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ABSTRACT
We investigate the performance of the range-separated hybrid (RSH) scheme, which combines long-range Hartree-Fock (HF) and a short-
range density-functional approximation (DFA), for calculating the photoexcitation/photoionization spectra of the H and He atoms, using a
B-spline basis set in order to correctly describe the continuum part of the spectra. The study of these simple systems allows us to quantify the
influence on the spectra of the errors coming from the short-range exchange-correlation DFA and from the missing long-range correlation
in the RSH scheme. We study the differences using the long-range HF exchange (nonlocal) potential and the long-range exact exchange
(local) potential. Contrary to the former, the latter supports a series of Rydberg states and gives reasonable photoexcitation/photoionization
spectra, even without applying linear-response theory. The most accurate spectra are obtained with the linear-response time-dependent RSH
(TDRSH) scheme. In particular, for the He atom at the optimal value of the range-separation parameter, TDRSH gives slightly more accurate
photoexcitation and photoionization spectra than the standard linear-response time-dependent HF. More generally, this work shows the
potential of range-separated density-functional theory for calculating linear and nonlinear optical properties involving continuum states.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096037

I. INTRODUCTION

Nowadays, time-dependent density-functional theory
(TDDFT),1 applied within the linear-response formalism,2–4 is a
widely used approach for calculating the photoexcitation spectra
(transitions from bound to bound states) of electronic systems.
Despite many successes, it is, however, well known that usual (semi-)
local density-functional approximations (DFAs), i.e., the local-
density approximation (LDA) and generalized-gradient approxi-
mations (GGAs), for the exchange-correlation potential and its
associated exchange-correlation kernel do not correctly describe
long-range (lr) electronic transitions, such as those to Rydberg5

and charge-transfer6 states in atomic and molecular systems. A
better description of Rydberg excitations can be obtained with
exchange-correlation potential approximations having the correct
−1/r long-range asymptotic decay,7–10 even though it has been
shown that accurate Rydberg excitation energies and oscillator

strengths can in fact be extracted from LDA calculations in small
atoms.11,12 A more general solution for correcting both Rydberg
and charge-transfer excitations is given by range-separated TDDFT
approaches13–19 which express the long-range part of the exchange
potential and kernel at the Hartree-Fock (HF) level. These range-
separated approaches also give reasonably accurate values for the
ionization energy threshold.14,20,21

Linear-response TDDFT has also been used for calculating
photoionization spectra (transitions from bound to continuum
states) of atoms and molecules.22–33 These calculations are less stan-
dard in quantum chemistry since they involve spatial grid methods
or B-spline basis sets for a proper description of the continuum
states. In this case as well, usual (semi-)local DFAs provide a limited
accuracy and asymptotically corrected exchange-correlation poten-
tial approximations give more satisfactory results. More accurate
still, but less common, are photoionization spectra calculated with
the exact-exchange (EXX) potential28 or the localized HF exchange
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potential and its associated kernel.33 Recently, range-separated
approximations have been successfully used for calculating the pho-
toexcitation and photoionization spectra of molecular systems using
time-propagation TDDFT with Gaussian basis sets together with
an effective lifetime model compensating for the missing contin-
uum states.34–36 However, to the best of our knowledge, range-
separated approximations have not yet been used in frequency-
domain linear-response TDDFT calculations of photoionization
spectra.

In this work, we explore the performance of the linear-response
time-dependent range-separated hybrid (TDRSH) scheme19,37 for
calculating the photoexcitation and photoionization spectra of the
H and He atoms using a B-spline basis set to accurately describe
the continuum part of the spectra. The TDRSH scheme allows us
to treat long-range exchange effects at the HF level and short-range
(sr) exchange-correlation effects within (semi-)local DFAs. First, the
dependence of the range-separated hybrid (RSH) orbital energies on
the range-separation parameter is investigated, as well as the effect
of replacing the long-range HF exchange nonlocal potential by the
long-range EXX local potential (resulting in a scheme that we refer
to as RSH-EXX). Second, oscillator strengths directly computed with
the RSH and the RSH-EXX orbitals are compared with oscillator
strengths obtained with the linear-response TDRSH scheme. The
study of the H atom allows us to quantify the residual self-interaction
error coming from the short-range exchange-correlation DFA, and
the study of the He atom permits us to quantify the effect of the miss-
ing long-range correlation in the RSH scheme. This work consti-
tutes a first step for applying range-separated TDDFT to strong-field
phenomena, such as high-harmonic generation or above-threshold
ionization, where long-range effects and continuum states play an
important role.

The outline of this paper is as follows: In Sec. II, first, we
briefly review the RSH scheme and introduce the RSH-EXX vari-
ant and, second, we review the linear-response TDRSH method. In
Sec. III, the basis set of B-spline functions is defined, and we indi-
cate how the range-separated two-electron integrals are computed
using an exact spherical harmonic expansion for the range-separated
interaction. In Sec. IV, results are presented and discussed. First,
we show the performance of the B-spline basis set for describing
the density of continuum states of the H atom within the differ-
ent methods. Second, the dependence of the orbital energies of the
H and He atoms on the range-separation parameter is analyzed.
Third, different calculated photoexcitation/photoionization spectra
for the H and He atoms are discussed and compared with the exact
results. In Sec. V, conclusions and perspectives are given. Unless
otherwise indicated, Hartree atomic units are used throughout this
paper.

