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ABSTRACT
The semistochastic heat-bath configuration interaction method is a selected configuration interaction plus perturbation theory method that
has provided near-full configuration interaction (FCI) levels of accuracy for many systems with both single- and multi-reference character.
However, obtaining accurate energies in the complete basis-set limit is hindered by the slow convergence of the FCI energy with respect to
basis size. Here, we show that the recently developed basis-set correction method based on range-separated density functional theory can
be used to significantly speed up basis-set convergence in SHCI calculations. In particular, we study two such schemes that differ in the
functional used and apply them to transition metal atoms and monoxides to obtain total, ionization, and dissociation energies well converged
to the complete-basis-set limit within chemical accuracy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0072296

I. INTRODUCTION

Selected configuration interaction plus perturbation theory
(SCI + PT) methods1–8 are capable of providing excellent approx-
imations to full configuration interaction (FCI) energies, i.e., the
exact energies within a given one-electron basis, for systems and
basis-sets that are considerably larger than those for which FCI is
feasible. In this paper, we employ a particularly efficient SCI method
developed by some of the current authors, namely, the semistochas-
tic heat-bath configuration interaction (SHCI) method,9–12 which
has been used for a number of challenging problems, including
the potential energy curve of the Cr2 molecule,13 the dissociation

energies of the 55 molecules comprising the G2 set,14 and the
ionization and dissociation energies of seven transition metal
elements (their atoms, ions, and monoxides).15

In particular, the SHCI results on transition metal systems have
served as accurate benchmark energies for 19 other quantum chem-
istry methods for basis sets from DZ to 5Z as well as the extrapolated
complete-basis-set (CBS) limit.15 However, unlike for the extrapola-
tion to the FCI limit, whose extrapolation error is on the order of a
couple of mHa for the largest monoxide molecules and much less for
most other systems in the study, the largest extrapolation error to the
CBS values can be on the order of 10 mHa.16 In addition, the com-
putational cost goes up rapidly with basis size, so efficient techniques
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for accelerating the convergence to the CBS limit become important
in situations where the available computational resources limit the
basis sizes one can use.

The slow convergence of SCI and other wave-function methods
with respect to the basis-set size is due to the failure of wave
functions expanded in finite one-electron basis sets to reproduce
the short-range correlation hole around the electron–electron cusp
present in exact wave functions. F12 methods17–21 accelerate the
basis-set convergence of wave-function methods by restoring the
electron–electron cusp with a correlation factor at the cost of
introducing an auxiliary basis. In particular, F12 methods have
been used to accelerate the basis-set convergence of coupled-cluster
calculations on transition metal systems.22–25 In this paper, we
instead use two variants of a method based on range-separated
density-functional theory (RS-DFT), recently developed by some of
the current authors.26–30 The basic idea is that the electron–electron
Coulomb interaction projected in a one-electron basis resembles the
long-range potential, wlr

ee(r12) = erf(μr12)/r12, used in RS-DFT. The
on-top (OT) value of the projected Coulomb interaction provides
the local value of the range-separation parameter μ and functionals
derived in the context of RS-DFT can be used to provide a basis-set
correction.

The outline of this paper is as follows: In Sec. II, we briefly
review the SHCI method. In Sec. III, we discuss the two basis-set
correction schemes we employ in this paper. Section IV contains the
computational details. In Sec. V, we present the energies obtained
with and without the two basis-set correction formulas. The
conclusions are given in Sec. VI.

II. REVIEW OF THE SHCI METHOD
In this section, we give a brief review of the SHCI method.
The variational stage of SHCI starts from an initial determi-

nant, such as the Hartree–Fock (HF) determinant, and generates
the variational wave function, ΨV, through an iterative procedure.
At each iteration, ΨV is written as a linear combination of the
determinants in the variational set V,

∣ΨV⟩ = ∑
Di∈V

ci∣Di⟩, (1)

and new determinants, Da, from the perturbative set P (i.e., the
determinants not in V but connected through the Hamiltonian to
the determinants in V) that satisfy the criterion

∃ Di ∈ V such that ∣Haici∣ ≥ ϵ1 (2)

are added to the set V, where Hai is the Hamiltonian matrix
element between determinants Da and Di, and ϵ1 is a user-defined
parameter that controls the accuracy of the variational stage.31

(When ϵ1 = 0, the method becomes equivalent to FCI.) After adding
the new determinants to the set V, the Hamiltonian matrix is
constructed and diagonalized using the diagonally preconditioned
Davidson method32 to obtain an improved estimate of the lowest
eigenvalue, EV , and eigenvector, ΨV. This process is repeated until
the change in the variational energy EV falls below a certain
threshold.

