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ABSTRACT
We re-examine the recently introduced basis-set correction theory based on density-functional theory, which consists of correcting the basis-
set incompleteness error of wave-function methods using a density functional. We use a one-dimensional model Hamiltonian with delta-
potential interactions, which has the advantage of making easier to perform a more systematic analysis than for three-dimensional Coulombic
systems while keeping the essence of the slow basis convergence problem of wave-function methods. We provide some mathematical details
about the theory and propose a new variant of basis-set correction, which has the advantage of being suited to the development of an adapted
local-density approximation. We show, indeed, how to develop a local-density approximation for the basis-set correction functional, which
is automatically adapted to the basis set employed, without resorting to range-separated density-functional theory as in previous studies,
but using instead a finite uniform electron gas whose electron–electron interaction is projected on the basis set. The work puts the basis-set
correction theory on firmer ground and provides an interesting strategy for the improvement of this approach.
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I. INTRODUCTION

In electronic-structure theory of atoms, molecules, or solids,
one of the main limitations of standard correlated wave-function
computational methods for solving the Schrödinger equation is the
slow convergence of the energy and other properties with respect to
the size of the one-electron basis set employed (see, e.g., Refs. 1–4).
This slow basis convergence originates from the singular behavior of
the repulsive Coulomb electron–electron interaction at small inter-
electronic distances, which creates a depletion in the wave function
with a characteristic derivative discontinuity at electron–electron
coalescence—the infamous electron–electron cusp.5,6

The two main approaches for dealing with this problem are
(i) extrapolation to the complete-basis-set limit by using increas-
ingly large basis sets1,2 and (ii) explicitly correlated methods that
incorporate in the wave function a correlation factor reproduc-
ing the electron–electron cusp (see, e.g., Ref. 7). Recently, some of

the present authors introduced an alternative basis-set correction
scheme based on density-functional theory (DFT).8 This latter
scheme consists of correcting the energy calculated by a wave-
function method with a finite basis set by a density functional
incorporating the short-range electron correlation effects missing in
the basis set. This basis-set correction scheme was further developed
and tested in Refs. 9–15, demonstrating that it successfully accel-
erates the basis convergence of wave-function methods for various
properties and systems.

The advantages of the basis-set correction scheme are its con-
ceptual simplicity and computational efficiency. In practice, how-
ever, the limpidity of this approach is somewhat diminished by
the fact that in all previously cited studies, the basis-set correc-
tion functional was approximated by short-range correlation func-
tionals borrowed from range-separated DFT,16–20 relying on an
approximate mapping between the basis-set correction theory and
range-separated DFT.
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In the present work, we re-examine more closely the basis-set
correction theory. For this, we use a one-dimensional (1D) model
Hamiltonian with delta-potential interactions,21–24 which has the
advantage of making easier to perform a more systematic analysis
than for three-dimensional (3D) Coulombic systems, while keeping
the essence of the slow basis convergence problem of wave-function
methods. After introducing the 1D model and discussing its rele-
vance in Sec. II, we present the basis-set correction theory in some
mathematical details in Sec. III. In particular, we introduce a new
variant of basis-set correction, which has the advantage of being
suited for the development of an adapted local-density approxi-
mation (LDA). In Sec. IV, we show, indeed, how to develop a
LDA for the basis-set correction functional, which is automatically
adapted to the basis set employed without resorting to range-
separated DFT but using instead a finite uniform electron gas (UEG)
whose electron–electron interaction is projected on the basis set.
Section IV C contains our conclusion and outlook. Hartree atomic
units (a.u.) are used throughout this work.

