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ABSTRACT
The present work proposes an approach to obtain a basis-set correction based on density-functional theory (DFT) for the computation
of molecular properties in wave-function theory (WFT). This approach allows one to accelerate the basis-set convergence of any energy
derivative of a non-variational WFT method, generalizing previous works on the DFT-based basis-set correction where either only ground-
state energies could be computed with non-variational wave functions [Loos et al., J. Phys. Chem. Lett. 10, 2931 (2019)] or properties could
be computed as expectation values over variational wave functions [Giner et al., J. Chem. Phys. 155, 044109 (2021)]. This work focuses
on the basis-set correction of dipole moments in coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)], which
is numerically tested on a set of 14 molecules with dipole moments covering two orders of magnitude. As the basis-set correction relies
only on Hartree–Fock densities, its computational cost is marginal with respect to the one of the CCSD(T) calculations. Statistical analysis
of the numerical results shows a clear improvement of the basis convergence of the dipole moment with respect to the usual CCSD(T)
calculations.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087794

I. INTRODUCTION

Quantum chemistry aims to provide theoretical methods to
predict molecular properties starting from the many-body quan-
tum mechanical problem. To solve this problem, a wide range of
methods were developed in the last few decades mainly based on
wave-function theory (WFT) and density-functional theory (DFT).
The purpose of both approaches is to accurately treat correlation
effects or, in other terms, the quantum effects that go beyond a
mean-field description, such as Hartree–Fock (HF). In the context
of WFT, there exists a wide range of methods of increasing compu-
tational cost—ranging from Møller–Plesset perturbation theory1 to
coupled-cluster methods2—which, in principle, systematically con-
verge to the full configuration interaction (FCI) limit, which is the
exact solution within a given basis set. Nevertheless, the accuracy
of the results of a WFT method—even at the FCI level—strongly
depends on the quality of the basis set, mainly because of the
slow convergence of the wave function near the electron–electron

coalescence point.3,4 The combination of the slow basis-set con-
vergence and the strong increase of the computational cost with
both the size of the basis set and the number of electrons makes it
very difficult to obtain well converged WFT calculations on large
systems.

There are mainly two approaches to tackle the basis-set con-
vergence problem of WFT: basis-set extrapolation techniques5,6 and
explicitly correlated F12 methods.7–12 The basis-set extrapolation
techniques rely on a known asymptotic behavior of the correlation
energy with the size of the basis set but requires WFT calculations
with basis sets of increasing sizes, which makes their application
limited to small or medium system size. The F12 methods acceler-
ate the basis-set convergence of the results, thanks to the inclusion
of a correlation factor explicitly depending on electron–electron
distances and restoring Kato’s electron–electron cusp condition.4
Although F12 methods improve indeed the results (typically, energy
differences obtained with a F12 method using a triple-zeta basis
set are as accurate as the ones obtained with the corresponding
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uncorrected WFT method using a quintuple-zeta basis set13), the
F12 methods necessarily induce computational overheads due to the
large auxiliary basis sets required to resolve three- and four-electron
integrals.14

An alternative path has been recently introduced by some of
the present authors in Ref. 15 where a rigorous framework was
proposed to correct for the basis-set incompleteness of WFT using
DFT. A central idea of this work is the fact that the Coulomb
electron–electron interaction projected in an incomplete basis set is
non-divergent and quite similar to the long-range interaction used
in range-separated DFT (RSDFT). A basis-set correction density
functional can then be built from RSDFT short-range correlation
functionals using a local range-separation parameter, which auto-
matically adapts to the basis set used. This results in a relatively
cheap way of correcting the basis-set incompleteness of WFT, which
has the desirable property of leading to an unaltered complete-basis-
set (CBS) limit. Two versions of this theory were proposed: (i) a
non-self-consistent version where the basis-set correction functional
is evaluated with any accurate approximation of the FCI density
and then simply added to an approximation of the FCI energy in
a given basis set;15 and (ii) a recently introduced self-consistent vari-
ant where the energy is minimized in the presence of the basis-set
correction functional and, therefore, allows for the wave function to
be changed by the DFT correction.16 The efficiency of the non-self-
consistent approach for computing the total energies and chemically
relevant energy differences of relatively large magnitudes (such as
ionization potentials,15,17 molecular atomization energies,18–21 or
excitation energies22) has been well established in previous works
on a quite wide range of atomic and molecular systems, including
light to transition-metal elements, and it was numerically shown
that the self-consistent framework does not give any significant
improvement of total energies.16