Although the selection criterion in Eq. (2) is only an approx-
imation to selection criteria based on the largest contributions to

the first-order perturbative correction to the wave function or the
second-order perturbative correction to the energy, the selected
determinants are only slightly inferior to those selected by either
of these perturbative criteria. This is greatly outweighed by the
improved selection speed.

In the perturbative stage of SHCI, a second-order
Epstein–Nesbet perturbative energy correction ΔE(2) is calcu-
lated using the determinants connected to the final set V that satisfy
Eq. (2) but with ϵ1 replaced by ϵ2, which is typically orders of
magnitude smaller than ϵ1,

ΔE(2) = ∑
Da∈P

(∑
(ϵ2)

Di∈V
Haici)

2

EV − Ea
, (3)

where Ea = Haa and ∑(ϵ2) indicates that only terms in the sum
for which ∣Haici∣ ≥ ϵ2 are included. The final SHCI energy is then
ESHCI = EV + ΔE(2).

In both the variational and the perturbative stages, the fact
that the number of distinct values of the double-excitation matrix
elements scales only as N4

orb, where Norb is the number of orbitals, is
used to avoid ever looking at the very large number of unimportant
determinants that do not contribute to the final energy. Never-
theless, straightforward approaches for evaluating the perturbative
correction entail either storing all determinants of the perturbative
set, P, which creates a memory bottleneck for large systems, or a
significant increase in computer time.

SHCI circumvents this using a three-step semistochastic
approach for the second-order perturbation calculation, where the
energy correction is split into deterministic, “pseudo-stochastic,”
and stochastic contributions.12 The deterministic step chooses
both variational and perturbative determinants deterministically,
the “pseudo-stochastic” step chooses variational determinants
deterministically and perturbative determinants stochastically, and
the stochastic step chooses both variational and perturbative deter-
minants stochastically. A threshold value ϵdtm

2 (< ϵ1), automatically
determined to correspond to a determinant set of manageable size
depending on available computer memory, is first used to obtain
a deterministic energy correction. The remaining correlation is
calculated as the sum of a “pseudo-stochastic” part obtained as
the difference in the second-order corrections evaluated with ϵdtm

2
and a smaller threshold ϵpsto

2 , and a stochastic part obtained as the
difference in corrections between ϵpsto

2 and the final threshold ϵ2

(ϵ2 < ϵpsto
2 < ϵdtm

2 < ϵ1, separated by one order of magnitude from
one another). Stochastic samples are taken until the statistical error
falls below a specified threshold, which is typically on the order of a
few microHartrees.

In a typical SHCI calculation, the variational energy and the
corresponding perturbative correction are computed for several
values of ϵ1 (for the systems presented in this study, the lowest ϵ1
values are in the 2–4 × 10−5 range). To estimate the FCI energy, we
perform a weighted quadratic fit of ESHCI to −ΔE(2) to obtain ESHCI

at −ΔE(2)
= 0 using weights proportional to (ΔE(2))−2. In order to

reduce the extrapolation error, one can either go to larger variational
wave functions by decreasing ϵ1, incurring a large memory footprint,
or optimize the orbitals33 to minimize the variational energy for
the same number of determinants. To limit the computational cost
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of orbital optimization, the value of the threshold ϵ1 used during
optimization can be much larger than the value used to obtain the
final energy.

