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ABSTRACT
We develop the theory justifying the application of the density-based basis-set correction (DBBSC) method to double-hybrid approximations
in order to accelerate their basis convergence. We show that, for the one-parameter double hybrids based on the adiabatic connection, the
exact dependence of the basis-set correction functional on the coupling-constant parameter λ involves a uniform coordinate scaling by a
factor 1/λ of the density and of the basis functions. Neglecting this uniform coordinate scaling corresponds essentially to the recent work
of Mester and Kállay, J. Phys. Chem. Lett. 16, 2136 (2025) on the application of the DBBSC method to double-hybrid approximations. Test
calculations on molecular atomization energies and reaction barrier heights confirm that the DBBSC method efficiently accelerates the basis
convergence of double-hybrid approximations and also show that neglecting the uniform coordinate scaling is a reasonable approximation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0286745

I. INTRODUCTION

In density-functional theory (DFT) of molecular electronic sys-
tems, an increasingly popular approach is given by double-hybrid
approximations,1 which consist in combining fractions of the
Hartree–Fock (HF) exchange and the second-order Møller–Plesset
(MP2) correlation energies with exchange and correlation
density functionals. Double-hybrid approximations are not
merely pragmatic approaches but can be thought of as well-
defined approximations of an exact-in-principle multideterminant
extension of the Kohn–Sham (KS) scheme using the adiabatic-
connection formalism.2,3 At present, double-hybrid approximations
are generally recommended for molecular quantum-chemistry
calculations,4–6 at least for systems without significant strong (or
static) electron correlation effects.

However, one important limitation of double-hybrid approxi-
mations is that, due to the MP2 correlation term, they have a slower
convergence with respect to the size of the one-electron basis set
in comparison with other DFT approximations, thus requiring rel-
atively large basis sets, possibly with basis-set extrapolations,7,8 with
the consequence of increased computational costs. To overcome this
problem, it has been proposed to use the explicitly correlated F12
approach in double-hybrid approximations9–11 or to use small basis
sets specially tailored for double-hybrid approximations.12,13

Very recently, Mester and Kállay14 have proposed to acceler-
ate the basis-set convergence of double-hybrid approximations by
using the density-based basis-set correction (DBBSC) approach.15,16

The DBBSC approach consists in adding to the energy a den-
sity functional estimating the basis-set incompleteness error for
any given basis set. This DBBSC approach was shown to effec-
tively accelerate the basis-set convergence of pure wave-function
calculations of energies and properties for a variety of atomic and
molecular systems.15–28 Mester and Kállay showed that the DBBSC
approach can be used for double-hybrid approximations, enabling to
obtain near-complete-basis-set (CBS) results using computationally
affordable basis sets.

In the present work, we closely examine the theory behind the
application of the DBBSC approach to double-hybrid approxima-
tions. We show how to rigorously formulate the basis-set correction
within the one-parameter double-hybrid DFT framework of Ref. 2.
Using uniform coordinate scaling, we find the exact dependence
of the basis-set correction density functional on the parameter λ
that fixes the amount of electron–electron interaction treated in
the wave-function part of the calculation. This exact λ-dependence
involves a uniform coordinate scaling by a factor 1/λ of the den-
sity and of the basis functions inside the basis-set correction den-
sity functional. In the work of Mester and Kállay,14 this uniform
coordinate scaling is not applied. In the present paper, using small
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representative test sets of molecular atomization energies and reac-
tion barrier heights, we study the performance of the DBBSC
approach to accelerate the basis-set convergence of some one-
parameter double-hybrid approximations, and we check the effect
of the uniform coordinate scaling on the basis-set correction func-
tional. We also check the effect of adding a one-electron basis-set
correction.

II. THEORY
A. Density-based basis-set correction

Let us consider a spatial-orbital basis set B = {φp}
M
p=1

⊂ L2
(R3,C) and the N-electron Hilbert space HB generated by

this basis set. The N-electron full-configuration-interaction (FCI)
ground-state energy is

E B
FCI = min

Ψ ∈ WB
⟨Ψ∣T̂ + V̂ne + Ŵee∣Ψ⟩, (1)

where WB
= {Ψ ∈ HB

∣ ⟨Ψ∣Ψ⟩ = 1} is the set of normalized
N-electron wave functions, T̂ is the kinetic-energy operator,
V̂ne = ∫R3 vne(r)n̂(r)dr is the electron–nuclei interaction operator,
expressed with the electron–nuclei potential vne and the density
operator n̂(r), and Ŵee is the Coulomb two-electron interaction
operator. As is well known, E B

FCI has a slow convergence to the exact
ground-state energy E0 as the size of the basis set B is increased
toward a complete basis of the infinite-dimensional Hilbert space
L2
(R3,C) (see, e.g., Refs. 29 and 30).