II. RANGE-SEPARATED DENSITY-FUNCTIONAL
THEORY
A. Range-separated hybrid scheme

Range-separated density-functional theory (see, e.g., Refs. 38
and 39) is based on the splitting of the Coulomb electron-electron
interaction wee(r) = 1/r into long-range (lr) and short-range (sr)
contributions

wee(r) = wlr
ee(r) + wsr

ee(r), (1)

and the most common forms for the long-range and short-range
interactions are

wlr
ee(r) =

erf(µr)
r

(2)
and

wsr
ee(r) =

erfc(µr)
r

, (3)

where erf and erfc are the error function and the comple-
mentary error function, respectively, and µ is a tunable range-
separation parameter controlling the range of the separation. Using
this decomposition, it is possible to rigorously combine a long-
range wave function approach with a complementary short-range
DFA.

The simplest approach in range-separated density-functional
theory consists in using a single-determinant wave function for the
long-range interaction. This leads to the RSH scheme40 by which
spin orbitals {'p(x)} [where x = (r, σ) are space-spin coordinates]
and orbital energies εp can be determined for a given system by the
following eigenvalue problem:

(−
1
2
∇

2 + vne(r) + vH(r) + vsr
xc(x))φp(x)

+ ∫ vlr,HF
x (x, x′)φp(x′)dx′ = εpφp(x), (4)

where vne(r) is the nuclei-electron potential, vH(r) is the Hartree
potential for the Coulomb electron-electron interaction,

vH(r) = ∫ n(x′)wee(∣r − r′∣)dx′, (5)

where n(x) = ∑
occ
i ∣φi(x)∣2 are the spin densities (i refers to the

occupied spin orbitals), vlr,HF
x (x, x′) is the nonlocal HF exchange

potential for the long-range electron-electron interaction,

vlr,HF
x (x, x′) = −

occ
∑
i
φ∗i (x

′
)φi(x)wlr

ee(∣r − r′∣), (6)

and vsr
xc(x) is the short-range exchange-correlation potential,

vsr
xc(x) =

δĒsr
xc

δn(x)
, (7)

where Ēsr
xc is the complement short-range exchange-correlation den-

sity functional. In this work, we use the short-range spin-dependent
LDA exchange-correlation functional of Ref. 41 for Ēsr

xc. The long-
range and short-range potentials, vlr,HF

x (x, x′) and vsr
xc(x), explicitly

depend on the range-separation parameter µ, and consequently, the
spin orbitals, the orbital energies, and the density also implicitly
depend on it. For µ = 0, vlr,HF

x (x, x′) vanishes and vsr
xc(x) becomes

the usual full-range LDA exchange-correlation potential, and thus,
the RSH scheme reduces to the standard Kohn-Sham LDA. For
µ → ∞, vlr,HF

x (x, x′) becomes the usual full-range HF exchange
potential and vsr

xc(x) vanishes, and thus, the RSH scheme reduces
to the standard HF.

In this paper, we also consider the following variant of the RSH
scheme:

(−
1
2
∇

2 + vne(r) + vH(r) + vsr
xc(x) + vlr,EXX

x (x))φp(x) = εpφp(x)

(8)
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in which the long-range nonlocal HF exchange potential has been
replaced by the long-range local EXX42–44 potential

vlr,EXX
x (x) =

δElr
x

δn(x)
, (9)

where Elr
x is the long-range exchange density functional.45,46 We

will refer to this scheme as RSH-EXX. The calculation of the EXX
potential is involved,47–49 with the exception of one- and two-
electron systems. Indeed, for one-electron systems, the long-range
EXX potential is simply

vlr,EXX
x (x) = −vlr

H(r), (10)

and for systems of two electrons in a single spatial orbital, it is

vlr,EXX
x (x) = −

1
2
vlr

H(r), (11)

where vlr
H(r) = ∫n(x′)wlr

ee(∣r − r′∣)dx′ is the long-range Hartree
potential. For these one- and two-electron cases, it can be shown
that Eqs. (4) and (8) give identical occupied orbitals but different
unoccupied orbitals. More generally, for systems with more than two
electrons, the HF and EXX exchange potentials give similar occupied
orbitals but very different unoccupied orbitals.

Once orbitals and orbital energies are obtained from Eqs. (4)
and (8), the bare oscillator strengths can be calculated. They are
defined as

f 0
ia =

2
3
ω0
ia ∑
ν=x,y,z

∣dν,ia∣
2, (12)

where i and a refer to the occupied and unoccupied spin orbitals,
respectively, ω0

ia = εa − εi are the bare excitation energies, and
dν,ia = ∫ φ

∗
i (x)rνφa(x)dx are the dipole-moment transition inte-

grals. We will consider these bare excitation energies ω0
ia and

oscillator strengths f 0
ia for a first approximation to photoexcita-

tion/photoionization spectra.

