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ABSTRACT

The basis-set correction method based on density-functional theory consists in correcting the energy calculated by a wave-function method
with a given basis set by a density functional. This basis-set correction density functional incorporates the short-range electron correlation
effects missing in the basis set. This results in accelerated basis convergences of ground-state energies to the complete-basis-set limit. In this
work, we extend the basis-set correction method to a linear-response formalism for calculating excited-state energies. We give the general
linear-response equations as well as the more specific equations for configuration-interaction wave functions. As a proof of concept, we
apply this approach to the calculations of excited-state energies in a one-dimensional two-electron model system with harmonic potential
and a Dirac-delta electron—electron interaction. The results obtained with full-configuration-interaction wave functions expanded in a basis
of Hermite functions and a local-density-approximation basis-set correction functional show that the present approach does not help in
accelerating the basis convergence of excitation energies. However, we show that it significantly accelerates basis convergences of excited-state
total energies.
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I. INTRODUCTION using explicitly correlated R12 or F12 methods incorporating in the
wave function a correlation factor reproducing the electron-electron

One of the main limitations of standard electronic-structure

wave-function computational methods is their slow convergence of
ground- and excited-state energies and other properties with respect
to the one-electron basis set (see, e.g., Refs. 1-4). This slow conver-
gence can be traced back to the non-smoothness of the exact eigen-
functions of the Schrédinger Hamiltonian with repulsive Coulomb
electron-electron interaction,” namely the electron-electron cusp
condition.”’

There are two main approaches for dealing with this slow
basis convergence problem. The first approach consists in extrap-
olating the results to the complete-basis-set (CBS) limit by using
increasingly large basis sets.”” This approach is very common for
estimating the CBS limit of the ground-state energy but has also
been used for estimating the CBS limit of excited-state energies and
properties (see, e.g., Refs. 8-11). The second approach consists in

cusp (see, e.g., Refs. 12-15). The vast majority of R12/F12 methods
have been applied to ground-state energy calculations but linear-
response extensions have also been proposed for excitation energies
and dynamic response properties.'* "’

Recently, some of the present authors introduced an alterna-
tive basis-set correction method based on density-functional theory
(DFT).”! It consists in correcting the energy calculated by a wave-
function method (such as configuration interaction or coupled-
cluster) with a given basis set by an adapted basis-set correction
density functional incorporating the short-range electron correla-
tion effects missing in the basis set, resulting in an accelerated
convergence to the CBS limit. This basis-set correction method was
further developed and validated on atomization energies” ** and
dissociation energy curves.”” The method was also extended to cal-
culations of ionization potentials within the GW approach” and to
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calculations of dipole moments.””** It was also proposed to extend
the method to calculations of excitation energies using a straightfor-
ward state-specific approach in which the same basis-set correction
functional is evaluated from the density of each state.”” Even though
the last approach was shown to be able to accelerate the basis con-
vergence of electronic excitation energies of molecular systems, it is
based on the a priori questionable assumption that one can use the
same basis-set correction functional for all states.

In the present work, we extend the basis-set correction method
to a linear-response formalism, providing a more rigorous frame-
work for calculating excitation energies. Moreover, it allows for
calculations of response properties such as dynamic polarizabilities.
As a first proof of concept, we apply this approach to calculations
of excitation energies in a one-dimensional (1D) model system con-
sisting of two electrons in a harmonic potential with a Dirac-delta
two-electron interaction.’’”" We previously used a similar 1D model
system in Ref. 32 to study with some mathematical rigor the basis-
set correction method. The relevance of this 1D model for quantum
chemistry lies in the fact that the Dirac-delta two-electron inter-
action induces a slow basis convergence quite similar to the one
observed with the standard two-electron Coulomb interaction in
three-dimensional (3D) systems.

The paper is organized as follows: In Sec. I1, we formulate the
general linear-response theory for the DFT-based basis-set correc-
tion scheme, and we give explicit expressions for configuration-
interaction wave functions. In Sec. 111, we apply the linear-response
DFT-based basis-set correction theory to the 1D model system and
we discuss the results. Finally, Sec. IV contains our conclusions.
Hartree atomic units are used throughout this work.