To bypass this slow basis-set convergence, it was proposed
in the density-based basis-set correction (DBBSC) scheme15,16,19 to
estimate the ground-state energy by

E B
0 = min

n ∈ DB
(F[n] + ∫

R3
vne(r)n(r)dr), (2)

where DB
= {n ∣ ∃ Ψ ∈ WB, nΨ = n} is the set of one-electron

densities n coming from a wave function Ψ ∈ WB and F is the
standard Levy–Lieb universal density functional31,32 defined as

∀n ∈ DCBS, F[n] = min
Ψ ∈ WCBS

n

⟨Ψ∣T̂ + Ŵee∣Ψ⟩, (3)

where WCBS
n = {Ψ ∈ WCBS

∣ nΨ = n} is the set of wave functions
from the CBS-limit wave-function space WCBS giving the density
n. The Levy–Lieb universal density functional is defined on the
set of N-representable densities (in the CBS limit) DCBS

= {n ∣ ∃ Ψ
∈ WCBS, nΨ = n}. Roughly speaking, as the size of the basis set B

is increased toward the CBS limit, the density has a faster conver-
gence than the many-body wave function and thus the energy E B

0
converges faster to the exact ground-state energy E0 than the FCI
ground-state energy E B

FCI does.
To obtain a more convenient expression for E B

0 , the density
functional F is decomposed as15

∀n ∈ DB, F[n] = FB
[n] + ĒB

[n], (4)

where FB is the Levy–Lieb density functional where the wave func-
tion is restricted to the basis-set wave-function space giving the
density n, i.e., W B

n = {Ψ ∈ WB
∣ nΨ = n},

∀n ∈ DB, FB
[n] = min

Ψ ∈ W B
n

⟨Ψ∣T̂ + Ŵee∣Ψ⟩, (5)

and ĒB is a basis-set correction density functional defined to make
Eq. (4) exact. Inserting this decomposition in Eq. (2), we arrive at the
following expression for E B

0 :

E B
0 = min

Ψ ∈ WB
(⟨Ψ∣T̂ + V̂ne + Ŵee∣Ψ⟩ + ĒB

[nΨ]), (6)

which defines a FCI ground-state energy calculation in the basis set
B with a self-consistent basis-set correction ĒB.20

B. Double-hybrid density-functional theory
with basis-set correction

We now show how to set up a rigorous double-hybrid DFT
within the DBBSC framework. First, we decompose the density
functional F as2

∀n ∈ DCBS, F[n] = Fλ
[n] + Ēλ

Hxc[n], (7)

where Fλ is the Levy–Lieb universal density functional along the
adiabatic connection33–36 with a coupling constant λ ∈ [0, 1],

Fλ
[n] = min

Ψ ∈ WCBS
n

⟨Ψ∣T̂ + λŴee∣Ψ⟩, (8)

and Ēλ
Hxc is a complementary density functional defined to make

Eq. (7) exact. This complementary density functional can be
decomposed as2,37

Ēλ
Hxc[n] = (1 − λ)EH[n] + (1 − λ)Ex[n] + Ēλ

c[n], (9)

where EH and Ex are the standard Hartree and exchange functionals
of KS DFT, and the last correlation contribution can be written as,
for λ ≠ 0,38–41

Ēλ
c[n] = Ec[n] − λ2Ec[n1/λ], (10)

where Ec is the standard correlation functional of KS DFT and
n1/λ(r) = (1/λ)3n(r/λ) is the scaled density. Second, we decompose
the density functional Fλ as

∀n ∈ DB, Fλ
[n] = Fλ,B

[n] + Ē λ,B
[n], (11)

where Fλ,B is the λ-dependent Levy–Lieb density functional where
the wave function is restricted to the basis-set wave-function space
W B

n ,

∀n ∈ DB, Fλ,B
[n] = min

Ψ ∈ W B
n

⟨Ψ∣T̂ + λŴee∣Ψ⟩, (12)

and Ē λ,B is a basis-set correction density functional defined to make
Eq. (11) exact. Inserting these decompositions in Eq. (2) and using
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the explicit form of Fλ,B in Eq. (12), we arrive at the following
expression for E B

0 :

E B
0 = min

Ψ ∈ WB
(⟨Ψ∣T̂ + V̂ne + λŴee∣Ψ⟩ + Ēλ

Hxc[nΨ] + Ē λ,B
[nΨ]).