The main advantage of the self-consistent formulation is
nevertheless to allow for the computation of first-order properties
as expectation values over the minimized wave function, thanks to
the variational property of the theory. In Ref. 16, the present authors
have focused on the dipole moments that are known to exhibit a
slow convergence with respect to the size of the basis set.23–25 It
was shown that the dipole moments computed at the near FCI level
with the self-consistent basis-set correction method are close to the
CBS limit in triple-zeta basis sets, which contrasts with the slow
basis-set convergence of the usual WFT approaches. The drawback
of the self-consistent framework is nonetheless to require a self-
consistent variational WFT calculation, which, therefore, excludes
its application to non-variational approaches, such as coupled-
cluster with singles, doubles, and perturbative triple excitations
[CCSD(T)].

In the present work, we propose to overcome this limitation
and target the computation of first-order molecular properties as
energy derivatives of the non-self-consistent basis-set correction
approach. We apply this strategy to the computation of dipole
moments at the CCSD(T) level and propose a cheap computational
strategy for the basis-set correction, which uses only densities at
the HF level, similarly to what have been done in the context of
atomization energies in Ref. 18.

This paper is organized as follows: In Sec. II, we introduce the
theory of the basis-set correction extended to the computation of
dipole moments. In Sec. III, we provide computational details of our

study on a set of 14 molecules with dipole moments covering two
orders of magnitude. The numerical results are discussed in Sec. IV
and compared for some molecules with the fully self-consistent
formalism of Ref. 16. Detailed results, as well as the molecular
geometries used, are available in the supplementary material.

II. THEORY
A. Dipole moment from the self-consistent
basis-set correction

In this section, we generalize the framework of the basis-set cor-
rection to the presence of a static external electric field. Consider the
Hamiltonian of a N-electron system under an external electric field
ϵ = ϵu of strength ϵ along a direction u,

Ĥ(ϵ) = Ĥ0 − ϵd̂, (1)

where Ĥ0 is the Hamiltonian of the system without the electric
field,

Ĥ0 = T̂ + V̂ne + Ŵee, (2)

with T̂ being the kinetic-energy operator, V̂ne being the
electron–nuclei interaction operator, and Ŵee the electron–electron
interaction operator, and d̂ = d̂ ⋅ u, where d̂ is the total (electron
+ nuclear) dipole-moment operator,

d̂ = −
N

∑
i=1

ri +
Nnuclei

∑
A=1

ZARA, (3)

where ri are the electron coordinates and ZA and RA are the nuclei
charges and coordinates.

In the basis-set correction formalism,15,16,19 the ground-state
energy E0(ϵ) of the Hamiltonian in Eq. (1) is approximated by

EB
0 (ϵ) = min

ΨB
{⟨ΨB ∣Ĥ(ϵ)∣ΨB⟩ + ĒB [nΨB]}, (4)

where the minimization is performed over the set of N-electron
wave functions ΨB expanded on the N-electron Hilbert space
generated by the one-electron basis set B and ĒB [nΨB ] is the basis-
set correction functional evaluated at the density nΨB of ΨB . The
energy functional ĒB [n] (introduced in Ref. 15) compensates for the
restriction on the wave functions ΨB due to the incompleteness of
the basis set B. The restriction coming from the basis set B in Eq. (4)
then applies only to densities nΨB . Roughly speaking, since the den-
sity converges much faster than the wave function with respect to the
basis set, EB

0 (ϵ) is a much better approximation to the exact energy
E0(ϵ) than the corresponding FCI ground-state energy EB

FCI(ϵ) cal-
culated with the same basis set B. Moreover, in the CBS limit,
ĒB [n] vanishes and, thus, EB

0 (ϵ) correctly converges to the exact
energy E0(ϵ).