B. Linear-response time-dependent range-separated
hybrid scheme

In the time-dependent extension of the RSH scheme within
linear response (referred to as TDRSH),18,19,37 one has to solve the
following pseudo-Hermitian eigenvalue equation:

(
A B
−B∗ −A∗)(

Xn
Yn

) = ωn(
Xn
Yn

), (13)

whose solutions come in pairs: excitation energies ωn > 0 with eigen-
vectors (Xn, Yn) and de-excitation energies ωn < 0 with eigenvectors
(Y∗n ,X∗n). The elements of the matrices A and B are

Aia,jb = (εa − εi)δijδab + Kia,jb, (14)

Bia,jb = Kia,bj, (15)

where i, j and a, b refer to the occupied and unoccupied RSH spin
orbitals, respectively, and the coupling matrix K contains the contri-
butions from the Hartree kernel fH(r1, r2) = wee(|r1 − r2|), the long-
range HF exchange kernel f lr,HF

x (x1, x2; x′1, x′2) = −wlr
ee(∣r1 − r2∣)δ(x1

− x′2)δ(x′1 − x2), and the adiabatic short-range exchange-correlation
kernel f sr

xc(x1, x2) = δvsr
xc(x1)/δn(x2),

Kia,jb = ⟨aj∣fH∣ib⟩ + ⟨aj∣f lr,HF
x ∣ib⟩ + ⟨aj∣f sr

xc ∣ib⟩

= ⟨aj∣wee∣ib⟩ − ⟨aj∣wlr
ee∣bi⟩ + ⟨aj∣f sr

xc ∣ib⟩, (16)

where ⟨aj|wee|ib⟩ and ⟨aj∣wlr
ee∣bi⟩ are the two-electron integrals asso-

ciated with the Coulomb and long-range interactions, respectively,
and ⟨aj∣f sr

xc ∣ib⟩ = ∬φ∗a (x1)φ∗j (x2)f sr
xc(x1, x2)φi(x1)φb(x2)dx1dx2.

Since we use the short-range LDA exchange-correlation density
functional, for µ = 0, the TDRSH scheme reduces to the usual linear-
response time-dependent local-density approximation (TDLDA).
For µ → ∞, the TDRSH scheme reduces to the standard linear-
response time-dependent Hartree-Fock (TDHF).

The time-dependent extension of the RSH-EXX variant within
linear response (referred to as TDRSH-EXX) leads to identical equa-
tions with the exception that the long-range HF exchange ker-
nel f lr,HF

x (x1, x2; x′1, x′2) is replaced by the long-range frequency-
dependent EXX kernel50,51 f lr,EXX

x (x1, x2;ω) = δvlr,EXX
x (x1,ω)/

δn(x2,ω). For one-electron systems, the long-range EXX kernel is
simply

f lr,EXX
x (x1, x2;ω) = −f lr

H(r1, r2), (17)

and for systems with two electrons in a single spatial orbital, it is

f lr,EXX
x (x1, x2;ω) = −

1
2
f lr
H(r1, r2), (18)

where f lr
H(r1, r2) = wlr

ee(∣r1 − r2∣) is the long-range Hartree kernel.
For these one- and two-electron cases, TDRSH and TDRSH-EXX
give rise to identical excitation energies and oscillator strengths.

Finally, we can calculate the corresponding TDRSH (or
TDRSH-EXX) oscillator strengths as

fn =
2
3
ωn ∑

ν=x,y,z
∣dν,ia(Xn,ia + Yn,ia)∣

2. (19)

In the limit of a complete basis set, the linear-response oscillator
strengths in Eq. (19) always fulfill the Thomas-Reiche-Kuhn (TRK)
sum rule, ∑nf n = N, where N is the electron number. The bare
oscillator strengths of Eq. (12) fulfill the TRK sum rule only in the
case where the orbitals have been obtained from an effective local
potential, i.e., for LDA and RSH-EXX but not for HF and RSH (see
Ref. 37).

III. IMPLEMENTATION IN A B-SPLINE BASIS SET
In practice, each spin orbital is decomposed into a product of

a spatial orbital and a spin function, φp(x) = φp(r)δσp ,σ, where σp
is the spin of the spin orbital p, and we use spin-adapted equations.
As we investigate atomic systems, the spatial orbitals are written in
spherical coordinates,

φp(r) = Rnp lp(r)Y
mp

lp
(Ω), (20)

where Ymp

lp
(Ω) are the spherical harmonics (Ω stands for the angles

θ, �) and the radial functions Rnp lp(r) are expressed as linear combi-
nations of B-spline functions of order ks,

Rnp lp(r) =
Ns

∑
α=1

cnp lpα
Bks
α (r)
r

, (21)
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where Ns is the dimension of the basis. To completely define a basis
of B-spline functions, a nondecreasing sequence of Ns + ks knot
points (some knot points are possibly coincident) must be given.52

The B-spline function Bks
α (r) is nonzero only on the supporting

interval [rα, rα+ks] (containing ks + 1 consecutive knot points) and
is a piecewise function composed of polynomials of degree ks − 1
with continuous first ks − m derivatives across each knot of multi-
plicity m. We have chosen the first and the last knots to be ks-fold
degenerate, i.e., r1 = r2 = ⋯ = rks = Rmin and rNs+1 = rNs+2 = ⋯

= rNs+ks = Rmax, while the multiplicity of the other knots is unity. The
spatial grid spacing was chosen to be constant in the whole radial
space between two consecutive noncoincident points and is given by
∆r = Rmax/(Ns − ks + 1). In this work, the first and the last B-spline
functions were removed from the calculation to ensure zero bound-
ary conditions at r = Rmin and r = Rmax. The results presented in this
paper have been obtained using the following parameters: ks = 8, Ns
= 200, Rmin = 0, and Rmax = 100 bohrs. Moreover, we need to use
only s and pz spherical harmonics.

Working with such a B-spline representation, one must com-
pute matrix elements involving integrals over B-spline functions.
The principle of the calculation of one-electron and two-electron
integrals over B-spline functions are well described by Bachau
et al. in Ref. 53. We will now briefly review the computation of the
standard Coulomb two-electron integrals over B-spline functions,
and then, we will present the calculation of the long-range or short-
range two-electron integrals over B-spline functions, the latter being
original to the present work.