(13)

Note that, since we have not yet introduced any approximation,
Eq. (13) gives the same E B

0 as in Eq. (6), independently of λ. In the
CBS limit, the basis-set correction density functional Ē λ,B vanishes
and we recover the multideterminant extension of KS DFT of Refs. 2
and 37 on which a rigorous double-hybrid DFT can be formulated.
For a finite basis set B and a coupling constant λ = 1, the com-
plementary Hartree–exchange–correlation density functional Ēλ

Hxc
vanishes and we recover the (self-consistent) DBBSC scheme in
Eq. (6).

Following the same ideas as in Refs. 2 and 42, a double-hybrid
DFT with basis-set correction can be developed as a particular
approximation to Eq. (13). First, a density-scaled one-parameter
hybrid (DS1H) approximation, with basis-set correction, is defined
by restricting the minimization in Eq. (13) to single-determinant
wave functions,

EDS1H,λ,B
0 = min

Φ ∈ SB
(⟨Φ∣T̂ + V̂ne + λŴee∣Φ⟩ + Ēλ

Hxc[nΦ] + Ē λ,B
[nΦ]),

(14)
where SB is the set of single-determinant wave functions for the
basis set B . A minimizing single-determinant wave function Φλ,B

must satisfy the self-consistent Schrödinger equation,

P̂B
(T̂ + V̂ne + λV̂HF

Hx[Φ
λ,B
] + ˆ̄Vλ

Hxc[nΦλ,B] +
ˆ̄V λ,B

[n
Φλ,B])∣Φ

λ,B
⟩

= P̂B Eλ,B
0 ∣Φλ,B

⟩, (15)

where P̂B is the projector on HB, V̂HF
Hx is the nonlocal HF potential

operator, ˆ̄Vλ
Hxc is the local Hartree–exchange–correlation poten-

tial operator generated by the energy functional Ēλ
Hxc, ˆ̄V λ,B is the

local basis-set correction potential operator generated by the energy
functional Ē λ,B, and Eλ,B

0 is an energy eigenvalue. The DS1H
ground-state energy can be finally written as

EDS1H,λ,B
0 = ⟨Φλ,B

∣T̂ + V̂ne∣Φλ,B
⟩ + EH[n

Φλ,B] + λEHF
x [Φ

λ,B
]

+ (1 − λ)Ex[n
Φλ,B] + Ēλ

c[nΦλ,B] + Ē λ,B
[n

Φλ,B], (16)

where the full Hartree energy EH[n] has been recomposed and
EHF

x [Φ] = ⟨Φ∣Ŵee∣Φ⟩ − EH[nΦ] is the HF exchange energy. Second,
a nonlinear Rayleigh–Schrödinger perturbation theory42–44 start-
ing from this DS1H reference is defined with the following energy
expression with the perturbation parameter α ∈ [0, 1]:

Eλ,B,α
0 = min

Ψ ∈ WB
(⟨Ψ∣T̂ + V̂ne + λV̂HF

Hx[Φ
λ,B
] + αλŴ∣Ψ⟩

+ Ēλ
Hxc[nΨ] + Ē λ,B

[nΨ]), (17)

where λŴ = λ(Ŵee − V̂HF
Hx[Φλ,B

]) is the scaled Møller–Plesset per-
turbation operator. For α = 0, the stationary equation associated

with Eq. (17) reduces to the DS1H eigenvalue equation [Eq. (15)].
For α = 1, Eq. (17) reduces to Eq. (13), so Eλ,B,α=1

0 = E B
0 , inde-

pendently of λ. The sum of the zeroth-order energy and first-
order energy correction gives simply the DS1H energy, EDS1H,λ,B

0

= Eλ,B,(0)
0 + Eλ,B,(1)

0 . Thanks to the existence of a Brillouin theorem
just like in the standard Møller–Plesset perturbation theory (see
Refs. 42–44), only double excitations contribute to the first-order
wave-function correction Ψλ,B,(1)and the second-order energy
correction has a standard MP2 form,

Eλ,B,(2)
0 = λ2

⟨Φλ,B
∣Ŵ∣Ψλ,B,(1)