Il. LINEAR-RESPONSE DFT-BASED BASIS-SET
CORRECTION

In this section, we derive the general linear-response equations
for the DFT-based basis-set correction approach. We consider a
finite one-electron basis set B c H'(R* x {1,},C) where H' is the
first-order Sobolev space. The corresponding one-electron Hilbert
space spanned by this basis set is denoted by A = span(B) and
the corresponding N-electron Hilbert space is given by the N-fold
antisymmetric tensor product of e, HE = /\N i~

A. General ground-state optimization

We consider a general parameterized wave function |¥(p))
eH® with M complex-valued parameters p = (p1,pa2--.,pum)
€ CM. For example, these parameters could be configuration-
interaction coefficients or orbital-rotation parameters. For conve-
nience, we work with the intermediately normalized wave function
(see, e.g., Ref. 33) given by

NN 705)
YE)= ey W

where |[¥,) = |‘I’(p0)) is the current wave function obtained for

the current parameters p = p°. The current wave function is taken
as normalized to unity, ie., (¥o|¥) = 1. The advantage of this
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intermediate n_ormalization is that the first- and second-order
derivatives of |¥(p)) with respect to pat p = p°,

- 0¥(p) - 0°¥(p))
|‘-I"[> and |\I’1)]> = 78]718])] n, 2)

p=p

p=p’

are orthogonal to |¥), ie., (‘i’1|‘1’0) =0 and <‘i’1,1|‘1’o> =0. This
simplifies the derivation of the equations.

In the DFT-based basis-set correction approach,”’ we intro-
duce the following ground-state energy expression for a N-electron
system with Hamiltonian H:

(¥(p)|H|¥(p))

E® = 5w

+E" [P py > (3)

where E® [p] is the basis-set correction density functional evaluated
at the density of ¥(p),

(¥(p)|p()[¥(p))
(F(p)E(p)) °

Pap)(r) = (4)

where p(r) is the density operator at point r. The self-consistent
basis-set corrected ground-state energy is then”’

Ey = min E° (p). (5)
pe(CM

The role of the density functional E®[p] is to accelerate basis
convergence without altering the CBS limit. The latter point is
guaranteed by imposing that E° [p] vanishes in the CBS limit, i.e.,
limBQCBs EB [p] =0.

In practice, the minimization can be done by iteratively solv-
ing an effective Schrodinger equation,”” or, more generally, using for
example the Newton method in which the current parameters are
iteratively updated using the parameters changes Ap = p — p° found
by solving the linear equations (see, e.g., Ref. 34)

== > (6)

where * designates the complex conjugate and g is the energy
gradient vector such that

OE® -
&= (*p) = (¥1|HerYo), (7)
Opr p=p’
with the effective Hamiltonian
Ay =H+ V" [pw, ], (8)

involving the basis-set correction potential operator

Vol = [P [p)wp(e) dr, ©)
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with ¥° [p](r) = 8E® [p]/8p(r). In Eq. (6), A and B are the energy
Hessian matrices

O’E" (p)
Op1 0py |,y
= (\ijl|ﬁ§ff - 55 |‘i”]) + Ky, (10)

where & = (¥o|H5%|Wo) is the energy of the effective Hamiltonian
for the current wave function ¥y, and

&’E" (p)
B[J = % 0, %
1Py |pepe
= (¥1)|HeWo) + Ly, 11)

involving the basis-set correction kernel contributions

p(r)[¥o)(¥o

Kij= [, flpw])(re) (¥ p()¥)) drdr’, (12)

R*xR*

and
L= [ J I ) (a1 ) de e, (13)

with f° [p](r.t') = 8°E® [p]/6p(r)3p(r).

At the end of the optimization, provided that we have reached
the global energy minimum, the current parameters p° are the
optimal ground-state parameters. To make clear the link with our
previous work,”” we note that the present energy minimization is
equivalent to solving the following effective Schrédinger equation
projected in the basis of the first-order wave-function derivatives
{’\Pl>}1:1,...,M1

(¥1|Her — £ [¥o) = 0. (14)

Since <‘i’1|‘{f0) =0, Eq. (14) is indeed equivalent to having a zero
energy gradient, i.e., gr = (‘PI‘Hfff\‘I’o) =0.