A. Coulomb two-electron integrals
The Coulomb electron-electron interaction is given by

wee(∣r − r′∣) =
1

(∣r∣2 + ∣r′∣2 − 2∣r∣∣r′∣ cos γ)1/2 , (22)

where r and r′ are electron vector positions and γ is the angle
between them. The multipolar expansion for this interaction is

wee(∣r − r′∣) =
∞

∑
k=0

[
rk<
rk+1
>

]
k
∑

mk=−k
(−1)mkCk

−mk(Ω)Ck
mk(Ω

′
), (23)

where r< = min(|r|, |r′|) and r> = max(|r|, |r′|) and Ck
mk(Ω)

= (4π/(2k + 1))1/2Ymk
k (Ω) are the renormalized spherical harmon-

ics. The Coulomb two-electron integrals, in the spatial orbital basis,
can then be expressed as the sum of products of radial integrals and
angular factors

⟨pq∣wee∣tu⟩ =
∞

∑
k=0

Rk
(p, q; t,u)

k
∑

mk=−k
δmk ,mp−mtδmk ,mq−mu

× (−1)mkck(lp,mp, lt ,mt)ck(lq,mq, lu,mu), (24)

where Rk(p, q; t, u) are the two-dimensional radial Slater integrals
and the angular coefficients ck(lp, mp, lt , mt) and ck(lq, mq, lu, mu)
are obtained from the Gaunt coefficients.54,55 The coefficient ck(l, m,
l′, m′) is nonzero only if |l − l′| ≤ k ≤ l + l′ and if l + l′ + k is an even
integer, which makes the sum over k in Eq. (24) exactly terminate.

The Slater integrals are defined as

Rk
(p, q; t,u) =

Ns

∑
α=1

Ns

∑
λ=1

Ns

∑
β=1

Ns

∑
ν=1

cnp lpα cnq lqλ cnt ltβ cnu luν Rk
(α,λ;β,ν), (25)

where Rk(α, λ; β, ν) are the Slater matrix elements given by

Rk
(α,λ;β,ν) = ∫

∞

0
∫

∞

0
Bks
α (r)B

ks
λ (r

′
)[

rk<
rk+1
>

]Bks
β (r)B

ks
ν (r

′
)drdr′.

(26)

In order to compute the Slater matrix elements Rk(α, λ; β, ν),
we have implemented the integration-cell algorithm developed by
Qiu and Fischer.56 This algorithm exploits all possible symmetries
and B-spline properties to evaluate efficiently the integrals in each
two-dimensional radial region on which the integrals are defined.
Gaussian quadrature is used to compute the integrals in each cell.

B. Long-range and short-range two-electron integrals
A closed form of the multipolar expansion of the short-range

electron-electron interaction defined in Eq. (3) was determined
by Ángyán et al.,57 following a previous work of Marshall58 who
applied the Gegenbauer addition theorem to the Laplace transform
of Eq. (3). This exact expansion is

wsr
ee(∣r − r′∣) =

∞

∑
k=0

Sk(r>, r<;µ)
k
∑

mk=−k
(−1)mkCk

−mk(Ω)Ck
mk(Ω

′
),

(27)

where the µ-dependent radial function is written in terms of the
scaled radial coordinates Ξ = µr> and ξ = µr< as

Sk(r>, r<;µ) = µ Φk
(Ξ, ξ), (28)

with

Φk
(Ξ, ξ) = Hk

(Ξ, ξ) + Fk
(Ξ, ξ) +

k
∑
m=1

Fk−m
(Ξ, ξ)

Ξ2m + ξ2m

(ξ Ξ)m
, (29)

and the introduced auxiliary functions

Hk
(Ξ, ξ) =

1
2(ξ Ξ)k+1 [(Ξ

2k+1 + ξ2k+1
) erfc(Ξ + ξ)

− (Ξ2k+1
− ξ2k+1

) erfc(Ξ − ξ)] (30)

and

Fk
(Ξ, ξ) =

2
π1/2

k
∑
p=0

(−
1

4(ξ Ξ)
)

p+1
(k + p)!
p!(k − p)!

× [(−1)k−pe−(Ξ+ξ)2
− e−(Ξ−ξ)

2
]. (31)

In order to arrive at a separable expression in Ξ and ξ, Ángyán
et al.57 also introduced a power series expansion of the radial func-
tion Φk(Ξ, ξ) in the smaller reduced variable ξ. However, the range
of validity of this expansion truncated to the first few terms is limited
to small values of ξ, i.e., ξ ≲ 1.5, and higher-order expansions show
spurious oscillations. After some tests, we decided to use the exact
short-range radial function Φk(Ξ, ξ) without expansion in our work.
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The expression of the short-range two-electron integrals
⟨pq∣wsr

ee∣tu⟩ is then identical to the one in Eq. (24) with the simple
difference that the radial term is not given by the standard Slater
matrix elements. Now, the radial kernel in Eq. (26) is changed to
that of Eq. (28). Due to the fact that the radial kernel is not multi-
plicatively separable in the variables r> and r<, the integration-cell
algorithm is modified in order to calculate all integrals as nonsep-
arable two-dimensional integrals. In a second step, the long-range
two-electron integrals can be simply obtained by the difference

⟨pq∣wlr
ee∣tu⟩ = ⟨pq∣wee∣tu⟩ − ⟨pq∣wsr

ee∣tu⟩. (32)

IV. RESULTS AND DISCUSSION
In this section, the photoexcitation and photoionization spec-

tra for the H and He atoms are presented. Photoexcitation and
photoionization processes imply transitions from bound to bound
and from bound to continuum states, respectively. For this reason,
we first check the density of continuum states obtained with our
B-spline basis set. After that, we show how orbital energies for the
H and He atoms are influenced by the range-separation parame-
ter µ. Finally, having in mind these aspects, we discuss the differ-
ent calculated spectra. All the studied transitions correspond to the
dipole-allowed spin-singlet transitions from the Lyman series, i.e.,
1s→ np.