⟩ = λ2EMP2,λ,B
c , (18)

where EMP2,λ,B
c is evaluated with DS1H orbitals and the asso-

ciated orbital eigenvalues (which implicitly depend on λ). In
total, this defines a density-scaled one-parameter double-hybrid
(DS1DH) approximation, with basis-set correction, in which the
exchange–correlation energy contribution is

EDS1DH,λ,B
xc = λEHF

x [Φ
λ,B
] + (1 − λ)Ex[n

Φλ,B]

+ Ēλ
c[nΦλ,B] + λ2EMP2,λ,B

c + Ē λ,B
[n

Φλ,B]. (19)

If we neglect the density scaling in the correlation functional,
i.e., Ec[n1/λ] ≈ Ec[n] in Eq. (10), we can also define a one-parameter
double-hybrid (1DH) approximation, with basis-set correction,

E1DH,λ,B
xc = λEHF

x [Φ
λ,B
] + (1 − λ)Ex[n

Φλ,B]

+ (1 − λ2
)Ec[n

Φλ,B] + λ2EMP2,λ,B
c + Ē λ,B

[n
Φλ,B], (20)

in which the fraction of HF exchange is λ and the fraction of
MP2 correlation is λ2. Of course, in Eq. (20), the MP2 term
EMP2,λ,B

c is now meant to be evaluated with one-parameter hybrid
(1H) orbitals obtained with the exchange–correlation energy
expression: E1H,λ,B

xc = λEHF
x [Φλ,B

] + (1 − λ)Ex[n
Φλ,B] + (1 − λ2

)

Ec[n
Φλ,B] + Ē λ,B

[n
Φλ,B]. Equations (19) and (20) provide exten-

sions of the DS1DH and 1DH schemes of Ref. 2 to a finite basis set B

with the addition of the basis-set correction density functional Ē λ,B.

C. The basis-set correction density functional Ē λ,B

1. Exact scaling relation for Ē λ,B

We first want to determine how the basis-set correction density
functional Ē λ,B depends on λ. This can be found by generalizing
the uniform coordinate scaling relation known for the functional
Fλ.38,40,45

For any wave function Ψ ∈ W B
n , we introduce the scaled wave

function Ψγ defined as (omitting the untouched spin coordinates)

Ψγ(r1, ..., rN) = γ3N/2Ψ(γr1, ..., γrN), (21)

where γ > 0 is a scaling parameter. This scaled wave function Ψγ

yields the scaled density nγ(r) = γ3n(γr) and belongs to the Hilbert
space generated by the scaled basis set Bγ = {φp,γ}

M
p=1 made of

the scaled spatial orbitals φp,γ(r) = γ3/2φp(γr). Thus, Ψγ belongs to
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the wave-function space WBγ
nγ , and the scaling transformation in

Eq. (21) defines a one-to-one map between W B
n and WBγ

nγ . This

leads to, for all n ∈ DB,

γ2Fλ,B
[n] = γ2 min

Ψ ∈ W B
n

⟨Ψ∣T̂ + λŴee∣Ψ⟩

= min
Ψ ∈ W B

n

⟨Ψγ∣T̂ + λγŴee∣Ψγ⟩

= min
Ψ ∈ W

Bγ
nγ

⟨Ψ∣T̂ + λγŴee∣Ψ⟩

= Fλγ,Bγ[nγ], (22)

and, for γ = 1/λ,

Fλ,B
[n] = λ2FB1/λ[n1/λ]. (23)

This scaling relation generalizes for a finite basis set B the standard
scaling relation Fλ

[n] = λ2F[n1/λ]. Hence, the scaling relation for the
basis-set correction density functional Ē λ,B

[n] = Fλ
[n] − Fλ,B

[n] is

Ē λ,B
[n] = λ2ĒB1/λ[n1/λ]. (24)

Equation (24) can be used to introduce the dependence on λ in any
approximation that we have for ĒB. Note that if we neglect the
scaling of the density and of the basis set, we obtain

Ē λ,B
[n] ≈ λ2ĒB

[n], (25)

which essentially corresponds to what was used by Mester and
Kállay.14

2. Approximation for Ē λ,B

For the standard case λ = 1, we will consider local approxi-
mations for the basis-set correction density functional ĒB of the
form16,25