B. General linear-response equations

Starting from the optimal ground state, we now add a
time-dependent perturbation operator V (¢) to the Hamiltonian,

A(t) = A+ V (1), (15)

where V(t) is chosen as a periodic monochromatic electric-dipole
interaction of frequency w,

V(t)=-d-ee™ —d-e e, (16)
where d = — Jeexp(r) dr is the dipole-moment operator, and €* and
€ are the electric-field strengths for the positive and negative fre-
quency terms (taken as different for intermediate derivations but
ultimately we must have €* = €7).

The wave function |‘i’(p(t) )) will now depend on time through
the parameters p(t) = p° + Ap(t) where p° are the optimal ground-
state parameters and Ap(t) are the time variations of the parameters,
which can be written as

Ap(t) _ p+ e*iwr + pf e+iwf’ (17)
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where p* € CM and p~ ¢ CM are the Fourier components. The
ground-state energy expression in Eq. (3) is replaced by the
quasi-energy expression’” "’

e 1 TG - 5 [0)
Tieespnp >—Tf0{ (#(p(t) [ (p(1)

where T =27/w is the period. Note that, in the definition of the
quasi-energy in Eq. (18), the same basis-set correction density func-
tional E®[p] used for the ground-state calculation is employed,
which is known as the adiabatic approximation. This approxima-
tion is almost always used in time-dependent DFT calculations of
excitation energies (see, e.g., Refs. 41 and 42). Due to this approxi-
mation, the basis-set correction contribution to the quasi-energy is
a local functional of time. Overcoming this approximation would
require the complicated task of developing a quasi-energy basis-set
correction contribution having the form of a nonlocal functional of
time, i.e., depending on the entire time history. We do no attempt to
undertake such a task in the present work. The optimal quasi-energy
Q5 (e*,€7) is a stationary value of Q° (¢*,€e7;p*,p~) with respect
to variations of the parameters p* and p~, which we write as
Q (e )e stat  Q°(e e spTp ), (19)
(p*p7)ec

where “stat” refers to the set of stationary values. In the zero
electric-field limit (¢* = €~ = 0), vanishing parameters p* =p~ =0
are optimal and the corresponding optimal quasi-energy reduces to
the ground-state energy, i.e., Q5 (0,0) = Ej .

The optimal quasi-energy allows one to define the dynamic
dipole polarizability tensor as

>’ (e',€)

De; D€’ & ’ (20)

aij(w) = -
=0
where i and j refer to 3D Cartesian components. Calculating this
second-order derivative using the chain rule via the optimal para-
meters p* and p~ (which implicitly depend on € and €~) leads to
(see, e.g., Refs. 39 and 40)
e )
V; A(w 2 \'s
o) =] al (1)

V; Y A(-0)” Vi

where A(w) and E are the quasi-energy Hessian matrices

82QB (€+’€7;P+)Pf)

Ary(w) = = = A - Sy, (22)
opi *opf p*=0
=0
and
28 (ot ooyt
By = 7Q (€+l€ ’R P) =By, (23)
Op1 " Op; p*=0
=0

where Ay and Bjy are given in Egs. (10) and (11), and Siy is the
overlap matrix of the first-order wave-function derivatives

Sty = (W19)). (24)
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Equation (21) also involves the perturbed energy gradient vector

>’Q (e e5p",p7)

Vir=
d et opr

= —(Wild)|¥o), (29

p*=0

e£=0

corresponding to transition dipole-moment matrix elements.
Finally, the poles in w of the dynamic dipole polarizability

a; j(w) provide M positive excitation energies {wj, } (and M oppo-

site deexcitation energies), which can be found from the following

generalized eigenvalue equation (see, e.g., Ref. 34):

A B X S 0 X
=i "1 (26)
B* AJ\Y, 0 -SJ\Y,

where (X,,Y,) are eigenvectors. The obtained excitation ener-
gies {w), } include the basis-set correction through the potential
% [p](r) in Eq. (9) and kernel f ® [p](r,r") in Eqs. (12) and (13), and
they may be expected to converge faster to their CBS limit, provided
good enough approximations are used for the basis-set correction
functional used for #° [p](r) and f® [p](r, ). Obviously, the corre-
sponding basis-set corrected total energy of the nth excited state is
given by

Es =E5 +wh (27)

and could also be expected to converge faster to its CBS limit, if the
basis-set correction functional is good enough.