A. Density of continuum states
In Fig. 1, the radial density of states (DOS) of a free particle in

a spherical box is compared with the radial DOS of the continuum
p orbitals of the H atom computed with the exact Hamiltonian or
with the HF or LDA effective Hamiltonian using the B-spline basis
set. The radial DOS of a free particle is given by53 ρ(ε) = Rmax/π

√
2ε,

where Rmax is the radial size of the box, while for the different Hamil-
tonians using the B-spline basis set (with the same Rmax), the radial
DOS is calculated by finite differences as ρ(εp) = 2/(εp+1 − εp−1),
where εp are positive orbital energies.

As one can observe, the radial DOS computed with the LDA or
the HF Hamiltonian is essentially identical to the DOS of the free
particle. This can be explained by the fact that since the unoccupied

FIG. 1. Radial density of states (DOS) for a free particle, ρ(εp) = Rmax/π
√

2εp,
in a spherical box of size Rmax = 100 bohrs, and for the continuum p orbitals of
the H atom computed with the exact Hamiltonian, or with the HF or LDA effective
Hamiltonian using the B-spline basis set with the same Rmax.

LDA and HF orbitals do not see a −1/r attractive potential, they are
all unbound and they all contribute to the continuum, similarly to
the free-particle case. By contrast, for the exact Hamiltonian with
the same B-spline basis set, one obtains a slightly smaller DOS in the
low-energy region. This is due to the presence of the −1/r attractive
Coulomb potential which supports a series of bound Rydberg states,
necessarily implying less unoccupied orbitals in the continuum for a
given basis.

We have checked that, by increasing the size of the simulation
box, together with the number of B-spline functions in the basis so
as to keep constant the density of B-spline functions, the DOS of
the exact Hamiltonian converges, albeit slowly, to the free-particle
DOS. This must be the case since, for potentials vanishing at infinity,
the global density of unbound states is independent of the poten-
tial for an infinite simulation box (only the local DOS depends on
the potential, see, e.g., Ref. 59). From a numerical point of view, the
computation of the DOS can be seen as a convergence test. With
the present basis set, a huge energy range of the continuum spec-
trum is described correctly, and the difference between the DOS
of the exact Hamiltonian and the free-particle DOS at low ener-
gies (0.0–0.2 Ha) is only about 10−4 Ha−1. This difference is small
enough to fairly compare the different methods considered in this
paper.

The calculation of the DOS is also important in order to com-
pute proper oscillator strengths involving continuum states. Because
of the use of a finite simulation box, the calculated positive-energy
orbitals form, of course, a discrete set and not strictly a continuum.
These positive-energy orbitals are thus not energy normalized as the
exact continuum states should be. To better approximate pointwise
the exact continuum wave functions, the obtained positive-energy
orbitals should be renormalized. Following Macías et al.,60 we renor-
malize the positive-energy orbitals by the square root of the DOS as
φ̃p(r) =

√
ρ(εp)φp(r).

B. Range-separated orbital energies
In Fig. 2, we show the 1s and the low-lying p orbital energies for

the H atom calculated with both the RSH and RSH-EXX methods as
a function of the range-separation parameter µ.

As one observes in Fig. 2(a), with the RSH method only the 1s
ground state is bound, and the energy of this state is strongly depen-
dent on µ. At µ = 0, the self-interaction error introduced by the LDA
exchange-correlation potential is maximal. But, when µ increases,
the long-range HF exchange potential progressively replaces the
long-range part of the LDA exchange-correlation potential and the
self-interaction error is gradually eliminated until reaching the HF
limit for µ → ∞, where one obtains the exact 1s orbital energy.
The p orbitals (and all the other unoccupied orbitals) are always
unbound and their (positive) energies are insensible to the value of
µ. One also observes that the approximate continuum of p orbitals
has a DOS correctly decreasing as the energy increases, as shown in
Fig. 1.

In Fig. 2(b), one sees that the 1s orbital energy computed with
the RSH-EXX method is identical to the 1s orbital energy obtained
by the RSH scheme, as expected. However, a very different behavior
is observed for the unoccupied p orbitals. Starting from the LDA
limit at µ = 0 where all unoccupied orbitals are unbound, when the
value of µ increases, one sees the emergence of a series of bound
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FIG. 2. Orbital energies obtained with the RSH (a) and with the RSH-EXX (b) methods as a function of range-separation parameter µ for the H atom. The occupied 1s orbital
energy is plotted in red, and the unoccupied p orbital energies are plotted in blue. Horizontal dotted lines indicate the exact 1s orbital energy (−0.5 Ha) and the ionization limit
(0 Ha).

Rydberg states coming down from the continuum. This is due to
the introduction of an attractive −1/r term in the long-range EXX
potential, which supports a Rydberg series. For µ→∞, we obtain the
spectrum of the exact hydrogen Hamiltonian calculated with the B-
spline basis set. Necessarily, with the finite basis used, the appearance
of the discrete bound states is accompanied by a small reduction of
the density of continuum states, as we already observed in Fig. 1 with
the exact Hamiltonian.