From the basis-set corrected energy EB
0 (ϵ) in Eq. (4), one can

define the corresponding basis-set corrected dipole moment dB as
the first-order derivative with respect to the electric field,
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dB = − dEB
0 (ϵ)
dϵ

∣
ϵ=0

. (5)

It is important to stress here that dB is different from the FCI dipole
moment dB

FCI with the same basis set B, as the former is taken
as the derivative of EB

0 (ϵ), which contains the basis-set correction
functional ĒB [n]. Similar to the case of the energy, we expect dB to
have a faster basis-set convergence than dB

FCI.
Since EB

0 (ϵ) is stationary with respect to ΨB , the
Hellmann–Feynman theorem applies and gives dB as a simple
expectation value,

dB = ⟨ΨB
0 (ϵ = 0)∣d̂∣ΨB

0 (ϵ = 0)⟩, (6)

where ΨB
0 (ϵ = 0) is the minimizing wave function of the self-

consistent equation in Eq. (4) at ϵ = 0. This was the approach used
in Ref. 16.

Note that the Hellmann–Feynman theorem applies because the
basis set B is independent from the perturbing electric field. By
contrast, if we wanted to calculate the gradient of the energy with
respect to nuclear coordinates, we would have to take into account
the dependence of the atomic basis set B on the nuclei coordinates.
In that case, the Hellmann–Feynman theorem would not apply, and
we would have to consider additional Pulay terms coming from
the dependence of both the wave function ΨB

0 and the basis-set
correction energy ĒB on the nuclei coordinates.

B. Dipole moment from the non-self-consistent
basis-set correction

As initially proposed in Ref. 15 for the case without the electric
field, one can avoid the minimization in Eq. (4) and approximate
the energy EB

0 (ϵ) by approximating the minimizing wave function
ΨB

0 (ϵ) in Eq. (4) by the FCI wave function ΨB
FCI(ϵ) in a given basis

set B. This leads to the following estimation of the ground-state
energy:

EB
0 (ϵ) ≈ EB

FCI(ϵ) + ĒB [nB
FCI(ϵ)], (7)

where nB
FCI(ϵ) is the ground-state FCI density obtained in the

presence of the electric field of strength ϵ. The corresponding
non-self-consistent basis-set corrected dipole moment is thus

dB ≈ dB
FCI + d̄ B , (8)

where

d̄ B = − dĒB [nB
FCI(ϵ)]

dϵ
∣
ϵ=0

(9)

is the non-self-consistent basis-set correction to the dipole moment.
As obtaining both the dipole moment and the density at FCI

level is often computationally prohibitive, we follow Ref. 18 and
approximate the FCI energy by the CCSD(T) energy and the FCI
density by the HF density (in the presence of the electric field),

EB
0 (ϵ) ≈ EB

CCSD(T)(ϵ) + ĒB [nB
HF(ϵ)]. (10)

Within these approximations, the basis-set corrected dipole moment
in Eq. (8) becomes

dB ≈ dB
CCSD(T) + d̄ B , (11)

where dB
CCSD(T) is the dipole moment at the CCSD(T) level, and the

basis-set correction d̄ B is

d̄ B = − dĒB [nB
HF(ϵ)]

dϵ
∣
ϵ=0

. (12)

We approximate the basis-set correction functional ĒB [n]with
the so-called (spin-dependent) PBEUEG energy functional intro-
duced in Ref. 18 where the local range-separation parameter μB (r)
is obtained using the HF wave function in the basis set B as pro-
posed in Refs. 15 and 18. The results obtained with Eq. (11) with the
PBEUEG approximation for ĒB [n] evaluated at the HF density will
be referred to as CCSD(T) + PBEUEG.

In practice, we calculate the CCSD(T) dipole moment and the
basis-set correction to the dipole moment using a finite-difference
approximation for the energy derivatives with respect to the electric
field,

dB
CCSD(T) ≃ −

EB
CCSD(T)(ϵ) − EB

CCSD(T)(−ϵ)
2ϵ

(13)

and

d̄ B ≃ −
ĒB [nB

HF(ϵ)] − ĒB [nB
HF(−ϵ)]

2ϵ
, (14)

using a finite field strength of ϵ = 10−4 a.u., as suggested in Ref. 23.

III. COMPUTATIONAL DETAILS
The computation of the basis-set correction to the dipole

moment d̄ B was performed using the Quantum Package pro-
gram,26 and the CCSD(T) dipole moment was obtained with the
Gaussian program.27 We used the augmented Dunning basis sets
(Refs. 28 and 29) aug-cc-pVXZ (abbreviated as AVXZ in Figs. 1–3
and Tables I–III), where X is the cardinal number of the basis set
X ∈ {D, T, Q, 5}. As no core-valence functions are used, the frozen-
core approximation is used throughout this paper, where the 1s
orbital is kept frozen for the elements from Li to F.