Ē B
local[n] = ∫

R3
ēsr

c,md(n(r),∇n(r), μB
(r))dr, (26)

where ēsr
c,md(n,∇n, μ) is the so-called complementary multidetermi-

nant short-range correlation energy density. In Eq. (26), μB
(r) is

a local range-separation parameter that provides a local measure of
the incompleteness of the basis set B . It is taken as15,16

μB
(r) =

√
π

2
WB
(r), (27)

where WB
(r) is the on-top value of the effective interaction

WB
(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f B
(r)

n B
2 (r)

if n B
2 (r) ≠ 0,

∞, otherwise,
(28)

with, assuming a basis set of real-valued orthonormal orbitals
B = {φp}

M
p=1,

f B
(r) =

all

∑
pq

act

∑
rstu

w B
pqrsΓ

B
rstuφp(r)φq(r)φt(r)φu(r), (29)

where w B
pqrs = ⟨pq∣rs⟩ are the two-electron Coulomb integrals, and

n B
2 (r) =

act

∑
pqrs

Γ B
pqrsφp(r)φq(r)φr(r)φs(r). (30)

In Eqs. (29) and (30), “all” means that the indices run over
all (occupied + virtual) orbitals, “act” means that the indices
run over all “active” orbitals (i.e., all occupied valence orbitals
for the frozen-core version of the basis-set correction19), and
Γ B

pqrs = 2⟨Ψ B
loc ∣â

†
r↓â

†
s↑âq↑âp↓∣Ψ B

loc ⟩ is the opposite-spin two-electron

density matrix of a localizing wave function Ψ B
loc . The role of Ψ B

loc is
minor15,20 so that in practice a single-determinant wave function in
the basis set B can simply be used.

Upon scaling of the basis set, Bγ = {φp,γ}
M
p=1, the two-electron

density matrix is invariant, ΓBγ
pqrs = Γ B

pqrs, and the two-electron inte-

grals scale as wBγ
pqrs = γw B

pqrs. Thus, we have f Bγ(r) = γ7 f B
(γr)

and nBγ
2 (r) = γ6n B

2 (γr), and the scaling relation for the local
range-separation parameter is

μBγ(r) = γμB
(γr). (31)

Using Eq. (24), we thus find the corresponding local approximation
for Ē λ,B,

Ēλ,B
local[n] = λ2

∫
R3

ēsr
c,md(n1/λ(r),∇rn1/λ(r), μB1/λ(r))dr

= λ5
∫

R3
ēsr

c,md
⎛

⎝

n(r)
λ3 ,

∇rn(r)
λ4 ,

μB
(r)

λ
⎞

⎠
dr, (32)

where we have used the coordinate transformation r→ λr.

III. COMPUTATIONAL DETAILS
We have extended the implementation of the DBBSC method

reported in Ref. 25 in the software MOLPRO46–48 to include the
density-scaled basis-set correction (DSBSC) in Eq. (32) for the one-
parameter double-hybrid approximations.2 We consider two such
one-parameter double-hybrid approximations: DS1DH-PBE,2 based
on the Perdew–Burke–Ernzerhof (PBE)49 exchange and correlation
density functionals and including density scaling in the correlation
functional, and 1DH-BLYP,2 based on the Becke50 exchange density
functional and the Lee–Yang–Parr (LYP)51 correlation density
functional without including density scaling in the correlation
functional. In both cases, we use a parameter of λ = 0.65, as recom-
mended in Ref. 2. For the basis-set correction functional, we use
the approximation based on the PBE correlation functional given in
Ref. 16. Instead of including the basis-set correction self-
consistently, we first perform a standard DS1DH-PBE or 1DH-BLYP
calculation and then add a posteriori the DSBSC functional eval-
uated with the DS1H-PBE or 1H-BLYP single-determinant wave
function (for both the density and the localizing wave function in the
calculation of the local range-separation parameter, see Sec. II C 2).
We refer to these calculations as DS1DH-PBE+DSBSC or 1DH-
BLYP+DSBSC. We also test neglecting the density scaling in the
basis-set correction (BSC) functional [Eq. (25)]. We refer to the cor-
responding calculations as DS1DH-PBE+BSC or 1DH-BLYP+BSC.
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We use the Dunning correlation-consistent polarized valence
basis sets52 cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z (abbre-
viated as vdz, vtz, vqz, and v5z). The MP2 contributions in the
double-hybrid calculations are done with the frozen-core approx-
imation. Accordingly, we use the frozen-core version19,25 of the
basis-set correction, which means that the active orbitals in Eqs. (29)
and (30) are limited to the occupied valence orbitals and the basis-
set correction functional is evaluated with the valence-only density.
Since our basis-set correction functional only takes into account the
two-electron basis-set incompleteness error, we also test the addi-
tion of a one-electron basis-set correction, which simply consists in
the energy difference between the single-determinant DS1H-PBE or
1H-BLYP calculation in the largest basis set v5z and the correspond-
ing calculation in the considered basis set B (similarly to what was
done at the HF level in Refs. 16 and 53). We refer to the correspond-
ing calculations, including this one-electron correction (OEC),
as DS1DH-PBE+DSBSC+OEC or 1DH-BLYP+DSBSC+OEC when
using density scaling in the basis-set correction functional
and as DS1DH-PBE+BSC+OEC or 1DH-BLYP+BSC+OEC when
neglecting density scaling in the basis-set correction functional. This
one-electron basis-set correction should give very similar results
as the complementary auxiliary basis-set (CABS) single-excitation
correction14,24,25,27,28 and is technically simpler to apply for the
present calculations.