III. BASIS-SET CORRECTION
One significant drawback of wave-function methods is the slow

convergence of energies with respect to the size of the one-electron
basis set. This is because wave functions expanded in finite one-
electron basis sets usually poorly describe short-range correlation
near the electron–electron cusp. To estimate the basis-set incom-
pleteness error and speed up basis-set convergence, we employ the
density-based basis-set correction recently developed in Refs. 26–30
by some of the current authors.

The starting idea of this basis-set correction scheme is that, in a
given basis set B, the exact ground-state energy E0 of an N-electron
system can be approximated by the energy EB

0 defined by the
following minimization over B-representable one-electron densities
nB
(r), i.e., densities that can be obtained from a wave function ΨB

belonging to the N-electron Hilbert space generated by the basis
set B:

EB
0 = min

nB
{F[nB

] + ∫ dr vne(r)nB
(r)}, (4)

where vne(r) is the nuclei–electron potential and F[n]
= minΨ→n⟨Ψ∣T̂ + Ŵee∣Ψ⟩ is the standard constrained-search
Levy–Lieb universal density functional34,35 with T̂ and Ŵee being
the kinetic and electron–electron Coulomb operators, respectively.
Obviously, in the CBS limit, EB

0 tends to the exact ground-state
energy, i.e., limB→CBS EB

0 = E0. Crucially, since the density usually
has a fast convergence with the size of the basis set, the energy EB

0
also has a fast basis-set convergence.

As it stands, Eq. (4) is, of course, not practical due to the lack
of a sufficiently accurate explicit approximation for the universal
density functional F[n]. However, as shown in Ref. 26, by
reintroducing a wave function, ΨB, the energy EB

0 can be expressed
as

EB
0 = min

ΨB
{⟨ΨB

∣Ĥ∣ΨB
⟩ + ĒB

[nΨB]}, (5)

where the minimization is over normalized N-electron wave
functions ΨB expanded in the basis set B, Ĥ is the total Hamil-
tonian, and ĒB

[n] is a complementary basis-set correction density
functional,

ĒB
[n] = min

Ψ→n
⟨Ψ∣T̂ + Ŵee∣Ψ⟩ − min

ΨB→n
⟨ΨB
∣T̂ + Ŵee∣ΨB

⟩, (6)

which must be evaluated at the density of the wave function ΨB.
The basis-set correction density functional ĒB

[n] compensates for
the basis-set restriction on the wave function ΨB in Eq. (5) and
vanishes in the CBS limit. This scheme can be trivially generalized
to a basis-set correction functional depending on spin-resolved
densities n↑(r) and n↓(r), giving the same energy EB

0 as

EB
0 = min

ΨB
{⟨ΨB

∣Ĥ∣ΨB
⟩ + ĒB

[n
↑,ΨB , n

↓,ΨB]}, (7)

where ĒB
[n
↑,ΨB , n

↓,ΨB] is a new basis-set correction functional eval-
uated at the spin-↑ and spin-↓ densities of the wave function ΨB.
Moreover, as shown in Ref. 30, the basis-set correction scheme can
also be extended to a functional depending on both the density n(r)
and the on-top pair density n2(r), giving again the same energy
EB

0 as

EB
0 = min

ΨB
{⟨ΨB

∣Ĥ∣ΨB
⟩ + ĒB

[nΨB , n2,ΨB]}, (8)

where ĒB
[nΨB , n2,ΨB] is yet another basis-set correction functional

evaluated at the density and on-top pair density of the wave function
ΨB.

In practice, we use two approximate basis-set correction
functionals. For the scheme of Eq. (7), we use the Perdew–Burke–
Ernzerhof-uniform electron gas (PBE-UEG) functional of the
form27

ĒB
PBE−UEG[n↑, n↓] = ∫ dr f (n↑(r), n↓(r),∇n(r), μB

(r)), (9)

where f is a function of the spin-resolved densities n↑(r) and
n↓(r), the density gradient ∇n(r), and the local range-separation
parameter μB

(r). The function f was constructed based on a
short-range version36 of the Perdew–Burke–Ernzerhof (PBE)37

correlation functional. One key ingredient of this short-range
functional is a parameterization (in terms of the spin-resolved
densities) of the on-top pair density of the uniform electron gas
(UEG),38,39 hence its name. Its full explicit form was given in
Refs. 27–30. For the scheme of Eq. (8), we use the spin-unpolarized
PBE-OT functional of the form29

