈ΨT|G p(τ)|ΨT〉

=

∑
Rp···R0

AΨT(Rp)
(∏p−1

i=0 G (Ri+1,Ri )
)

ΨT(R0)∑
Rp···R0

ΨT(Rp)
(∏p−1

i=0 G (Ri+1,Ri )
)

ΨT(R0)

=

∑
Rp···R0

AΨT(Rp)
ΨT(Rp)

(∏p−1
i=0 G̃ (Ri+1,Ri )

)
(ΨT(R0))2∑

Rp···R0

(∏p−1
i=0 G̃ (Ri+1,Ri )

)
(ΨT(R0))2

=

∑Teq+T
t=Teq+1 AL(Rt)Wt∑Teq+T

t=Teq+1 Wt

since MC pts. from

(
p−1∏
i=0

T̃ (Ri+1,Ri )

)
(ΨT(R0))2

Wt =
∏p−1

i=0 w(Rt−i ,Rt−i−1) or better Wt =
∏Teq+t−1

i=0 w(RTeq+t−i ,RTeq+t−i−1).

Branching (described later) is used to prevent inefficiency due wide disparity in weight products.
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2) Expectation values of diagonal operators that do not commute with Ĥ

DMC straightforwardly gives us

〈A〉mix =
〈Ψ0|Â|ΨT〉
〈Ψ0|ΨT〉

=

∫
dR 〈Ψ0|R〉 〈R|Â|R〉 〈R|ΨT〉∫

dR 〈Ψ0|R〉 〈R|ΨT〉
=

∫
dR Ψ0(R) A(R) ΨT(R)∫

dR Ψ0(R) ΨT(R)

but we want

〈A〉pure =
〈Ψ0|Â|Ψ0〉
〈Ψ0|Ψ0〉

=

∫
dR 〈Ψ0|R〉 〈R|Â|R〉 〈R|Ψ0〉∫

dR 〈Ψ0|R〉 〈R|Ψ0〉
=

∫
dR Ψ0(R) A(R) Ψ0(R)∫

dR Ψ0(R) Ψ0(R)

Two possibilities: Extrapolated estimator and forward walking
1) Extrapolated estimator

〈A〉DMC = 〈A〉pure +O(||ΨT −Ψ0||)
〈A〉VMC = 〈A〉pure +O(||ΨT −Ψ0||)

2〈A〉DMC − 〈A〉VMC = 〈A〉pure +O(||ΨT −Ψ0||)2
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2) Expectation values of diagonal operators that do not commute with Ĥ
Forward or Future Walking

〈A〉 =
〈ΨT|Gp(τ)ÂGp′(τ)|ΨT〉
〈ΨT|Gp+p′(τ)|ΨT〉

=

∑
Rp+p′ ···R0

A(Rp′)
(∏p+p′−1

i=0 G̃(Ri+1,Ri )
)

(ΨT(R0))2∑
Rp+p′ ···R0

(∏p+p′−1
i=0 G̃(Ri+1,Ri )

)
(ΨT(R0))2

=

∑Teq+T
t=Teq+1 A(Rt)Wt+p∑Teq+T

t=Teq+1 Wt+p

Wt+p =
∏p+p′−1

i=0 w(Rt+p−i ,Rt+p−i−1) (product over p′ past and p future) or

better Wt+p =
∏Teq+t+p−1

i=0 w(RTeq+t+p−i ,RTeq+t+p−i−1), (product over entire past
and p future generations).
The contribution to the expectation value is: the local operator at time t, multiplied
by the weight at a future time t + p. Need to store A(Rt) for p generations.

Usual tradeoff: If p is small, there is some residual bias since ΨT has not been fully

projected onto Ψ0, whereas, if p is large the fluctuations of the descendent weights

increases the statistical noise. (Since we use branching, weight factors from past are not

a problem.) For very large p all walkers will be descended from the same ancestor.