The tests are done on a set of n = 14 molecules among which
there are six open-shell molecules, for which we use restricted open-
shell CCSD(T) [ROCCSD(T)] energies and restricted open-shell HF
(ROHF) densities, and eight closed-shell molecules. Experimental
geometries used for the computations are taken from Ref. 25 for the
entire set, except in the case of BH and FH for which the geometries
are taken from Ref. 23. We also report the results obtained in Ref. 16
for the BH, FH, CH2, and H2O molecules using the self-consistent
formalism [Eq. (6)] at the near-FCI level in order to compare with
the present non-self-consistent formalism.
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TABLE I. HF, CCSD(T), and CCSD(T) + PBEUEG dipole moments in atomic units. For the open-shell systems, we use the
spin-restricted open-shell (RO) version of these methods.

AVDZ AVTZ AVQZ AV5Z CBS

CO

HF −0.101 99 −0.104 99 −0.104 33 −0.104 21
CCSD(T) 0.055 50 0.050 00 0.046 00 0.045 50 0.044 85
CCSD(T) + PBEUEG 0.043 98 0.044 14 0.042 73 0.043 60

BeH

ROHF 0.110 17 0.110 76 0.111 99 0.112 18
ROCCSD(T) 0.095 50 0.091 00 0.090 50 0.090 50 0.090 30
ROCCSD(T) + PBEUEG 0.084 16 0.087 46 0.089 41 0.089 80

BF

HF 0.344 36 0.333 90 0.333 14 0.333 28
CCSD(T) 0.341 00 0.327 00 0.323 00 0.322 00 0.320 81
CCSD(T) + PBEUEG 0.332 87 0.323 51 0.320 82 0.320 68

BH

HF 0.687 96 0.686 49 0.684 94 0.684 96
CCSD(T) 0.529 50 0.545 00 0.547 50 0.548 50 0.549 53
CCSD(T) + PBEUEG 0.541 62 0.550 02 0.549 86 0.549 80

CH

ROHF 0.623 48 0.620 00 0.618 71 0.618 58
ROCCSD(T) 0.541 50 0.549 50 0.551 50 0.552 50 0.553 68
ROCCSD(T) + PBEUEG 0.554 27 0.554 81 0.554 05 0.553 96

NH

ROHF 0.638 50 0.635 05 0.633 81 0.633 84
ROCCSD(T) 0.593 50 0.599 50 0.602 00 0.603 50 0.605 04
ROCCSD(T) + PBEUEG 0.607 92 0.605 19 0.604 64 0.605 06

CH2 (singlet)

HF 0.748 77 0.744 77 0.743 55 0.743 53
CCSD(T) 0.656 00 0.660 00 0.662 00 0.663 50 0.665 10
CCSD(T) + PBEUEG 0.666 66 0.664 55 0.664 20 0.664 78

FH

HF 0.759 76 0.757 51 0.756 34 0.756 17
CCSD(T) 0.703 50 0.704 50 0.707 00 0.707 50 0.708 20
CCSD(T) + PBEUEG 0.713 71 0.709 03 0.709 46 0.709 00

H2O

HF 0.786 71 0.780 39 0.779 56 0.779 56
CCSD(T) 0.727 00 0.724 00 0.726 50 0.728 00 0.729 57
CCSD(T) + PBEUEG 0.738 91 0.729 30 0.729 12 0.729 20

BN

ROHF 1.134 51 1.138 62 1.138 31 1.138 40
ROCCSD(T) 0.762 50 0.775 50 0.784 00 0.786 50 0.789 02
ROCCSD(T) + PBEUEG 0.775 17 0.781 45 0.787 56 0.788 46
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TABLE I. (Continued.)