We perform calculations on the AE6 and BH6 datasets.54 The
AE6 dataset is a small representative benchmark of six atomiza-
tion energies consisting of SiH4, S2, SiO, C3H4 (propyne), C2H2O2
(glyoxal), and C4H8 (cyclobutane). The BH6 dataset is a small
representative benchmark of forward and reverse hydrogen trans-
fer barrier heights of three reactions: OH + CH4 → CH3 + H2O,
H + OH → O + H2, and H + H2S → HS + H2. All the calculations
for the AE6 and BH6 datasets are performed at the geometries opti-
mized by quadratic configuration interaction with single and double
excitations with the modified Gaussian-3 basis set (QCISD/MG3).55

We estimate the CBS limit of the double-hybrid approximations
by standard basis-set extrapolation: we use the single-determinant
results with the largest basis set v5z56 and we use a two-point X−3

extrapolation of the MP2 correlation energy with the vqz (X = 4)

and v5z (X = 5) basis sets.29,30 We compute mean absolute errors
(MAEs), mean errors (MEs), and root mean square errors (RMSEs)
with respect to the CBS-limit estimates.

IV. RESULTS AND DISCUSSION
The MAEs, MEs, and RMSEs with respect to the CBS limit on

the AE6 and BH6 test sets for the different methods are reported in
Tables I and II. The MAEs are also plotted as functions of the basis
sets in Figs. 1 and 2.

We start by discussing the results for the AE6 test set. The atom-
ization energies calculated with the DS1DH-PBE double-hybrid
approximation have a fairly large dependence on the size of the basis
set. The atomization energies are systematically underestimated with
respect to the CBS limit, with a ME of −23.42 kcal/mol for the vdz
basis set and a ME of 1.25 kcal/mol for the v5z basis set. Adding
the basis-set correction functional with density scaling greatly accel-
erates the basis convergence: DS1DH-PBE+DSBSC gives a MAE of
5.76 kcal/mol for the vdz basis set and a MAE below 0.8 kcal/mol
already with the vtz basis set. While DS1DH-PBE+DSBSC still gives
underestimated atomization energies with respect to the CBS limit
for the vdz basis set, it gives overestimated atomization energies
with respect to the CBS limit starting from the vtz basis set. This
means that DSBSC tends to overcorrect a bit the basis-set error
for the vtz basis set and larger basis sets. Adding the one-electron
basis-set correction further helps reduce the basis-set error by about
2 kcal/mol for the vdz basis set, although it tends to further over-
correct a bit for the vtz and vqz basis sets. Neglecting the density
scaling in the basis-set correction functional tends to reduce the
magnitude of the correction. The consequence is that DS1DH-
PBE+BSC gives larger MAEs for the vdz and vtz basis sets (9.02 and
1.30 kcal/mol, respectively) but smaller MAEs for the vqz and v5z
basis sets (0.26 and 0.25 kcal/mol, respectively) since the over-
correction of DSBSC for large basis sets is reduced. Combining
the basis-set correction functional without density scaling and the
one-electron basis-set correction appears to lead to an optimal
compensation of errors: DS1DH-PBE+BSC+OEC gives a MAE of
1.27 kcal/mol for the vdz basis set and MAEs below 0.5 kcal/mol

TABLE I. MAEs, MEs, and RMSEs (in kcal/mol) with respect to the CBS limit on the AE6 test set with vdz, vtz, vqz, and v5z basis sets for the DS1DH-PBE and 1DH-BLYP
double-hybrid approximations, without and with the basis-set correction (with and without density scaling, i.e., DSBSC and BSC), and without and with the basis-set one-electron
correction (OEC). All the results are for a value of λ = 0.65.