ĒB
PBE−OT[n, n2] = ∫ dr g(n(r),∇n(r), n2(r), μB

(r)), (10)

where g is a function of the density n(r), the density gradient
∇n(r), the on-top pair density n2(r), and the local range-separation
parameter μB

(r). (To avoid confusion, we point out that the
PBE-OT functional of this paper was named the SU-PBE-OT func-
tional in Ref. 29.) The PBE-OT functional has essentially the same
physical content as the PBE-UEG functional with the exception that
it uses the on-top (OT) pair density n2(r) of the wave function ΨB

as an independent variable, instead of that of the UEG, which is
more accurate for strongly correlated systems. In addition, it uses
the total density instead of the spin-resolved densities since the
additional information provided by the spin-resolved densities is
largely already contained in the on-top pair density n2(r).29 Its full
explicit form was given in Refs. 28–30.

The common key ingredient in these basis-set correction
functionals is the local range-separation parameter μB

(r), which
provides a local measure of the incompleteness of the basis set, and
is given by26,30

μB
(r) =

√
π

2
WB
(r), (11)
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where WB
(r) is the on-top value of an effective two-electron interac-

tion representing the Coulomb two-electron interaction in the basis
set B. In an orthonormal orbital basis {ϕp} generated by the basis set
B, WB

(r) is defined by

WB
(r) =

⎧⎪⎪
⎨
⎪⎪⎩

f B
ΨB

loc
(r)/n2,ΨB

loc
(r) if n2,ΨB

loc
(r) ≠ 0,

+∞ otherwise,
(12)

with

f B
ΨB

loc
(r) =

B

∑
pqrstu

ϕp(r)ϕq(r)Vrs
pqΓtu

rs ϕt(r)ϕu(r), (13)

n2,ΨB
loc
(r) =

B

∑
rstu

ϕr(r)ϕs(r)Γtu
rs ϕt(r)ϕu(r), (14)

where the sums run over all the (occupied and virtual) orbitals
generated by the basis set B, Vrs

pq = ⟨pq∣rs⟩ are the two-electron
integrals, and Γtu

rs is the (opposite-spin) two-body reduced density
matrix associated with a localizing wave function ΨB

loc. The only
purpose of the wave function ΨB

loc is to localize the otherwise
nonlocal effective interaction obtained by projecting the Coulomb
two-electron interaction in the basis set B. The local range-
separation parameter μB

(r) is very weakly dependent on this wave
function ΨB

loc [the dependence on ΨB
loc of the numerator and denom-

inator in Eq. (12) largely cancels], and it should be thought of
as essentially depending only on the basis set B. Importantly, in
the CBS limit, the local range-separation parameter diverges, i.e.,
limB→CBS μB

(r) = +∞, independently of ΨB
loc, and in this case, the

form of the PBE-UEG and PBE-OT basis-set correction functionals
ensures that they properly vanish, i.e., limB→CBS ĒB

PBE−UEG[n↑, n↓] = 0
and limB→CBSĒB

PBE−OT[n, n2] = 0.
Even though it is possible to perform the minimizations in

Eqs. (7) and (8) using the PBE-UEG and PBE-OT basis-set correc-
tion functionals,30 in practice, for energy calculations, a non-self-
consistent approximation can safely be used, in which the basis-set
correction functionals are added a posteriori to an approximation
of the FCI energy calculated with the basis set B. Here, as in our
previous work,14 we use the total SHCI energy EB

SHCI in the basis set
B. We then have two basis-set-corrected SHCI energies. First, we
have the SHCI + PBE-UEG energy

EB
SHCI+PBE−UEG = EB

SHCI + ĒB
PBE−UEG[n↑,ΦB

HF
, n
↓,ΦB

HF
], (15)

where the PBE-UEG functional is evaluated at the spin-resolved
densities obtained from the HF single-determinant wave function
ΦB