Another interesting aspect that can be observed in Fig. 2(b)
is the fact that the different bound-state energies reach their exact
µ →∞ values at different values of µ. Thus, for a fixed small value
of µ, each bound-state energy is affected differently by the self-
interaction error. For the compact 1s orbital, the self-interaction
error is eliminated for µ ≳ 1 bohr−1. For the more diffuse 2p
Rydberg state, the self-interaction error is essentially eliminated
with µ ≳ 0.5 bohr−1. When we continue to climb in the Ryd-
berg series, the orbitals become more and more diffuse and the
self-interaction error is eliminated from smaller and smaller values
of µ.

In Fig. 3, the 1s and low-lying p orbital energies for the He atom
are shown. Again, for the RSH method, one sees in Fig. 3(a) that only
the occupied 1s orbital is bound and all the unoccupied p orbitals are
in the continuum. Similarly to the case of the H atom, at µ = 0, the

1s orbital energy is too high, which can essentially be attributed to
the self-interaction error in the LDA exchange-correlation potential.
This error decreases when µ increases and the 1s orbital energy con-
verges to its HF value for µ →∞. However, contrary to the case of
the H atom, for this two-electron system, the 1s HF orbital energy is
not equal to the opposite of the exact ionization energy but is slightly
too low due to missing correlation effects. In the spirit of the opti-
mally tuned range-separated hybrids,16,17,62,63 the range-separation
parameter µ can be chosen so that the HOMO orbital energy is equal
to the opposite of the exact ionization energy, which gives µ = 1.115
bohr−1 for the He atom.

As regards the RSH-EXX method, one sees again in Fig. 3(b)
that, for this two-electron system, the 1s RSH-EXX orbital energy is
identical to the 1s RSH orbital energy. As in the case of the H atom,
the introduction of the long-range EXX potential generates a series
of bound Rydberg states, whose energies converge to the Kohn-
Sham EXX orbital energies for µ → ∞. For the Rydberg states of
the He atom, it turns out that the Kohn-Sham EXX orbital energies
are practically identical to the exact Kohn-Sham orbital energies,61

implying that the Kohn-Sham correlation potential has essentially
no effect on these Rydberg states. As we will see, contrary to the
RSH case, the set of unoccupied RSH-EXX orbitals can be consid-
ered as a reasonably good first approximation for the computation of

FIG. 3. Orbital energies obtained with the RSH (a) and with the RSH-EXX (b) methods as a function of range-separation parameter µ for the He atom. The occupied 1s orbital
energy is plotted in red, and the unoccupied p orbital energies are plotted in blue. Horizontal dotted lines indicate exact Kohn-Sham orbital energies,61 including the opposite
of the exact ionization energy (−0.9036 Ha) for the 1s orbital energy and the ionization limit (0 Ha).

J. Chem. Phys. 150, 234104 (2019); doi: 10.1063/1.5096037 150, 234104-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

photoexcitation and photoionization spectra, even before applying
linear-response theory.

C. Photoexcitation and photoionization spectra
for the hydrogen atom

In Fig. 4, the photoexcitation/photoionization spectra for the H
atom calculated with different methods are shown. For the calcula-
tion using the exact Hamiltonian, the spectrum is correctly divided
into a discrete and a continuum part, corresponding to the pho-
toexcitation and photoionization processes, respectively. As already
discussed in Sec. IV A, for all calculations, the continuum states
have been renormalized, or equivalently, the oscillator strengths of
the continuum part of the spectrum have been renormalized as
f̃1s→np = ρ(εnp)f1s→np, where ρ(εnp) is the DOS at the correspond-
ing positive orbital energy εnp. Moreover, for better readability of
the spectra, following Refs. 11, 64, and 65, we have also renormal-
ized the oscillator strengths of the discrete part of the spectrum as
f̃1s→np = n3f1s→np, where n is the principal quantum number of the
excited p orbital. This makes the transition between the discrete
and the continuum part of the spectrum smooth. Another thing
is, since we are working with a finite B-spline basis set principally
targeting a good continuum, we obtain only a limited number of
Rydberg states and the last Rydberg states near the ionization thresh-
old are not accurately described. In particular, the corresponding
oscillator strengths are overestimated (not shown). To fix this prob-
lem, we could, for example, use quantum defect theory in order to

FIG. 4. Photoexcitation/photoionization spectra calculated with different methods
for the H atom. (a) Comparison of the HF, LDA, and TDLDA methods with respect
to the calculation with the exact Hamiltonian. (b) Comparison of the RSH, RSH-
EXX, and TDRSH methods (all of them with a range-separation parameter of
µ = 0.5 bohr−1) with respect to the calculation with the exact Hamiltonian.

accurately extract the series of Rydberg states.64,66–68 However, for
the purpose of the present work, we did not find necessary to do that,
and instead we have simply corrected the oscillator strengths of the
last Rydberg states by interpolating between the oscillator strengths
of the first five Rydberg states and the oscillator strength of the first
continuum state using a second-order polynomial function of the
type f̃n = c0 +c1 ωn +c2 ω2

n. This procedure was applied for all spectra
having a discrete part.