Method

MAE ME RMSE

vdz vtz vqz v5z vdz vtz vqz v5z vdz vtz vqz v5z

DS1DH-PBE 23.42 6.70 2.57 1.25 −23.42 −6.70 −2.57 −1.25 25.95 7.30 2.80 1.37
DS1DH-PBE+DSBSC 5.76 0.70 0.77 0.61 −5.76 0.05 0.77 0.61 6.16 0.77 0.99 0.72
DS1DH-PBE+DSBSC+OEC 3.52 1.14 0.89 0.61 3.38 1.02 0.89 0.61 4.21 1.41 1.10 0.72
DS1DH-PBE+BSC 9.02 1.30 0.26 0.25 −9.02 −1.30 0.09 0.22 9.64 1.34 0.36 0.32
DS1DH-PBE+BSC+OEC 1.27 0.49 0.32 0.25 0.12 −0.32 0.21 0.22 1.61 0.54 0.41 0.32
1DH-BLYP 24.06 6.74 2.53 1.25 −24.06 −6.74 −2.53 −1.25 26.75 7.37 2.77 1.36
1DH-BLYP+DSBSC 6.41 0.61 0.81 0.61 −6.41 0.00 0.81 0.61 6.90 0.74 1.02 0.72
1DH-BLYP+DSBSC+OEC 3.47 1.15 0.90 0.61 3.34 1.04 0.89 0.61 4.16 1.42 1.10 0.72
1DH-BLYP+BSC 9.67 1.34 0.24 0.25 −9.67 −1.34 0.13 0.22 10.43 1.40 0.38 0.32
1DH-BLYP+BSC+OEC 1.31 0.47 0.32 0.25 0.08 −0.30 0.21 0.22 1.62 0.53 0.41 0.32
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TABLE II. MAEs, MEs, and RMSEs (in kcal/mol) with respect to the CBS limit on the BH6 test set with vdz, vtz, vqz, and v5z basis sets for the DS1DH-PBE and 1DH-BLYP
double-hybrid approximations, without and with the basis-set correction (with and without density scaling, i.e., DSBSC and BSC), and without and with the basis-set one-electron
correction (OEC). All the results are for a value of λ = 0.65.

Method

MAE ME RMSE

vdz vtz vqz v5z vdz vtz vqz v5z vdz vtz vqz v5z

DS1DH-PBE 1.97 0.83 0.32 0.12 −0.11 0.17 0.08 0.09 2.40 0.91 0.36 0.14
DS1DH-PBE+DSBSC 1.49 0.68 0.33 0.16 −1.06 −0.22 −0.13 −0.04 2.27 0.90 0.41 0.18
DS1DH-PBE+DSBSC+OEC 0.93 0.45 0.26 0.16 0.33 0.05 −0.04 −0.04 1.07 0.54 0.30 0.18
DS1DH-PBE+BSC 1.40 0.61 0.29 0.13 −0.93 −0.17 −0.10 −0.02 2.23 0.87 0.38 0.15
DS1DH-PBE+BSC+OEC 0.88 0.38 0.21 0.13 0.46 0.10 −0.01 −0.02 1.02 0.49 0.26 0.15
1DH-BLYP 1.98 0.85 0.34 0.13 −0.30 0.13 0.07 0.09 2.47 0.95 0.38 0.15
1DH-BLYP+DSBSC 1.55 0.70 0.34 0.15 −1.27 −0.27 −0.15 −0.04 2.41 0.94 0.43 0.18
1DH-BLYP+DSBSC+OEC 0.92 0.44 0.25 0.15 0.31 0.04 −0.04 −0.04 1.04 0.53 0.29 0.18
1DH-BLYP+BSC 1.43 0.64 0.30 0.12 −1.14 −0.22 −0.12 −0.03 2.36 0.92 0.40 0.15
1DH-BLYP+BSC+OEC 0.87 0.38 0.21 0.12 0.44 0.09 −0.02 −0.03 0.99 0.48 0.26 0.15

FIG. 1. MAEs (in kcal/mol) with respect
to the CBS limit on the AE6 test set
as functions of basis sets for the (a)
DS1DH-PBE and (b) 1DH-BLYP double-
hybrid approximations, without and with
the basis-set correction (with and without
density scaling, i.e., DSBSC and BSC),
and without and with the basis-set one-
electron correction (OEC). All the results
are for a value of λ = 0.65.