II. ONE-DIMENSIONAL MODEL SYSTEM
A. Description of the model

We consider N = 2 electrons in a 1D He-like atom with delta-
potential interactions described by the Hamiltonian21–24

H = T +Wee + Vne, (1)

where

T = −
1
2

N

∑
i=1

∂2

∂x2
i

, Wee = δ(x1 − x2), Vne = −Z
N

∑
i=1
δ(xi) (2)

are the kinetic-energy operator, the Dirac-delta electron–electron
interaction, and the Dirac-delta nucleus-electron potential with
nuclear charge Z = 2, respectively. Since we will be only interested
in the spin-singlet ground state, we can ignore spin and antisymme-
try, and thus work on the one-electron Hilbert space h = L2

(R,C)
and the two-electron (non-antisymmetrized) tensor-product Hilbert
space H = h⊗ h. The ground-state energy can be expressed as

E0 = min
Ψ∈W
⟨Ψ, HΨ⟩, (3)

where W is the set of all admissible wave functions,

W = {Ψ ∈ H ∣ Ψ ∈ H1
(R2,C), ⟨Ψ,Ψ⟩ = 1}, (4)

where H1
(R2,C) = { f ∈ L2

(R2,C) ∣ ∂i f ∈ L2
(R2,C), i = 1, 2} is the

first-order Sobolev space and ⟨, ⟩ designates the L2 inner product.
The ground state of this 1D He-like atom with delta-potential

interactions can be considered as a model for the ground state of the
real 3D He atom. Indeed, it can be shown that the ground state of
a generalization to arbitrary dimension D of the electronic Hamil-
tonian of the He atom with Coulomb-potential interactions exactly
reduces for D = 1, after appropriate scaling of the energies and dis-
tances, to the ground state of the Hamiltonian in Eq. (1).23,25–28 Our
main interest in this model is that it gives an electron–electron cusp
(or derivative discontinuity) condition identical to the familiar 3D
one,5,6 i.e., for small interelectronic distances x12 = x1 − x2, the exact

ground-state wave function behaves as

Ψ0(x1, x2) = Ψ0(x1, x1)(1 +
1
2
∣x12∣ +O(x2

12)). (5)

When using a finite one-electron basis set, we thus expect a slow
convergence with the basis size very similar to the slow con-
vergence observed in 3D quantum systems with the Coulomb
electron–electron interaction. This is why we prefer this model to
other 1D quantum systems (see, e.g., Refs. 29 and 30).

Another neat fact about the present model is that it can be
solved analytically at the Hartree–Fock (HF) level.31 The total HF
ground-state energy is

EHF = −Z2
+

Z
2
−

1
12
= −3.083 333 . . . a.u. (6)

and the HF (doubly) occupied spatial orbital is

∀x ∈ R, ϕ1(x) = 2β
√
γ

e−β∣x∣

1 − γ e−2β∣x∣ , (7)

with β = Z − 1/2 = 3/2 and γ = 1/(4Z − 1) = 1/7. The exact ground-
state energy cannot be calculated analytically but has been accurately
estimated numerically21,24 to be E0 = −3.155 390 a.u.

B. Full-configuration interaction in a basis set
We now consider full-configuration-interaction (FCI) cal-

culations in a finite one-electron basis set B ⊂ H1
(R,C). To

have a systematically improvable basis set, we use Hermite (or
Hermite–Gaussian) basis functions,

∀x ∈ R, f αn(x) = Nα
n Hn(

√
2αx) e−αx2

, (8)

where n is a natural number, Hn are the Hermite polynomials,
Nα

n = (2nn!)−1/2
(2α/π)1/4 is the normalization factor, and α > 0 is

a real constant. It is well known that the set { f αn}n=0,...,nmax converges
to a complete orthonormal basis of L2

(R,C) in the limit nmax →∞

for any fixed exponent α. We deliberately use the same exponent in
all basis functions, namely, α = 11.5, instead of multiple exponents
in order to avoid optimizing them. Except for that, this basis set is
quite similar to the Gaussian-type-orbital basis sets widely used in
quantum chemistry. Since we are not interested in the convergence
of the HF energy with this basis set (which is slow, see Subsection 1
of Appendix) but only in the convergence of the FCI correlation
energy, we add the exact occupied HF orbital ϕ1 given in Eq. (7) to
the basis set. Our final basis set is thus

B = {ϕ1} ∪ { f αn}n=0,...,nmax
≡ {χμ}μ=1,...,M (9)

and contains M = nmax + 2 basis functions: χ1 = ϕ1, χ2 = f α0 , . . ., χM
= f αnmax .