HF. We calculate the spin densities at the HF level only since the
PBE-UEG functional is weakly dependent on the level at which the
spin densities are calculated. Moreover, we choose also ΨB

loc = ΦB
HF

in Eq. (12) for calculating the local range-separation parameter
μB
(r) that enters into the PBE-UEG functional. Second, we have the

SHCI + PBE-OT energy

EB
SHCI+PBE−OT = EB

SHCI + ĒB
PBE−OT[nΨB

SHCI
, n2,ΨB

SHCI
], (16)

where the PBE-OT functional is evaluated with the density and
on-top pair density of the variational SHCI wave function ΨB

SHCI
available at the end of the SHCI calculation. We use the SHCI wave
function and not the HF single-determinant wave function because
the PBE-OT functional is accurate only if it is evaluated at the on-top
pair density obtained from an accurate multideterminant wave
function. Moreover, we choose also ΨB

loc = ΨB
SHCI for calculating the

local range-separation parameter μB
(r) that enters into the PBE-OT

functional, even though the use of an accurate multideterminant
wave function for ΨB

loc is not really important here. Comparing
the two basis-set corrections, the PBE-UEG basis-set correction
is simpler to compute since it uses the HF single-determinant
wave function, but the PBE-OT basis-set correction which uses the
on-top pair density from the SHCI wave function should be more
accurate.

IV. COMPUTATIONAL SETUP
Our computations employ the eCEPP pseudopotentials of Trail

and Needs40 and their associated aug-cc-pVnZ-eCEPP basis sets
with n = 2, 3, 4, and 5. These are abbreviated as DZ, TZ, QZ, and 5Z,
or generically as nZ, in what follows. The molecular geometries and
the experimental energies are the same as in the previous benchmark
paper of Ref. 15.

We calculate the total energies in each of the four basis sets in
the following three different ways:

1. SHCI only. We first perform HF calculations with the
software PYSCF41 and then perform SHCI calculations with
orbital optimization33 using the ARROW package.42 These results
have previously appeared in Ref. 15.

2. SHCI with the PBE-UEG basis-set correction. The HF wave
function is fed into QUANTUM PACKAGE43 to obtain the basis-
set correction. The amplitude of the dominant determinant
in the SHCI wave function ranges from 0.92 to 0.96 for the
metal atoms and from 0.83 to 0.91 for the oxide molecules.
Therefore, we expect the HF spin densities to be a reasonable
approximation to the SHCI spin densities. The HF on-top pair
density is not accurate, but the on-top pair density obtained
from the UEG that has the HF spin densities is reasonably
accurate.

3. SHCI with the PBE-OT basis-set correction. We perform
SHCI variational calculations for several different values
of the threshold ϵ1 and use the corresponding two-body
reduced density matrices for the basis-set correction using the
QUANTUM PACKAGE.43 As the size of the variational wave function
increases, the on-top pair density decreases, leading to
decreasing magnitudes of the PBE-OT basis-set correction.
We plot the basis-set correction vs EV and use a quadratic
function to extrapolate to the SHCI total energy limit,
EV → ESHCI, which is then taken as the final PBE-OT basis-set
correction for the given system and basis set.

In two of the above three schemes, we also extrapolate the total
energies to the CBS limit. In earlier work by some of the present
authors,15 the SHCI-only energies were extrapolated to the CBS limit
using separate extrapolations for the HF energy and the correlation
energy,44–46
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ECBS
HF = EnZ

HF − a exp(−bn), (17)

ECBS
corr = EnZ

corr − cn−3. (18)

In this paper, the HF energy is still extrapolated in the same way
using n = 3, 4, and 5, but the SHCI-only correlation energy is extrap-
olated using the expression

ECBS
corr = EnZ

corr −
c

n3 + d
(19)

because we find that it gives a far better fit for the pseudopotentials
and associated basis sets used in this study. Since Eq. (18) does not
give a good fit, one would use only the larger basis sets n = 4 and 5
to get a reasonable extrapolation, whereas with Eq. (19) n = 2, 3, 4,
and 5 can be used. [Even using just n = 4 and 5, Eq. (18) gives
extrapolated energies that are too high, as shown in Fig. 4 of the
supplementary material. For the heaviest system studied, CuO, the
improved fit using Eq. (19) and n = 2, 3, 4, and 5 makes the CBS
total energy 6 mHa lower than the fit using Eq. (18) and n = 4 and
5. A detailed comparison of the various fits can be found in the
supplementary material.]