C. Linear-response equations for
configuration-interaction wave functions

We now give the more specific form of the linear-response
equations for configuration-interaction (CI) wave functions. Given
a set of M orthonormal configurations {|®r) }, the CI wave function
is parameterized as

[¥(p)) = 121 pr|®1). (28)

Of course, due to the normalization freedom, there is one
redundant parameter, which can be eliminated for example by
keeping fixed the coefficient of the leading configuration. The
ground-state parameters are assumed to be real valued and are
denoted by p? = ¢1, so that the ground-state wave function is |¥o)
= Y™ ¢|®;). From Eq. (2), the first-order and second-order deriva-
tives of the intermediately normalized wave function are found
to be

|‘i’1> =|®;) - ¢1|¥o), (29)
and
|‘i’1,]> = 2c1¢7|¥o) — ¢f|®1) — c1|Dy). (30)

In a spin-restricted formalism with a set of real-valued orthonor-
mal orbitals {¢;} c £°, the linear-response matrices in Eq. (26) now
become

Apy = (O1|Heir - €6 |O7) + K1y, (31)
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Bry = K1y, (32)
S[,] = 51,] — CICy, (33)

where the kernel contribution takes the form

K=Y, Ayf,jAy;(Jffj,k,l’ (34)
ikl

with 4,j,k, ] referring to spatial orbitals. In Eq. (34), we have
introduced

A)’z{j = yz{j —CrYijs (35)

where y,; and v ;j are the ground-state and transition density
matrices, respectively,

M M
y,] = \Po‘E,]P}’o Z Z crcy (DI‘E,]|(I)]) (36)
I=1 J=1
M
Vij = (@1|Eij[¥o) = 3 ¢ (Dl B j| @), 37)
J=1

where E;j = &TT& it + &Tl& ji is the spin-summed one-electron
den51ty matrix operator in second quantization. Finally, in Eq. (34),
12 Jkl are the matrix elements of the basis-set correction kernel

FE[pw,](x,x") over the spatial orbitals

Faw= [, F o) )e0e; (ou)o(x) drar'. 68)

lll. ONE-DIMENSIONAL MODEL SYSTEM
A. Description of the model and exact solutions

We consider the 1D two-electron Hooke-type atom studied
in Refs. 30-32. We work first in the infinite-dimensional spin-
free one-electron Hilbert space f=L*(R,C) and the associated
non-antisymmetrized tensor-product two-electron Hilbert space
‘H = £ ® f. The Hamiltonian is

. 10> 18 1 5, 1 5,
H=-—-—5 - ——5 + —wyx] + —wox; + 6(x1 — x2), 39
zax% 28)(1% 2 041 202 (l 2) ( )

involving a harmonic external potential of curvature g (which will
be chosen to 1 throughout this study) and a Dirac-delta two-electron
interaction. The latter two-electron interaction generates in 1D the
same s-wave electron—-electron cusp as the Coulomb interaction does
in 3D, and it is thus an appropriate model to study the basis conver-
gence.”” This 1D two-electron Hooke-type atom can be considered
as the 1D analog of the well-known 3D two-electron Hooke atom
(see, e.g., Refs. 43 and 44).

Expressed with the center-of-mass (cm) coordinate X = (x;
+x2)/2 and the relative (rel) coordinate x1, = x1 — x3, the Hamilto-
nian is separable’” and its eigenvalues are

Enm=E" + E;f,l forneN and me N, (40)
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where ES™ = wo(n + 1/2) is the center-of-mass contribution and E&
is the relative contribution,

Erel _ {wo(vf" + 1/2)

wo(m+1/2)

for m even,

41
for m odd, (1)

with the real numbers v;, being the solutions of the equation“J 45

_¥m oy L
2\/2w0r(27f2) =-1, (42)
r(-%)

where I' is the gamma function. The associated eigenfunctions are

o (X, x12) = Y™ (X) v (x12), (43)

where the center-of-mass eigenfunctions are y5™ (X) = f2(X) and
the relative eigenfunctions are

re ¢mDy,, (+/wolx12])
l/’ml(xlz) = w2
m (x12)

where D,,, is the parabolic cylinder function*® and ¢, is a normal-
ization constant. Here, f,° designates the Hermite functions (i.e.,
quantum harmonic-oscillator eigenfunctions) for the frequency wp
such that

for m even,

44
for m odd, (44)