AVDZ AVTZ AVQZ AV5Z CBS

BO

ROHF 1.178 03 1.185 33 1.185 27 1.185 39
ROCCSD(T) 0.883 00 0.895 50 0.902 50 0.904 50 0.906 47
ROCCSD(T) + PBEUEG 0.894 17 0.901 53 0.906 22 0.906 98

LiH

HF 2.370 55 2.362 35 2.361 53 2.361 29
CCSD(T) 2.325 00 2.310 00 2.308 00 2.308 00 2.308 25
CCSD(T) + PBEUEG 2.325 01 2.309 65 2.307 95 2.308 02

LiF

HF 2.561 11 2.541 03 2.539 49 2.539 05
CCSD(T) 2.504 00 2.483 00 2.482 50 2.482 50 2.482 97
CCSD(T) + PBEUEG 2.509 42 2.485 42 2.483 67 2.483 21

LiN

ROHF 2.903 09 2.903 79 2.903 72 2.903 17
ROCCSD(T) 2.742 00 2.773 00 2.782 50 2.784 50 2.787 18
ROCCSD(T) + PBEUEG 2.752 15 2.777 14 2.784 64 2.785 83

The accuracy of the dipole moments obtained with a given basis
set and a given level of approximation is evaluated with respect to
the CBS limit of the CCSD(T) dipole moments, dCBS

CCSD(T), which are
evaluated as in Ref. 23. In particular, the CBS results are computed
as follows:

dCBS
CCSD(T) = dCBS

HF + dCBS
c , (15)

where dCBS
c is the CBS limit of the correlation contribution to the

CCSD(T) dipole moment that is computed using the following two-
point X−3 extrapolation formula:

TABLE II. Mean error (ME), mean absolute error (MAE), mean absolute relative error (MARE), maximal absolute error (MAX),
and root-mean-square deviation (RMSD) (in atomic units) for the CCSD(T) and CCSD(T) + PBEUEG dipole moments of 14
molecules. See Fig. 3 for the corresponding plots of the normal distributions of errors.

AVDZ AVTZ AVQZ AV5Z

ME

CCSD(T) 0.013 36 0.005 79 0.002 29 0.001 22
CCSD(T) + PBEUEG 0.003 19 0.001 35 0.000 004 −0.000 12

MAE

CCSD(T) 0.016 37 0.005 79 0.002 33 0.001 25
CCSD(T) + PBEUEG 0.010 80 0.002 58 0.000 86 0.000 49

MARE (in %)

CCSD(T) 3.9 1.5 0.5 0.3
CCSD(T) + PBEUEG 1.6 0.6 0.4 0.3

MAX

CCSD(T) 0.045 18 (LiN) 0.014 18 (LiN) 0.005 02 (BN) 0.002 68 (LiN)
CCSD(T) + PBEUEG 0.035 04 (LiN) 0.010 04 (LiN) 0.002 54 (LiN) 0.001 36 (LiN)

RMSD

CCSD(T) 0.014 84 0.004 32 0.001 63 0.000 84
CCSD(T) + PBEUEG 0.014 64 0.003 76 0.001 16 0.000 63
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TABLE III. Dipole moments obtained with near-FCI (CIPSI) and CCSD(T) calculations and with the self-consistent basis-set
correction method (SC CIPSI + PBEUEG) of Ref. 16 and different non-self-consistent basis-set correction methods [CIPSI
+ PBEUEG@CIPSI, CCSD(T) + PBEUEG@CIPSI, and CCSD(T) + PBEUEG]. Estimated CBS values using Eq. (16) with
X = 5 are reported when computations could be done with the aug-cc-pV5Z basis set.

AVDZ AVTZ AVQZ AV5Z CBS

BH

CIPSIa 0.527 82 0.543 34 0.545 63 0.546 91 0.548 23
SC CIPSI + PBEUEGa 0.537 91 0.548 15 0.547 90 0.548 15
CIPSI + PBEUEG@CIPSI 0.541 39 0.548 52 0.547 95 0.548 25
CCSD(T) 0.529 50 0.545 00 0.547 50 0.548 50 0.549 53
CCSD(T) + PBEUEG@CIPSI 0.543 07 0.550 23 0.549 88 0.549 96
CCSD(T) + PBEUEG 0.541 62 0.550 02 0.549 86 0.549 80

CH2 (singlet)

CIPSIa 0.651 20 0.654 46 0.656 43 0.657 80 0.659 26
SC CIPSI + PBEUEGa 0.662 49 0.659 58 0.658 90 ⋅ ⋅ ⋅b
CIPSI + PBEUEG@CIPSI 0.663 82 0.660 29 0.659 52 ⋅ ⋅ ⋅b
CCSD(T) 0.656 00 0.660 00 0.662 00 0.663 50 0.665 10
CCSD(T) + PBEUEG@CIPSI 0.668 74 0.665 56 0.664 48 ⋅ ⋅ ⋅b
CCSD(T) + PBEUEG 0.666 66 0.664 55 0.664 20 0.664 78