In the SHCI + PBE-OT scheme, we use a single exponential
function

ECBS
SHCI+PBE−OT = EnZ

SHCI+PBE−OT − a exp(−bn) (20)

with n = 3, 4, and 5, since we expect an exponential convergence
of the SHCI + PBE-OT energy with respect to n.47 (In the
supplementary material, we also show the SHCI + PBE-OT energies
extrapolated to the CBS limit using n = 2, 3, and 4.)

Energies from the SHCI + PBE-UEG scheme are not extrap-
olated as the SHCI + PBE-UEG energies are nonmonotonic with
basis size for many of the systems, as shown in Sec. V. Note,
however, that our SHCI + PBE-UEG calculations on the G2 set14

had a monotonic dependence on the basis size, and so we were able
to extrapolate those energies.

V. RESULTS
In this section, we present energies for the seven monoxide

molecules, the eight constituent atoms, and the corresponding ions
using the three schemes described in Sec. IV. The results are shown
for each of the four basis sets DZ, TZ, QZ, and 5Z as well as
for the extrapolated CBS limit. The total energies, first ionization
energies (for the eight atoms), and dissociation energies (for the
seven monoxide molecules) are reported in Table I.

In what follows, we use as reference values the CBS results
obtained from the SHCI + PBE-OT scheme. We think it likely

TABLE I. Total, ionization (for the atoms), and dissociation energies (for the monoxide molecules) obtained from the three schemes in the CBS limit. The SHCI + PBE-OT values
(emphasized in bold) are used as reference values in Sec. V for comparison. Units: Ha.

Total energy Ionization/dissociation energy

System SHCI SHCI + PBE-UEG SHCI + PBE-OT SHCI SHCI + PBE-UEG SHCI + PBE-OT

O −15.8477 −15.8490 −15.8478 0.5000 0.5009 0.5004
Sc −46.4921 −46.4966 −46.4939 0.2409 0.2412 0.2411
Ti −58.0068 −58.0117 −58.0088 0.2508 0.2510 0.2510
V −71.2371 −71.2412 −71.2381 0.2473 0.2475 0.2475
Cr −86.8078 −86.8111 −86.8080 0.2488 0.2489 0.2489
Mn −104.1606 −104.1648 −104.1617 0.2726 0.2732 0.2730
Fe −123.7718 −123.7784 −123.7745 0.2901 0.2905 0.2903
Cu −197.6236 −197.6388 −197.6328 0.2832 0.2836 0.2839

O+ −15.3477 −15.3481 −15.3475 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Sc+ −46.2511 −46.2554 −46.2528 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Ti+ −57.7560 −57.7607 −57.7578 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

V+ −70.9898 −70.9938 −70.9907 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Cr+ −86.5591 −86.5622 −86.5591 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Mn+ −103.8879 −103.8917 −103.8887 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Fe+ −123.4817 −123.4879 −123.4843 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Cu+ −197.3404 −197.3552 −197.3489 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

ScO −62.5983 −62.6040 −62.6002 0.2585 0.2584 0.2585
TiO −74.1103 −74.1168 −74.1128 0.2557 0.2561 0.2562
VO −87.3302 −87.3363 −87.3318 0.2453 0.2461 0.2458
CrO −102.8299 −102.8358 −102.8316 0.1744 0.1758 0.1758
MnO −120.1529 −120.1596 −120.1550 0.1446 0.1458 0.1455
FeO −139.7769 −139.7861 −139.7814 0.1573 0.1587 0.1591
CuO −213.5821 −213.5980 −213.5903 0.1108 0.1102 0.1097
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FIG. 1. Deviations of the total energies from reference (CBS SHCI + PBE-OT) values. Some of the SHCI-only values for the smaller basis sets are off the scale of the
plot.