16

w(x) = N,‘:’“Hn(\/wox)efw”xz/z, (45)

where H, are the Hermite polynomials, N = (2"n!)™"/?(w /m)"/*
is the normalization factor. As announced, for even m, the relative
eigenfunctions have the familiar s-wave cusp condition: e (x12)
=y (0)[1 + (1/2)]x12] + O(x3,)] (see Ref. 32).

We will only consider eigenstates of even-parity symmetry
[i.e., invariant under the transformation (x1,x2) = (—x1,—x2)] and
singlet symmetry (i.e., invariant under the exchange x; <> x3), cor-
responding to the eigenstates with both even quantum numbers #n
and m. The exact total energies of the first 5 of these eigenstates, as
well as the corresponding excitation energies, are given in Table I for
wo = 1.

B. Full-configuration-interaction calculation
in a basis set
We consider finite basis sets of Hermite (or Hermite—Gauss)

functions

B= {fﬁo}n:l,...,nmaﬂ (46)

TABLE |. Exact total energies of the first five eigenstates of even-parity and singlet
symmetries for the 1D two-electron Hooke-type atom with wy = 1, and corresponding
excitation energies. All energies are in hartree.

State (n,m) Total energy Enm Excitation energy Eym — Eoo
(0,0) 1.306 746

(0,2) 3.187051 1.880 305

(2,0) 3.306 746 2.000 000

(0,4) 5.144734 3.837988

2,2) 5.187051 3.880305
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with a fixed parameter wo =1 and a variable maximal quantum
number #imax determining the basis size. The one-electron and
two-electron Hilbert spaces corresponding to this basis set are
R = span(B) and H® = ° ® #°.

For several values of #imax, we first perform a Hartree-Fock
(HF) calculation to obtain the set of orthonormal HF orbitals {¢,},
and we then perform a full-configuration-interaction (FCI) calcu-
lation for the states of even-parity symmetry. The parameterized
FCI wave function is thus [Wrci(p)) = S, p1|®;) where [®;) = |¢r,)
® |¢r, ), and the orbitals ¢, and ¢;, are restricted to be of the same
parity symmetry. In Fig. 1, we report the FCI ground-state energy
Eorct = (‘I’O,FCI|H |Wo,ecr), where Worcr is the FCI ground-state wave
function, as a function of the basis size #imax. As expected, the FCI
ground-state energy slowly converges toward the exact ground-state
energy as Mmax increases. The convergence rate is compatible with
the theoretical convergence rate of 1/ n},{azx determined in Ref. 32.

We construct a local-density approximation (LDA) for the
basis-set correction functional E” [p] such that

Eoale) = [ p(0)e” (p(x)) dr, (47)

where the energy per particle €° (p) is defined in exactly the same
way as in Ref. 32, i.e., as the complementary multideterminant cor-
relation energy per particle of a two-electron finite uniform electron
gas with electron-electron interaction projected in the basis set
B. For convenience, we fit the numerically calculated energy per
particle €° (p) to a rational fraction such that

4 B i
Yiodi p

-B
N 48
€ (P) 1+Zz;:1b?p] ( )

where the values of the coefficients a? and blj for each basis size #max
are given in the supplementary material.

We perform a ground-state FCI calculation including self-
consistently the basis-set correction LDA functional according to

1.38 v
X Exact e
FCl - Meeer
1.37 : FCI+LDA
H SC-FCI+LDA —&—
1.36

Ground-state energy (hartree)

0 10 20 30 40 50 60
Basis size np,,,

FIG. 1. Ground-state energy of the 1D two-electron Hooke-type atom with wy = 1

calculated by the standard FCI method, the non-self-consistent FCI + LDA and

self-consistent SC-FCI + LDA basis-set corrected methods as a function of the
basis size Nmax.
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Eq. (5). The required LDA basis-set correction potential is obtained
by straightforward differentiation of Eq. (47),

ipalp](r) = &° (p(r)) + p(r) déTEP) . (49)

p=p(r)