FH

CIPSIa 0.702 49 0.704 06 0.706 62 ⋅ ⋅ ⋅b ⋅ ⋅ ⋅b
SC CIPSI + PBEUEGa 0.713 26 0.708 73 ⋅ ⋅ ⋅b ⋅ ⋅ ⋅b
CIPSI + PBEUEG@CIPSI 0.713 29 0.711 88 ⋅ ⋅ ⋅b ⋅ ⋅ ⋅b
CCSD(T) 0.703 50 0.704 50 0.707 00 0.707 50 0.708 20
CCSD(T) + PBEUEG@CIPSI 0.714 25 0.712 09 ⋅ ⋅ ⋅b ⋅ ⋅ ⋅b
CCSD(T) + PBEUEG 0.713 71 0.709 03 0.709 46 0.709 00

H2O

CIPSIa 0.726 10 0.722 94 ⋅ ⋅ ⋅b ⋅ ⋅ ⋅b ⋅ ⋅ ⋅b
SC CIPSI + PBEUEGa 0.738 09 0.728 18 ⋅ ⋅ ⋅b ⋅ ⋅ ⋅b
CIPSI + PBEUEG@CIPSI 0.736 56 0.727 62 ⋅ ⋅ ⋅b ⋅ ⋅ ⋅b
CCSD(T) 0.727 00 0.724 00 0.726 50 0.728 00 0.729 57
CCSD(T) + PBEUEG@CIPSI 0.737 34 0.728 19 0.728 72 ⋅ ⋅ ⋅b
CCSD(T) + PBEUEG 0.738 91 0.729 30 0.729 12 0.729 20
aFrom Ref. 16.
bResults not available due to the computational requirement.

FIG. 1. (a) CCSD(T) and (b) CCSD(T) + PBEUEG errors on the dipole moments of 14 molecules compared to CCSD(T)/CBS reference values. The green area indicates
an error of ±0.001 a.u.
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FIG. 2. (a) CCSD(T) and (b) CCSD(T) + PBEUEG relative errors on the dipole moments of 14 molecules compared to CCSD(T)/CBS reference values. The green area
indicates an error of ±1%.

FIG. 3. (a) CCSD(T) and (b) CCSD(T) + PBEUEG normal distribution of errors on the dipole moments of 14 molecules compared to CCSD(T)/CBS reference values. The
green area indicates an error of ±0.001 a.u.

dCBS
c = dX

c X3 − d(X−1)
c (X − 1)3

X3 − (X − 1)3 , (16)

with

dX
c = dX

CCSD(T) − dX
HF, (17)

where dX
c and dX

HF are the correlation and HF contributions, respec-
tively, to the CCSD(T) dipole moment using the aug-cc-pVXZ basis
set. In the present calculations, we evaluate Eq. (16) at X = 5, and
we estimate the CBS limit of HF dipole moment dCBS

HF in Eq. (15)
simply by using the HF dipole moment in the aug-cc-pV5Z basis
set. For all the systems studied here, the HF dipole moments are
converged with an accuracy better than 0.001 a.u. (as measured by
the difference between the aug-cc-pVQZ and aug-cc-pV5Z dipole
moments).

At a given level of calculation in a basis set B, we report the
error on the dipole moment with respect to the CBS reference
ΔB = dB − dCBS

CCSD(T) and the relative error ΔB
rel = ΔB /dCBS

CCSD(T). To
statistically analyze the results, we also calculate the normal
distribution function of the errors for a given basis set B,

ρ(ΔB ) = 1
ΔB

std

√
2π

exp
⎡⎢⎢⎢⎢⎣
−1

2
(ΔB − Δ̄B

ΔB
std

)
2⎤⎥⎥⎥⎥⎦

, (18)

where Δ̄B = (∑n
i=1ΔB

i )/n is the mean error (ME) and
ΔB

std =
√
∑n

i=1(ΔB
i − Δ̄B )2/(n − 1) is the root-mean-square devi-

ation (RMSD).