that this scheme gives the most accurate energies since the SHCI
+ PBE-OT scheme employs a more accurate on-top pair density
than the SHCI + PBE-UEG scheme. In the supplementary material,
the quantum Monte Carlo (QMC) energies for the oxygen atom
also corroborate the selection of SHCI + PBE-OT as the reference.
However, we also acknowledge that this choice of reference values
is not certain. In our earlier work on the G2 set of 55 molecules
(Ref. 14), we employed only the SHCI-only and the SHCI + PBE-
UEG schemes since those molecules are sufficiently weakly corre-
lated. In that study, we found that although for each of the finite basis
sets the SHCI + PBE-UEG energies agreed considerably better with
experiment than the SHCI-only energies, the CBS energies from
SHCI-only gave slightly better agreement than those from SHCI
+ PBE-UEG.

A. Total energies
Figure 1 shows deviations of total energies from the reference

values. Compared to the SHCI-only results, both basis-set correction
schemes significantly reduce the basis incompleteness error. For
each system in a particular basis, the correction from PBE-UEG is
consistently larger in magnitude than from PBE-OT. This makes
the PBE-UEG-corrected values closer to the CBS limit for smaller
basis sets, but for larger basis sets, PBE-UEG tends to overcorrect. In
fact, for many of the systems shown here, the PBE-UEG-corrected
energies for 5Z are higher than for QZ, reversing the trend from DZ
to QZ. Similar nonmonotonicity of the corrected values with basis
size has been observed in previous studies as well.30

We have separately verified the total energy in the CBS limit
by performing QMC calculations on the oxygen atom (see the
supplementary material). The QMC total energy is in good agree-
ment with the CBS SHCI-only and SHCI + PBE-OT energies and

differs considerably from the SHCI + PBE-UEG energy. The energy
difference between the former two schemes may be viewed as an
estimate of the uncertainty in the CBS energies. Table II reports the
mean absolute deviations (MADs) from the reference values for the
different basis sets and methods.

B. Ionization energies
Figure 2 shows the convergence of the first ionization energies

of the eight atoms with respect to basis size. For the metal atoms,
although the ionization energies obtained with the DZ basis sets for
Cr and Cu show large errors, all three schemes are almost converged
to within chemical accuracy at the level of TZ and converged to
far better than chemical accuracy at the level of 5Z. The MADs are
reported in Table III. Most of the MADs are more than an order of
magnitude smaller than those for the total energies because of a large
cancellation of errors between the atomic and ionic energies.

Accurate experimental ionization energies are also available
for these systems. In Fig. 3, we compare the theoretical ionization
energies obtained from the three schemes (i.e., extrapolated energies
from the SHCI-only and SHCI + PBE-OT schemes and the 5Z
energies from the SHCI + PBE-UEG scheme) to experiment. Much
better agreement than chemical accuracy is obtained for all the

TABLE II. Mean absolute deviations of total energies from reference (CBS SHCI
+ PBE-OT) values for different basis sets. Units: mHa.

DZ TZ QZ 5Z CBS

SHCI 217.67 95.04 45.58 26.06 2.47
SHCI + PBE-UEG 52.35 5.63 4.21 3.70 ⋅ ⋅ ⋅

SHCI + PBE-OT 70.75 17.37 2.87 0.51 0.00
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FIG. 2. Deviations of the ionization energies from reference (CBS SHCI + PBE-
OT) values. The shaded area indicates chemical accuracy, i.e., 1 kcal/mol.

TABLE III. Mean absolute deviations of ionization energies from reference (CBS
SHCI + PBE-OT) values for different basis sets. Units: mHa.