Let us first discuss the spectra in Fig. 4(a). The LDA spec-
trum, calculated using the bare oscillator strengths of Eq. (12), does
not possess a discrete photoexcitation part, which was, of course,
expected since the LDA potential does not support bound Rydberg
states, as shown in the µ = 0 limit of Fig. 2. The ionization thresh-
old energy, giving the onset of the continuum spectrum, is much
lower than the exact value (0.5 Ha) due to the self-interaction error
in the ground-state orbital energy. At the ionization threshold, the
LDA oscillator strengths are zero, in agreement with the Wigner-
threshold law69,70 for potentials lacking a long-range attractive −1/r
Coulomb tail. Close above the ionization threshold, the LDA spec-
trum has an unphysical large peak, which corresponds to contin-
uum states with an important local character. However, as noted in
Ref. 11, at the exact Rydberg transition energies, the LDA continuum
oscillator strengths are actually reasonably good approximations to
the exact discrete oscillator strengths, which was explained by the
fact that the LDA potential is approximately the exact Kohn-Sham
potential shifted by a constant. Moreover, above the exact ionization
energy, LDA reproduces relatively well the exact photoionization
spectrum and becomes essentially asymptotically exact in the high-
energy limit. This is consistent with the fact that, at a sufficiently high
transition energy, the LDA continuum orbitals are very similar to the
exact ones, at least in the spatial region relevant for the calculation
of the oscillation strengths, as shown in Fig. 5.

The TDLDA spectrum differs notably from the LDA spectrum
only in that the unphysical peak at around 0.3 Ha, close above its ion-
ization threshold, has an even larger intensity. This increased inten-
sity comes from the contribution of the LDA exchange-correlation
kernel (not shown). The LDA exchange-correlation kernel being
local, its larger impact is for the low-lying LDA continuum orbitals
having a local character. As the TRK sum rule must be satisfied, the
higher peak in the TDLDA spectrum is followed by a decrease in the

FIG. 5. Comparison of the renormalized radial amplitude R̃(r) =
√

ρ(ε)R(r) of
the continuum p orbital involved in the transition energy ωn = ε − ε1s = 0.8 Ha
calculated by HF, LDA, RSH, and RSH-EXX (with a range-separation parameter
of µ = 0.5 bohr−1) with respect to the exact calculation for the H atom.
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oscillator strengths faster than in the LDA spectrum, until they reach
the same asymptotic behavior.

The HF spectrum in Fig. 4(a) not only has no discrete pho-
toexcitation part, as expected since the unoccupied HF orbitals are
unbound [see the µ →∞ limit of Fig. 2(a)], but does not even look
as a photoionization spectrum. The HF unoccupied orbitals actually
represent approximations to the continuum states of the H− anion
and are thus much more diffuse than the exact continuum states of
the H atom, as shown in Fig. 5. Consequently, the HF spectrum has,
in fact, the characteristic shape of the photodetachment spectrum of
the H− anion71,72 (with the caveat that the initial state is the 1s orbital
of the H atom instead of the 1s orbital of the H− anion). Finally,
note that, for the H atom, linear-response TDHF gives, of course,
the exact photoexcitation/photoionization spectrum.

Let us now discuss the spectra obtained with the range-
separated methods in Fig. 4(b). The common value of the range-
separation parameter µ = 0.5 bohr−1 has been used.20 The RSH
spectrum looks like the photodetachment spectrum of the H− anion.
This is not surprising since the RSH effective Hamiltonian con-
tains a long-range HF exchange potential. The RSH continuum
orbitals are similarly diffuse as the HF continuum orbitals, as shown
in Fig. 5. The RSH ionization threshold energy is slightly smaller
than the exact value (0.5 Ha) due to the remaining self-interaction
error in the 1s orbital energy stemming from the short-range LDA
exchange-correlation potential at this value of µ. The RSH-EXX
ionization threshold is identical to the RSH one, but, contrary to
the RSH spectrum, the RSH-EXX spectrum correctly shows a dis-
crete photoexcitation part and a continuum photoionization part.
Beside the small redshift of the spectrum, the self-interaction error
at this value of µ manifests itself in slightly too small RSH-EXX
oscillator strengths. The RSH-EXX continuum orbitals are very sim-
ilar to the exact continuum orbitals, as shown in Fig. 5. Finally,
at this value of µ, TDRSH gives a photoexcitation/photoionization
spectrum essentially identical to the RSH-EXX spectrum.

D. Photoexcitation and photoionization spectra
for the helium atom

In Fig. 6, different photoexcitation/photoionization spectra for
the He atom are shown. As in the H atom case, the oscillator
strengths of the discrete part of the TDHF, RSH-EXX, and TDRSH

FIG. 6. Photoexcitation and photoionization spectra calculated with different meth-
ods for the He atom. (a) Comparison of HF, TDHF, LDA, and TDLDA methods.
(b) Comparison of RSH, RSH-EXX, and TDRSH methods (all of them with a
range-separation parameter of µ = 1.115 bohr−1).

spectra have been interpolated (using again the oscillator strengths
of first five Rydberg states and of the first continuum state) to cor-
rect the overestimation of the oscillator strengths for the last Ryd-
berg transitions. The excitation energies and the (noninterpolated)
oscillator strengths of the first five discrete transitions are reported
in Table I and compared with the exact results. The photoion-
ization part of some of the calculated spectra are compared with
full configuration-interaction (FCI) calculations and experimental
results in Fig. 7.

In Fig. 6(a), one sees that the HF spectrum looks again like
a photodetachment spectrum, corresponding in this case to the

TABLE I. Excitation energies (ωn in Ha) and oscillator strengths (f n) of the first discrete transitions calculated with different methods for the He atom. The ionization energy is
also given.