(Mitochondrial Eve!)
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Â is not diagonal in chosen basis, but, Aij 6= 0 only when Gij 6= 0

Forward or Future Walking

〈A〉 =
〈ΨT|G p−1(τ)ÂG p′(τ)|ΨT〉
〈ΨT|G p+p′(τ)|ΨT〉

=

∑
Rp+p′ ···R0

(∏p+p′−1
i=p′+1 G̃(Ri+1,Ri )

)
Ã(Rp′+1,Rp′)

(∏p′−1
i=0 G̃(Ri+1,Ri )

)
(ΨT(R0))2∑

Rp+p′ ···R0

(∏p+p′−1
i=0 G̃(Ri+1,Ri )

)
(ΨT(R0))2

=

∑Teq+T

t=Teq+1 Wt+p−1,t+1 a(Rt+1,Rt) Wt,t−p′∑Teq+T

t=Teq+1 Wt+p

a(Rt+1,Rt) = Ã(Rt+1,Rt)

T̃ (Rt+1,Rt)
= A(Rt+1,Rt)

T (Rt+1,Rt)

Wt2,t1 =
∏t2−1

i=t1
w(Ri+1,Ri )

Again, the product of p′ past weights can be replaced by products of weights
over entire past.
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Â is not diagonal in chosen basis, and, ∃ some Aij 6= 0 where Gij = 0
Side Walking

Now it becomes necessary to have side walks that start from the backbone
walk.

Just as we did for the importance-sampled projector, we factor Ã into a
Markov matrix and a reweighting factor.

The first transition of the side walk is made using this Markov matrix and
and the rest of the side-walk using the usual Markov matrix.

The ends of the side-walks contribute to the expectation values.

This method is even more computationally expensive than forward walking,
because one has to do an entire side walk long enough to project onto the
ground state to get a single contribution to the expectation value.
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Mixed and Growth Energy Estimators of the Energy

The mixed estimator, Emix, is obtained by averaging the configuration
eigenvalue of the Hamiltonian, Ĥ (local energy).

The growth estimator, Egr, is obtained by averaging the configuration
eigenvalue of the projector, P̂, and then using the fact that P̂ is a function
of Ĥ.

If the guiding function ΨG (used to importance sample P̂) is the same as the
trial wavefunction ΨT then the fluctuations of Emix and Egr will be perfectly
correlated with each other and there is nothing to be gained by calculating
both. (This statement assumes that one does not introduce unnecessary
fluctuations in Egr by, for example, integerizing the weights or killing walkers
that cross nodes because of time-step error.) In that case the population
control bias (to be discussed next) must be positive.

We note in passing that the FCIQMC method (Alavi group) uses the Hartree-Fock
wavefunction for ΨT and the uniform wavefunction for ΨG and so there is not a strong
correlation in the fluctuations of Emix and Egr.
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Reweighting, Branching, Population Control

1. Since columns of G (R ′,R, t) are not normalized to unity, the “walkers”
must carry weights or there must be population of walkers with
branching (birth/death events), or, both.

2. If we have a single weighted walker, then a few generations of the walk
will dominate and the computational effort expended on the rest of the
walk would be largely wasted.

3. It is possible to have a fluctuating population size, with each walker
having unit weight, but this leads to unnecessary birth/death events.

4. So, it is best to have a weighted population with approximately, but not
exactly equal weights and birth/death events.

5. If left uncontrolled, the size of this population will fluctuate and may
get larger than the computer memory or go to zero.

6. Hence, control the population, but this leads to a “population control
error” that is inversely proportional to the target population size.