FIG. 2. MAEs (in kcal/mol) with respect
to the CBS limit on the BH6 test set
as functions of basis sets for the (a)
DS1DH-PBE and (b) 1DH-BLYP double-
hybrid approximations, without and with
the basis-set correction (with and without
density scaling, i.e., DSBSC and BSC),
and without and with the basis-set one-
electron correction (OEC). All the results
are for a value of λ = 0.65.

for larger basis sets. Starting from the 1DH-BLYP double-hybrid
approximation gives very similar results, resulting in identical
conclusions.

We discuss now the results for the BH6 test set. The reaction
barrier heights calculated with the double-hybrid approximations
have much smaller basis-set errors. DS1DH-PBE gives a MAE of
1.97 kcal/mol for the vdz basis set and MAEs below 1 kcal/mol for
larger basis sets. Overall, adding the basis-set correction functional
with density scaling accelerates the basis convergence, but to a lesser
extent compared to what was observed on the AE6 test set. For the
v5z basis set, DS1DH-PBE+DSBSC gives, in fact, a slightly larger
MAE (0.16 kcal/mol) than DS1DH-PBE (0.12 kcal/mol). This is due

to the fact that, again, DSBSC tends to overcorrect a bit the basis-set
error for the large basis sets. Adding the one-electron basis-set cor-
rection significantly reduces the basis-set error for the vdz, vtz, and
vqz basis sets. On this test set, neglecting the density scaling in the
basis-set correction functional always leads to slightly smaller MAEs,
whether or not the one-electron basis-set correction is present:
DS1DH-PBE+BSC and DS1DH-PBE+BSC+OEC have on average
slightly smaller basis-set errors than DS1DH-PBE+DSBSC and
DS1DH-PBE+DSBSC+OEC, respectively. In particular, neglecting
the density scaling in the basis-set correction functional reduces the
overcorrection of DSBSC for the v5z basis set. Like for the AE6 test
set, it appears that combining the basis-set correction functional
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without density scaling and the one-electron basis-set correction
leads to the smallest MAEs: DS1DH-PBE+BSC+OEC gives a MAE
of 0.88 kcal/mol for the vdz basis set and MAEs below 0.4 kcal/mol
for larger basis sets. Here as well, starting from the 1DH-BLYP
double-hybrid approximation gives very similar results.

V. CONCLUSION
In this work, we have developed the theory justifying the appli-

cation of the DBBSC approach to double-hybrid approximations.
More specifically, we showed how to extend the basis-set correc-
tion functional to the context of the one-parameter double-hybrid
DFT framework of Ref. 2. The exact dependence of the basis-set cor-
rection functional on the coupling-constant parameter λ involves
a uniform coordinate scaling by a factor 1/λ of the density and of
the basis functions. Neglecting this uniform coordinate scaling cor-
responds essentially to the recent work of Mester and Kállay14 on
the application of the DBBSC method to double-hybrid approxima-
tions. Thus, the present work provides a clear theoretical framework
to understand the work of Ref. 14.

Calculations on the AE6 and BH6 datasets showed that the
DBBSC method efficiently accelerates the basis convergence of one-
parameter double-hybrids. Unexpectedly, we found that neglecting
the uniform coordinate scaling in the basis-set correction func-
tional and simultaneously adding a one-electron basis-set correction
leads to an optimal compensation of errors, with atomization ener-
gies and reaction barrier heights within roughly chemical accuracy
(1 kcal/mol) on average of the double-hybrid CBS-limit values with
a basis set as small as vdz. This validates the strategy of Mester and
Kállay14 and confirms their findings.

Even though neglecting the uniform coordinate scaling in
the basis-set correction functional appears to be adequate for
MP2-based double hybrids and for the local PBE-based basis-set
correction functional for the calculations of atomization energies
and reaction barrier heights, it could be worthwhile to recheck
the effect of the uniform coordinate scaling when other types of
double hybrids are used (such as the ones based on the random-
phase approximation), when other types of approximate basis-set
correction functionals are used (such as the ones based on a differ-
ent correlation functional25 or the ones involving the on-top pair
density17,19), or when calculating other properties.
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