Exacta TDHF RSH-EXX (µ = 1.115) TDRSH (µ = 1.115)

Transition ωn fn ωn fn ωn fn ωn fn

11S→ 21P 0.7799 0.2762 0.7970 0.2518 0.7766 0.3303 0.7827 0.2547
11S→ 31P 0.8486 0.0734 0.8636 0.0704 0.8474 0.0857 0.8493 0.0708
11S→ 41P 0.8727 0.0299 0.8872 0.0291 0.8721 0.0344 0.8729 0.0292
11S→ 51P 0.8838 0.0150 0.8982 0.0148 0.8835 0.0172 0.8839 0.0148
11S→ 61P 0.8899 0.0086 0.9042 0.0087 0.8897 0.0100 0.8899 0.0087

Ionization energy 0.9036 0.9180 0.9036 0.9036

aFrom Ref. 74.
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FIG. 7. Photoionization cross-sectional profile for the He atom. Normalized cross
sections are given (in Hartree atomic units) by σn = (2π2

/c)f̃n, where f̃n are the
renormalized oscillator strengths and c is the speed of light. Conversion factors 1
Ha = 27.207 696 eV and 1 bohr2 = 28.002 83 Mb are employed. The experimental
data and the FCI results are from Ref. 73.

He− anion. By contrast, TDHF gives a reasonable photoexcita-
tion/photoionization spectrum. In particular, for the first discrete
transitions listed in Table I, TDHF gives slightly too large excitation
energies by at most about 0.02 Ha (or 0.5 eV) and slightly too small
oscillator strengths by at most about 0.025. The ionization energy is
also slightly too large by about 0.015 Ha, as already seen from the HF
1s orbital energy in the µ → ∞ limit of Fig. 3. As regards the pho-
toionization part of the spectrum, one sees in Fig. 7 that TDHF gives
slightly too large photoionization cross sections.

The LDA spectrum in Fig. 6(a) is also similar to the LDA spec-
trum for the H atom. The ionization threshold energy is much too
low, and the spectrum lacks a discrete part and has an unphysical
maximum close above the ionization threshold. Except from that,
taking as reference the TDHF spectrum (which is close to the exact
spectrum), the LDA spectrum is a reasonable approximation to the
photoionization spectrum and, again as noted in Ref. 11, a reason-
able continuous approximation to the photoexcitation spectrum. In
comparison to LDA, TDLDA75 gives smaller and less accurate oscil-
lator strengths in the lower-energy part of the spectrum but, the
TRK sum rule having to be preserved, larger oscillator strengths
in the higher-energy part of the spectrum, resulting in an accurate
high-energy asymptotic behavior as shown in Fig. 7.

Figure 6(b) shows the spectra calculated with RSH, RSH-EXX,
and TDRSH using for the range-separation parameter the value
µ = 1.115 bohr−1 which imposes the exact ionization energy, as
explained in Sec. IV B. The RSH spectrum is similar to the HF
spectrum and does not represent a photoexcitation/photoionization
spectrum. By contrast, the RSH-EXX spectra is qualitatively cor-
rect for a photoexcitation/photoionization spectrum. As shown in
Table I, in comparison with TDHF, RSH-EXX gives more accurate
Rydberg excitation energies, with a largest error of about 0.003 Ha
(or 0.08 eV), but less accurate oscillator strengths which are sig-
nificantly overestimated. The TDRSH method also gives a correct
photoexcitation/photoionization spectrum, with the advantage that
it gives Rydberg excitation energies as accurate as the RSH-EXX ones
and the corresponding oscillator strengths as accurate as the TDHF
ones. The present results thus corroborate the efficacy of the opti-
mally tuned range-separated hybrids for calculating accurate Ryd-
berg excitation energies, first observed in Ref. 17. Finally, as shown

in Fig. 7, TDRSH also gives a slightly more accurate photoionization
cross-sectional profile than TDHF.

V. CONCLUSIONS
We have investigated the performance of the RSH scheme for

calculating the photoexcitation/photoionization spectra of the H
and He atoms, using a B-spline basis set in order to correctly describe
the continuum part of the spectra. The study of these simple sys-
tems allowed us to quantify the influence on the spectra of the errors
coming from the short-range exchange-correlation LDA and from
the missing long-range correlation in the RSH scheme. For the He
atom, it is possible to choose a value for the range-separation param-
eter µ for which these errors compensate each other so as to obtain
the exact ionization energy.

We have studied the differences between using the long-range
HF exchange nonlocal potential and the long-range EXX local
potential. Contrary to the former, the latter supports a series of
Rydberg states and the corresponding RSH-EXX scheme, even with-
out applying linear-response theory, gives reasonable photoexcita-
tion/photoionization spectra. Nevertheless, the most accurate spec-
tra are obtained with linear-response TDRSH (or TDRSH-EXX since
they are equivalent for one- and two-electron systems). In particu-
lar, for the He atom at the optimal value of µ, TDRSH gives slightly
more accurate photoexcitation and photoionization spectra than the
standard TDHF.

This work calls for further developments. First, the merits
of TDRSH (and/or TDRSH-EXX) for calculating the photoexcita-
tion/photoionization spectra of larger atoms and molecules, where
screening effects are important, should now be investigated. Second,
it would be interesting to test the effects of going beyond the LDA for
the short-range exchange-correlation functional,76,77 adding long-
range wave function correlation,18,78,79 and using alternative decom-
positions of the electron-electron interaction.14,39,80 Third, time-
propagation TDRSH could be implemented to go beyond linear
response and tackle strong-field phenomena, such as high-harmonic
generation and above-threshold ionization.81
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