7. There exists a method for removing most of the population control error.
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Population control error
The log of the weights of the generations will undergo a random walk and so some generations will
have very small or very large weights. So, we have to exercise population control by adjusting the
weights by a generation-dependent fluctuating factor f . If we are using the exponential projector,
exp((ET − Ĥ)τ), this is equivalent to adjusting ET, but for the purpose of removing the population
control error it is better to think in terms of a fixed ET and a fluctuating factor f that needs to be
corrected for.
The naive biased estimator for the energy is

Emix =

∑Ngen
t

∑Nw (t)
i wi (t)EL(Ri (t))∑Ngen

t

∑Nw (t)
i wi (t)

The population control error is proportional to the inverse of the target population size Nwalk. The
error arises because of a negative correlation between the energy averaged over the generation and
the weight of the generation. When the energy is low, the weight tends to be large and population
control artificially reduces the weight and thereby creates a positive bias in the energy. Similarly,
when the energy is high, the weight tends to be small and population control artificially increases
the weight and this too creates a positive bias in the energy. Since the relative fluctuations in the
energy and in the weight go as 1/

√
Nwalk, the relative fluctuations in their covariance goes as

1/Nwalk.

So, one way to reduce the population control error is to simply use a large population, and this is
what most people do. If one wishes to be sure that the error is sufficiently small, plot the energy
versus 1/Nwalk and take the limit 1/Nwalk → 0. But there exists a better way that allows us to
estimate and remove most of the population control error within a single run, as described next.
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Removing the population control error
Nightingale and Bloete, PRB 1986; CJU, Nightingale, Runge, JCP 1993

The basic idea for correcting the population control error is the following.
When we do population control we have a generation-dependent factor by
which we change the weights of all the walkers in that generation relative to
what the mathematics tells us is correct. So, we keep track of these factors
and when computing expectation values we undo these factors for the last
several generations. If we undid them for the entire run then we would be
back to our original problem, i.e., very large fluctuations in the weights.
However, we only need to undo them for a number of generations
corresponding to a few times the autocorrelation time to get rid of almost all
of the population control bias. In the next viewgraph we explain how to do
this and then in the following one we explain a continuous version of the
algorithm that is even simpler to implement, though a bit harder to explain
(which is why we do them in this order).
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Removing the population control error
Nightingale and Bloete, PRB 1986; CJU, Nightingale, Runge, JCP 1993

The expectation value of wi (t) ought to be

E [wi (t)] =
∑
j

Pijwj (t − 1) (stochastic equivalent of wi (t) =
∑
j

Pijwj (t − 1) )

Introduce popul. control factor f (t) = eτ(ET−Eest)
(

W (t−1)
Wtarget

)1/g
& Pi (t,Tp) =

∏Tp

p=0 f (t − p),

where Eest is best current estim. of the energy, and, W (t − 1) =
∑

j wj (t − 1).

(eτ(ET−Eest) compensates for an inaccurate ET and
(

W (t−1)
Wtarget

)1/g
tries to restore the population weight g generations later.)

Then,

E [f (t) wi (t)] =
∑
j

Pij wj (t − 1) or E [Pi (t,Tp) wi (t)] =
∑
j

(PTp )ij wj (t − Tp)

So the modified expressions for Emix is:

Emix =

∑Ngen
t Pi (t,Tp)

∑Nw (t)
i wi (t)EL(Ri (t))∑Ngen

t Pi (t,Tp)
∑Nw (t)

i wi (t)

This requires us to store a circular buffer of Tp population control factors f (t) and iteratively
compute two products (with Tp and Tp+1 factors). (Emix requires the first, Egr requires both.)
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Removing the population control error
Continuous method
A simpler procedure that does not require a circular buffer is to replace Pi (t,Tp) by

Pi (t, p) = · · · f (t − 2)p
2

f (t − 1)p
1

f (t)p
0

=
t−1∏
n=0

f (t − n)p
n

with p a bit less than 1, calculated recursively at each generation using

Pi (t, p) = Pi (t − 1, p)p f (t),

Emix =

∑Ngen

t Pi (t, p)
∑Nw (t)

i wi (t)EL(Ri (t))∑Ngen

t Pi (t, p)
∑Nw (t)

i wi (t)