IV. RESULTS AND DISCUSSION
In Table I, we report the dipole moments at various levels of

approximations [HF, CCSD(T), and CCSD(T) + PBEUEG] with dif-
ferent basis sets, as well as the CCSD(T)/CBS reference values, for
the set of 14 molecules. Note the wide range of magnitudes of the
dipole moments (from 0.044 85 a.u. for CO to 2.787 18 a.u. for LiN).
The mean error (ME), mean absolute error (MAE), mean abso-
lute relative error (MARE), maximal absolute error (MAX), and
root-mean-square deviation (RMSD) obtained with CCSD(T) and
CCSD(T) + PBEUEG are reported in Table II. The graphical repre-
sentations of these data are provided in Figs. 1 and 2 for the errors
and relative errors and in Fig. 3 for the normal distributions of
errors.
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Analyzing first the results at the CCSD(T) level in Table II,
one can note that, as expected, the ME and MAE systematically
decrease with the size of the basis set. Moreover, as noted in pre-
vious studies,18 not only the average values of the errors but also
the RMSD tends to decrease with the basis-set size. Nevertheless, the
improvement of the results is rather slow as a MAE below 0.001 a.u.
is not reached even with the aug-cc-pV5Z basis set, illustrating the
slow convergence of properties with respect to the basis set at the
CCSD(T) level. Regarding the relative errors in Fig. 2, not surpris-
ingly, the largest errors with respect to the CBS reference come from
the molecules with smallest dipole moments (i.e. CO and BeH).
More quantitatively, an aug-cc-pVQZ basis set is needed to obtain
a MARE smaller than 1%.

Going from CCSD(T) to CCSD(T) + PBEUEG, one observes a
systematic decrease in the MAE, ME, MARE, and RMSD. Focusing
on the MAE, an error below 0.001 a.u. is reached with the aug-cc-
pVQZ basis set, whereas such an accuracy is not even reached at
the CCSD(T) level with the aug-cc-pV5Z basis set. Qualitatively, for
the aug-cc-pVTZ basis set and larger basis sets, the MAEs obtained
with CCSD(T) + PBEUEG with a basis set of cardinal number X are
comparable to the MAEs obtained with CCSD(T) with a basis set of
cardinal number X + 1. Regarding the MARE, an error below 1% is
reached with CCSD(T) + PBEUEG already with the aug-cc-pVTZ
basis set. One nevertheless observes that the effects of the basis-set
correction on the RMSD are very weak. From the plots of Fig. 1, one
notes that even if the basis-set correction systematically improves
the results for the aug-cc-pVTZ basis set, its effect is less impressive
when there is both a large error and a large dipole moment (i.e. for
BN, BO, and LiN).

In order to further demonstrate the validity of the different
approximations leading to the CCSD(T) + PBEUEG method, we
conclude this study by a comparison with the self-consistent basis-
set correction formalism of Ref. 16, as well as different flavors of
non-self-consistent approximations. In Ref. 16, the self-consistent
method referred to as SC CIPSI + PBEUEG was introduced, which
can be considered as the nearly exact theory within our framework,
thanks to the use of near-FCI (CIPSI; see Ref. 26 and references
therein) wave functions. In all the calculations reported below, the
absolute value of the second-order perturbative contribution to the
energy in the CIPSI calculations is below 10−4 a.u., which implies
that the CIPSI energy and density can indeed be considered as
near-FCI quantities. We also consider two different levels of non-
self-consistent approximations: (i) CIPSI + PBEUEG@CIPSI where
the CIPSI energy is corrected with the PBEUEG functional evaluated
at the CIPSI density, and (ii) CCSD(T) + PBEUEG@CIPSI where
the CIPSI energy is approximated by the CCSD(T) energy but the
PBEUEG functional is still evaluated at the CIPSI density. Therefore,
we have a hierarchy of approximations for the basis-set correction
method using the PBEUEG functional: SC CIPSI + PBEUEG as the
exact self-consistent theory, then CIPSI + PBEUEG@CIPSI as the
exact non-self-consistent theory, then CCSD(T) + PBEUEG@CIPSI
where only the WFT energy part is approximated with respect to
CIPSI + PBEUEG@CIPSI, and finally CCSD(T) + PBEUEG where
both the WFT energy and the density are approximated with respect
to CIPSI + PBEUEG@CIPSI.