We introduce now hB
= span(B) as the M-dimensional one-

electron Hilbert space spanned by this basis set B and HB
= hB
⊗ hB

the corresponding two-electron Hilbert space of dimension M2. The
FCI ground-state energy for this basis set B is

EB
FCI = min

Ψ∈WB
⟨Ψ, HΨ⟩, (10)
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where WB is the set of normalized wave functions restricted to HB,

WB
= {Ψ ∈ HB

∣ ⟨Ψ,Ψ⟩ = 1}. (11)

In practice, we proceed as follows: For each basis size nmax,
we first perform a HF calculation.3,32 The nucleus–electron inte-
grals are just ⟨χμ, vneχν⟩ = −Zχμ(0)χν(0), and the kinetic inte-
grals ⟨χμ, tχν⟩ = (1/2)∫Rχ

′
μ(x)χ′ν(x)dx and the two-electron inte-

grals ⟨χμχν, Weeχλχσ⟩ = ∫Rχμ(x)χν(x)χλ(x)χσ(x)dx are calculated by
Romberg numerical integration.33 We then use the obtained HF
orbitals {ϕi}i=1,...,M to expand the FCI ground-state wave function
as

ΨB
FCI(x1, x2) =

M

∑
i=1

M

∑
i=1

ci,jϕi(x1)ϕj(x2). (12)

The FCI coefficients ci,j and the associated FCI ground-state energy
EB

FCI are found by diagonalization of the Hamiltonian. Parity
inversion symmetry is exploited in all our calculations.

In Fig. 1, we report the FCI ground-state energy EB
FCI as a

function of the basis size nmax. We observe a quite slow conver-
gence of EB

FCI with nmax toward the exact ground-state energy E0. A
numerical fit from nmax = 50 and 70 gives the following power-law
convergence:

EB
FCI ∼

nmax→∞
E0 +

A
nb

max
, (13)

with A ≈ 0.077 a.u. and b ≈ 0.68. Equivalently, in terms of the num-
ber of basis functions M, this convergence law can be stated as
1/Mb. Note that since our basis set includes the exact HF occu-
pied orbital, this slow convergence is entirely due to the correlation
energy. According to the analysis given in Subsection 2 of Appendix,
we theoretically expect b = 0.5. The difference most likely means that
larger values of nmax are needed to reach the asymptotic regime. Note
that for the 3D Coulomb case, it is well known that the correla-
tion energy exhibits a cubic-law convergence with respect to either
the maximal angular momentum or the maximal principal quantum
number of the basis set, or equivalently a 1/M convergence law in

FIG. 1. FCI ground-state energy EB
FCI [Eq. (10)] of the 1D He-like atom as a function

of the basis size nmax. The exact energy is taken from Ref. 24.

FIG. 2. FCI correlation pair density ρB2,c(x1, x2) of the 1D He-like atom at x1 = 0
as a function of x2 for a different basis size nmax.

terms of the number of basis functions.3,34 In the present work, the
use of a basis of Hermite functions with a single exponent thus leads
to an even slower convergence rate.

To illustrate further the slow basis convergence, we also
calculate the FCI correlation pair density,

ρB2,c(x1, x2) = 2(∣ΨB
FCI(x1, x2)∣

2
− ∣ΦHF(x1, x2)∣

2
), (14)

where ΦHF(x1, x2) = ϕ1(x1)ϕ1(x2) is the HF wave function. In
Fig. 2, this quantity is plotted with respect to the second electron
coordinate x2 for a fixed value of the first electron coordinate x1 = 0.
The convergence of ρB2,c(x1, x2) with nmax is again slow and remi-
niscent of the well-known slow basis convergence of the correlation
pair density for the 3D Coulomb electron–electron interaction (see,
e.g., Refs. 3, 35, and 36). Note that the small derivative discontinu-
ity seen on all the curves of Fig. 2 at x2 = 0 is due to the fact that
we include in our basis set the exact HF orbital in Eq. (7), which
has itself an electron–nucleus cusp, namely, ϕ1(x) = ϕ1(0)(1 − Z∣x∣
+O(x2

)). The electron–electron cusp condition in Eq. (5) is only
recovered for large nmax.