A rough correspondence between Tp in the discrete method and p in the continuous
method is established by requiring that pTp = 1/e, i.e., p = e−1/Tp .
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Removing the population control error
Continuous method A simpler procedure that does not require a circular buffer is to replace Pi (t,Tp) by

Pi (t, p) = · · · f (t − 2)p
2
f (t − 1)p

1
f (t)p

0
=

t−1∏
n=0

f (t − n)p
n

and P̃i (t, p) = · · · f (t − 2)p
3
f (t − 1)p

2
f (t)p

1
=

t−1∏
n=0

f (t − n)p
n+1

with p a bit less than 1, calculated recursively at each generation using

Pi (t, p) = Pi (t − 1, p)p f (t), P̃i (t, p) =
(
P̃i (t − 1, p) f (t)

)p

Emix =

∑Ngen
t Pi (t, p)

∑Nw (t)
i wi (t)EL(Ri (t))∑Ngen

t Pi (t, p)
∑Nw (t)

i wi (t)

Egr = ET +
1

τ

(
1−

∑Ngen−1

t=1 Pi (t + 1, p)
∑Nw (t+1)

i wi (t + 1)∑Ngen−1

t=1 P̃i (t, p)
∑Nw (t)

i wi (t)

)
, for the linear projector

Egr = ET −
1

τ
log

(∑Ngen−1

t=1 Pi (t + 1, p)
∑Nw (t+1)

i wi (t + 1)∑Ngen−1

t=1 P̃i (t, p)
∑Nw (t)

i wi (t)

)
, for the exponential projector

A rough correspondence between Tp in the discrete method and p in the continuous method is established by

requiring that pTp = 1/e, i.e., p = e−1/Tp .
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Pure State versus Finite Temperature MC methods

So far we have talked about pure-state MC methods. We now give a very
brief introduction to a finite-temperature MC method, the path-integral
Monte Carlo (PIMC) method. Sometimes PIMC is used to approximate
ground states, but that gets expensive since the length of the polymer grows
as the inverse temperature. We also very briefly discuss the essence of
reptation MC, which is in some sense a hybrid between PMC and PIMC. First
we give schematics of the walks in VMC, PMC, PIMC and reptation MC.
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Schematic of VMC and PMC
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Schematic of PIMC and Reptation MC
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Schematic of VMC, PMC, PIMC and Reptation MC

1. Metropolis MC requires just a single unweighted walker, since the sum of the

elements of a column of the Markov matrix add up to 1. PMC requires (for reasons

of efficiency) a population of weighted walkers.

(One could view the Markov matrix in Metropolis MC as a projector. Instead of projecting

onto the ground state as in PMC, it instead projects onto the known guiding/trial state.)

2. In VMC and PMC the projection time and the MC time are the same. In PIMC and

reptation MC, they are different – the projection time or inverse temperature is finite,

whereas the MC time can of course be as large as patience permits.

3. The object being evolved has an extra time dimension in PIMC and reptation MC,

compared to VMC and PMC, and so this adds to the computational cost. On the

other hand one can compensate for this because the probability density is known, and

so one can use Metropolis-Hastings and one has great freedom in the choice of the

moves. (Algorithm is correct so long as detailed balance is satisfied.)

4. VMC, PMC and reptation MC are ground state methods, PIMC a finite-temperature

method. People do use PIMC to approach the ground state but it becomes very

inefficient since the length of the paths become very long.