The resulting energy, labeled SC-FCI + LDA, is reported as a func-
tion of the basis size nmax in Fig. 1. We see that the basis-set
correction LDA functional is very effective in reducing the basis-set
incompleteness error, resulting in a fast convergence of the SC-FCI
+ LDA ground-state energy toward the exact ground-state energy.
For comparison, we also show in Fig. 1 the non-self-consistent
approximation,”‘m labeled FCI + LDA,

Eorcrsipa = Eorcr + Elpa[pwore ) (50)

On the scale of the plot, it is superimposed with the SC-FCI + LDA
energy, showing that the non-self-consistent approximation is an
excellent approximation for calculating the ground-state energy of

1.905

Exact
State (0,2) FCl -3
1.900 } FCI+LDA
7 LR-FCI+LDA (K=0)
£ LR-FCI+LDA —=—
S 185}
3 *
>
g 1890}
o
c
S
T 1885 |
2 <
1.880
i — A AT A W
1.875 L=
0 10 20 30 40 50 60
Basis size n,,
3.870 .
| e
i State(04) . FCI - 6eree
3865 ©4) FCI+LDA
0 LR-FCI+LDA (K=0)
L 3.860 | LR-FCI+LDA —=— |
g :
< 3855}
> H
> i \
8 3.850 |
° i
S 3s8as | \/*—a'\_\.\‘
5
'S 3.840 |
w :
3835 [ b s
- S T "SI
T —
3.830
0 10 20 30 40 50 60

Basis size np,,,

Excitation energy (hartree)

Excitation energy (hartree)
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the present system. The same trends have been observed in atomic
and molecular systems.”’

We then perform linear-response calculations on-top of the
ground-state SC-FCI + LDA calculations according to Eq. (26).
The required LDA basis-set correction kernel is obtained by
differentiation of Eq. (49),

-8B 2-B

Foonlpl(er) = [z EOF e ®) ]

P p=p(o) dp p=p(r)

X 6(r—rl). (51)

The resulting linear-response basis-set corrected excitation energies,
labeled LR-FCI + LDA, are reported in Fig. 2 as a function of the
basis set nmax for the four excited states considered in Table I and
compared to the excitation energies obtained by standard FCI. The
first thing to note is that the FCI excitation energies have a much
faster basis convergence than the FCI ground-state energy. This is
somehow expected since the same electron-electron cusp condition
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FIG. 2. Excitation energies of the states (0,2), (2,0), (0,4), and (2,2) of the 1D two-electron Hooke-type atom with wy = 1 calculated by the standard FCI method and the
LR-FCI + LDA basis-set corrected method as a function of the basis size nmax. For comparison, excitation energies obtained with a zero basis-set correction kernel [LR-FCI
+ LDA (K = 0)] and with a non-self-consistent state-specific approach (FCI + LDA) are also shown.
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applies for both the ground state and the considered excited states,
and therefore the short-range correlation effects normally respon-
sible for the slow basis convergence should partially cancel out in
the excitation energies. Accelerating the basis convergence of exci-
tation energies is thus a more subtle task than accelerating the basis
convergence of ground-state energies. In fact, LR-FCI + LDA does
not provide any improvement over standard FCI but instead mostly
deteriorates the basis convergence of excitation energies. We may
attribute these disappointing results to the limited accuracy of the
LDA basis-set correction potential and kernel.

In Fig. 2, we also show excitation energies obtained with a basis-
set correction kernel set to zero, such that

B B
Ay = (O1|Hege — Eo | D)), (52)
and
Brj =~ 0. (53)
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This approximation is labeled LR-FCI + LDA (K = 0) in the fig-
ures of the present paper. It is somewhat consoling to see that
the LDA kernel does nevertheless improve the excitation energies,
albeit sometimes by a small amount. Finally, Fig. 2 also reports
the excitation energies obtained by the non-self-consistent state-
specific approach of Ref. 29, labeled FCI + LDA. In this approach,
the excited-state energy of the nth excited state is estimated as