We report in Table III the results obtained with these differ-
ent levels of theory for the dipole moments of the BH, CH2, FH,
and H2O molecules. The results obtained with the self-consistent

method SC CIPSI + PBEUEG are in close agreement with that
obtained with the different non-self-consistent approximations, the
largest discrepancy being less than 0.006 a.u. for BH in the aug-
cc-pVDZ basis set with CCSD(T) + PBEUEG@CIPSI. Comparing
the two methods at the extremities of our hierarchy of approxima-
tions, one can note that the absolute deviation between CCSD(T)
+ PBEUEG and SC CIPSI + PBEUEG in a given basis set is never
larger than 0.001 a.u. for FH and H2O, and the discrepancy slightly
increases up to 0.006 and 0.003 a.u. in the case of CH2 and BH,
respectively. Nevertheless, as originally reported in Ref. 16 and
apparent from Table III, discrepancies of the same order of mag-
nitude also appear between the uncorrected CIPSI and CCSD(T)
results in the case of the CH2 and BH molecules. This suggests that
the main source of differences between the CCSD(T) + PBEUEG
and SC CIPSI + PBEUEG methods actually comes from the parent
WFT theory. Focusing now specifically on the effect of the den-
sity in the non-self-consistent basis-set correction, one can note
that the use of either a HF or CIPSI density does not signifi-
cantly change the results, as the largest deviation between CCSD(T)
+ PBEUEG@CIPSI and CCSD(T) + PBEUEG are about 0.002 a.u. in
the case of CH2 in the aug-cc-pVDZ basis set. These results illustrate
the validity of the different approximations leading to the CCSD(T)
+ PBEUEG approach and are encouraging, considering that the
latter has a much lower computational cost with respect to the self-
consistent basis-set formalism. Indeed, CCSD(T) + PBEUEG relies
only on a standard CCSD(T) calculation and HF calculations for the
basis-set correction, which is of negligible computational cost with
respect to CCSD(T).

V. CONCLUSION
In the present study, we have proposed an extension of

the recently introduced non-self-consistent basis-set correction of
CCSD(T) ground-state energies18 to the computation of properties
as energy derivatives, focusing here on the dipole moment. The
theory relies on the originally proposed DFT-based basis-set cor-
rection approach,15 which accelerates the basis-set convergence to
the unaltered CBS limit. Numerical tests on a set of 14 molecules
(including both closed and open-shell) with dipole moments span-
ning two orders of magnitude have been carried in order to
obtain a representative study of the performance of the present
approach.

Although this study aims at correcting the basis-set conver-
gence of the CCSD(T) dipole moments, it can be formally gen-
eralized to any wave-function method and any energy derivative
with respect to a static perturbation. In its present form, the
basis-set correction relies only on HF calculations, which makes
the basis-set correction essentially computationally free compared
to the correlated wave-function calculation. This approach is an
alternative to the recently proposed self-consistent basis-set correc-
tion,16 which allows for the computation of first-order properties
through expectation values over an energy-minimized wave func-
tion. In contrast with the self-consistent formalism, the present
approach does not require a variational wave function, which
considerably extends the domain of application of the basis-set
correction.

Regarding now the numerical results, we have shown that the
present approach significantly accelerates the basis-set convergence
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of CCSD(T) dipole moments. Typically, the error obtained in a
basis set of cardinal X with the basis-set correction is comparable
to the error of the uncorrected CCSD(T) calculation with cardinal
number X + 1. We also compared the present non-self-consistent
basis-set correction with the self-consistent formalism of Ref. 16
and showed that the two theories agree within a few milli-atomic
units, illustrating the soundness of the approximations leading to the
non-self-consistent approach.

Considering the generality, the global performance, and the
small computational cost of the present approach, it could be an
alternative to explicitly correlated approaches for calculation of
molecular properties. In the near future, we will extend the method
to higher-order static properties, such as static polarizabilities, and
also to more general dynamic properties, leading, in particular, to
the possibility of accelerating the basis-set convergence of excitation
energies.

SUPPLEMENTARY MATERIAL

The supplementary material contains (i) all the geometries
of the molecules studied here, (ii) a graphical representation of
the convergence of the dipole moment at CCSD(T) and CCSD(T)
+ PBEUEG levels for each system studied, and (iii) the absolute and
relative errors with respect to the estimated CBS and the CCSD(T)
and CCSD(T) + PBEUEG levels.
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