5. VMC, PMC and reptation MC take advantage of accurate guiding/trial

wavefunctions to greatly enhance their efficiency. PIMC does not.
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Path-integral Monte Carlo, Finite Temperature
Detailed and excellent review: Ceperley, Rev. Mod. Phys. (1995)

In quantum statistical mechanics the expectation value of an operator A is given by

〈A〉 =
tr(ρA)

tr(ρ)

where ρ̂ = e−βĤ is the quantum density matrix operator, Z = tr(ρ̂) is the partition
function, Ĥ is the Hamiltonian and β = 1/kBT .
The density operator in quantum statistical mechanics is identical to the quantum
mechanical time evolution operator if we make the identification t = −i~β.
If trace is evaluated in energy representation then energy is

E =

∑∞
i=0Eie

−βEi∑∞
i=0e−βEi

where Ei are the eigenvalues of Ĥ. For many-body systems we do not know the
energy eigenvalues or eigenvectors. PIMC provides a means of evaluating the trace
in the coordinate representation.
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Path-integral Monte Carlo, Finite Temperature
The expectation value of A in coordinate representation is

〈A〉 =

∫
dR 〈R|Ae−βH |R〉∫
dR 〈R|e−βH |R〉

Introducing a complete set of position eigenstates, we obtain,

〈A〉 =

∫
dR dR′ 〈R|A|R′〉〈R′|e−βH |R〉∫

dR 〈R|e−βH |R〉

If A is diagonal in the coordinate representation then this reduces to

〈A〉 =

∫
dR A(R) ρ(R,R, β)∫

dR ρ(R,R, β)
(7)

where ρ(R ′,R, β) ≡ 〈R′|e−βH |R〉 is the density matrix in coordinate representation. This is
the same as in diffusion MC, but now imaginary time is interpreted as inverse temperature.

Eq. 7 can be evaluated by the Metropolis method since we derived an explicit, though
approximate, expression for ρ(R ′,R, β) when discussing diffusion MC.

ρ(R ′,R, β)

∝
∫

dR1 ... dRM−1 e
−τ
[{(

R′−RM−1
2τ

)2

+
(

RM−1−RM−2
2τ

)2
+ ... +

(
R1−R

2τ

)2
}

+
(

V (R′)
2

+V (RM−1)+ ... + V (R1)+
V (R)

2

)]
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Path-integral Ground State (PIGS) / Reptation
Monte Carlo

A hybrid between DMC and PIMC
Baroni and Moroni, in NATO book, ed. by M.P, Nightingale and CJU, (1999)

〈A〉 =

∫
dR dR′ dR′′ 〈ΨT|R〉 〈R|e−tĤ |R′〉 〈R′|A|R′〉 〈R′|e−tĤ |R′′〉 〈R′′|ΨT〉∫

dR dR′ dR′′ 〈ΨT|R〉 〈R|e−tĤ |R′〉 〈R′|e−tĤ |R′′〉 〈R′′|ΨT〉

Compared to PIMC – Instead of having a closed polymer, which needs to be
very long in order to get the ground state have an open polymer, terminated
by ΨT. As ΨT gets better, the length of open polymer can get shorter.
Compared to DMC – Tradeoff between having the complication of moving
an entire polymer versus the freedom of using clever Metropolis moves. Less
efficient for the energy, but, more efficient for operators that do not
commute with Ĥ if extrapolated estimators are not accurate enough.
It is possible to importance-sample the above, in the same way as in DMC.
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Some topics in classical MC and QMC we did not
discuss

1. Cluster algorithms – Swendsen-Wang and Wolff

2. Multiple-try Metropolis

3. Multilevel sampling

4. Correlated sampling, umbrella sampling, Wang-Landau

5. Lattice-regularized DMC (Sorella, Casula)

6. Nonlocal pseudopotentials in QMC (Fahy; Mitas, Shirley, Ceperley; Casula)

7. Extended systems (periodic BC, wavefns, finite-size errors, ...) (Foulkes, Needs, ...)

8. Penalty method and coupled electron-ion MC (Ceperley, Dewing, Pierleoni)

9. Zero-variance zero bias (ZVZB) method (Assaraf and Caffarel)

10. Extension of fixed-node to fixed-phase method (Bolton; Ortiz, Jones, Ceperley)

11. Domain Green’s function MC. (Kalos)

12. Stochastic series expansion (Sandvik)

13. Loop and worm algorithms

14. Diagrammatic Monte Carlo

15. Impurity solvers for DMRG
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