Enrcisipa = Enrcr + Eipa [P¥,rar s (54)

where E,rc1 = (‘YM:CI\H |¥,rcr) is the FCI total energy of the nth
excited state with wave function W, rcr. The excitation energy is
then given by E,rci+ipa — Eorci+ipa. Globally, the state-specific
FCI + LDA approach gives excitation energies quite similar to the
LR-FCI + LDA method, except for the state (0,4) where FCI + LDA
gives clearly excitation energies that more rapidly converge with the
basis size. Since the state-specific FCI + LDA approach only involves
the energy density functional Efp, [p] and not its derivatives, it may
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FIG. 3. Excited-state total energies of the states (0,2), (2,0), (0,4), and (2,2) of the 1D two-electron Hooke-type atom with wy = 1 calculated by the standard FCI method and
the LR-FCI + LDA basis-set corrected method as a function of the basis size nmax. For comparison, excited-state total energies obtained with a zero basis-set correction
kernel [LR-FCI + LDA (K = 0)] and with a non-self-consistent state-specific approach (FCI + LDA) are also shown.
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indicate that LDA is more accurate for energy than for the potential
and kernel.

We discuss now the total excited-state energies reported in
Fig. 3 as a function of the basis set #1max for the four excited states
considered. Here, we observe that the FCI excited-state energies
exhibit a similar convergence with respect to #1max as the FCI ground-
state energy. This is expected since, as mentioned before, the same
electron-electron cusp condition applies for both the ground state
and the considered excited states. In comparison to the case of the
excitation energies, there is no partial cancellation of short-range
electron correlation effects, and it is thus an easier task to acceler-
ate the basis convergence of total excited-state energies. Globally,
the LR-FCI + LDA excited-state energies [Eq. (27)] tend to have
less basis-set incompleteness error than the standard FCI excited-
state energies and converge faster with nmax to the exact energies.
However, the performance of basis correction is not uniform over
all the states considered. For the state (0,2), the basis-set correc-
tion is very effective in reducing the error and accelerating the basis
convergence. For the states (2,0) and (2,2), the basis-set correction
again effectively reduces the error but does not seem to significantly
change the convergence rate for large nmax. For the state (0,4), the
basis-set correction only reduces the error for small n1max but does
not improve the standard FCI energy for nmax 2 30.

Comparison with the total excited-state energies obtained with
a zero basis-set correction kernel [LR-FCI + LDA (K = 0)] shows
again that the LDA kernel improves the basis convergence, even
though the effect is small for some of the states. The state-specific
FCI + LDA approach gives total excited-state energies very similar
to the LR-FCI + LDA ones, except again for the state (0,4) where FCI
+ LDA gives total excited-state energies that rapidly converge with
basis size.

As a final comment, we note that the FCI total energies are
of course systematically higher than the exact total energies for the
ground and excited states, which makes possible a partial compensa-
tion of errors in the FCI excitation energies. By contrast, the basis-set
corrected total energies converge to the exact total energies from
below for the ground state and from above for the excited states,
and thus the basis-set corrected excitation energies do not enjoy any
compensation of errors.

IV. CONCLUSIONS

In this work, we have extended the DFT-based basis-set cor-
rection method to the linear-response formalism, allowing one to
calculate excited-state energies. We have given the general linear-
response equations as well as the more specific equations for
configuration-interaction wave functions. As a proof of concept, we
have applied this approach to the calculations of excited-state ener-
gies in 1D two-electron model system with harmonic potential and a
Dirac-delta electron-electron interaction. The results obtained with
FCI wave functions expanded in a basis of Hermite functions and
a LDA basis-set correction functional within the adiabatic approx-
imation show that the present linear-response basis-set correction
method unfortunately does not help in accelerating the basis conver-
gence of excitation energies. However, it does significantly accelerate
the basis convergence of excited-state total energies.

These mixed results should now be checked on real 3D molec-
ular systems. Possibly, for these systems, an important ingredient

ARTICLE scitation.org/journalljcp

to add to the basis-set correction functional will be the on-top pair
density. The fact that the simple non-self-consistent state-specific
basis-set correction approach was found in Ref. 29 to help acceler-
ate the convergence of excitation energies in molecular systems gives
us hope that the present linear-response basis-set correction method
could be useful as well for these systems.

SUPPLEMENTARY MATERIAL

The supplementary material contains the coefficients of the
LDA basis-set correction energy per particle in Eq. (48) for different
basis sizes #max.
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