DZ TZ QZ 5Z CBS

SHCI 7.23 2.01 0.88 0.50 0.28
SHCI + PBE-UEG 3.50 0.87 0.38 0.18 ⋅ ⋅ ⋅

SHCI + PBE-OT 3.77 0.82 0.30 0.08 0.00

atoms and all three schemes. Remarkably, the largest deviation of
the energies obtained from either of the two correction schemes
and experiment is only 0.01 eV. The MADs from experiment are
10.8, 5.9, and 4.3 meV for SHCI-only, SHCI + PBE-UEG, and

FIG. 3. Comparison of theoretical ionization energies with experiments. The the-
oretical values are obtained from the three schemes: SHCI only (CBS), SHCI
+ PBE-UEG (5Z), and SHCI + PBE-OT (CBS). The shaded area indicates
chemical accuracy, i.e., 1 kcal/mol.

SHCI + PBE-OT, respectively. The high level of agreement of the
SHCI + PBE-OT energies with experiment provides further
support for using SHCI + PBE-OT energies as reference values and
speaks to the accuracy of the experiments as well.

C. Dissociation energies

Figure 4 shows the dissociation energies in the different basis
sets for the three schemes. As expected, the basis incompleteness

FIG. 4. Deviations of the dissociation energies from reference (CBS SHCI + PBE-OT) values. The shaded area indicates chemical accuracy, i.e., 1 kcal/mol. Some of the
SHCI-only values for the smaller basis sets are off the scale of the plot.
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TABLE IV. Mean absolute deviations of dissociation energies from reference (CBS
SHCI + PBE-OT) values for different basis sets. Units: mHa.

DZ TZ QZ 5Z CBS

SHCI 15.52 6.36 2.52 1.51 0.88
SHCI + PBE-UEG 3.24 0.66 0.38 0.21 ⋅ ⋅ ⋅

SHCI + PBE-OT 3.18 0.91 0.43 0.11 0.00

errors in energy differences are around one order of magnitude
smaller than in the individual total energies themselves. For both
basis-set correction schemes, at the level of the TZ basis set, almost
all systems are converged to within chemical accuracy (with the

FIG. 5. Comparison of theoretical dissociation energies with experiments. The
theoretical values obtained from the three schemes—SHCI only (CBS), SHCI
+ PBE-UEG (5Z), and SHCI + PBE-OT (CBS)—are converged to much higher
precision than the experimental uncertainties.

single exception of CuO in the PBE-OT scheme). Table IV reports
the MADs for different basis sets and methods.

In Fig. 5, we take the final dissociation energies obtained
from the three schemes and compare with the experimental
values reported over the years (see Ref. 15 and the references
therein). These experimental values have been corrected for
zero-point energy contributions but not for relativistic effects
since the pseudopotentials we use incorporate scalar-relativistic
effects. Unlike the ionization energies, the experimental dissociation
energies have large uncertainties and differ significantly among
themselves. For all systems studied, the theoretical values from our
three schemes agree with each other to much higher precision than
the differences between the various experimental values.

VI. CONCLUSIONS
In prior work,15 we have shown that the SHCI method can be

used to calculate near exact energies for transition metal atoms, ions,
and oxides in basis sets up to 5Z. There, the SHCI energies were
used as the reference for testing the accuracy of 19 other electronic-
structure methods for each of the basis sets. The CBS energies were
also estimated by extrapolation using the formulas in Eqs. (17) and
(18). In this paper, we have shown that a more accurate extrapo-
lation is possible using Eqs. (17) and (19). More importantly, we
have shown that density-based basis-set corrections can be used to
estimate the basis incompleteness error of a finite basis set and speed
up convergence to the CBS limit. Two different schemes have been
applied, namely, PBE-UEG and PBE-OT, differing in the functional
used in the calculation. Both methods produce ionization and disso-
ciation energies converged to within chemical accuracy of the CBS
limit with only the TZ basis set, which avoids the high cost of going
to larger basis sets using a wave-function method such as SHCI. We
have also compared the ionization and dissociation energies from
the two correction schemes as well as the uncorrected extrapola-
tions to experimental values reported over the years. Remarkably,
for ionization energies, the largest deviation of the experimental
energies from the energies obtained by either of the two correction
schemes is only 0.01 eV. Our computed dissociation energies
are converged to much higher precision than the experimental
uncertainties.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed comparisons of
basis-set extrapolations for SHCI total energies and SHCI + PBE-OT
energies as well as QMC results on the oxygen atom.
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