In conclusion, the present 1D model adequately captures the
main characteristics of the slow basis convergence problem of stan-
dard quantum-chemistry wave-function methods, and it is thus
appropriate for applying our basis-set correction approach.

III. BASIS-SET CORRECTION THEORY
We now develop the basis-set correction theory based on DFT

for the present 1D model, which aims at removing the basis-set
incompleteness error in the FCI ground-state energy. This requires
development of an extension of standard DFT from the usual
complete-basis-set setting to the case of the incomplete finite one-
electron basis set B. In such a finite basis set, it is known that the
original Hohenberg–Kohn theorem37 does not hold anymore,38–40

in the sense that there is an infinite number of local potentials that
give, after projection in a finite basis set, the same ground-state
density.41 However, we will show that we can still define density
functionals associated with a finite basis set.

J. Chem. Phys. 156, 044113 (2022); doi: 10.1063/5.0076128 156, 044113-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

A. Density-functional theory for the one-dimensional
model

We start by reviewing some useful definitions of standard DFT
specialized to the 1D model. For mathematically oriented reviews of
DFT, see, for instance, Refs. 42–49, and, in particular, Ref. 50, which
encompasses the 1D case.

Working on the same Hilbert space H as before, we now
consider the following 1D Hamiltonian for N = 2 electrons with a
general external potential v:

H[v] = T +Wee + V , (15)

where again T = −(1/2)∑N
i=1∂

2
/∂x2

i and Wee = δ(x1 − x2), and V
= ∑

N
i=1v(xi) is now a general external potential operator. We will still

take admissible wave functions to be in the space W given in Eq. (4).
The convex set of densities representable by a wave function Ψ ∈W,
the so-called N-representable densities, is then42,50

R = {ρ ∣ ∃ Ψ ∈W, ρΨ = ρ}

= {ρ ∈ L1
(R) ∣ ρ ≥ 0, ∫

R
ρ(x)dx = N,

√
ρ ∈ H1

(R)}, (16)

where ρΨ(x1) = N∫R∣Ψ(x1, x2)∣
2dx2 is the density of the wave func-

tion Ψ. We have R ⊂ X, where X is the Banach space X = C0(R) ∩
L1
(R) with C0(R) being the space of continuous functions van-

ishing at infinity. Therefore, the space of external potentials v that
we can consider is the continuous dual space of X, i.e., V = X′
=M(R) + L∞(R), where M(R) is the space of bounded Radon
measures. Note that the set V includes the external potential con-
sidered in Sec. II, i.e., vne(x) = −Zδ(x). For v ∈ V, we then define the
ground-state energy as

E0[v] = inf
Ψ∈W
⟨Ψ, H[v]Ψ⟩. (17)

The Levy–Lieb density functional42,51 is defined as a
constrained-search over wave functions yielding the density ρ,

∀ρ ∈ R, F[ρ] = min
Ψ∈Wρ
⟨Ψ, (T +Wee)Ψ⟩, (18)

where Wρ = {Ψ ∈W ∣ ρΨ = ρ}. It gives the ground-state energy as

E0[v] = inf
ρ∈R
(F[ρ] + (v, ρ)), (19)

where we have introduced the notation (v, ρ) = ∫Rv(x)ρ(x)dx. If a
minimizing density ρ0 exists in Eq. (19), then it is an exact ground-
state density for the potential v.

One can also define the Lieb density functional,42 which is the
Legendre–Fenchel convex-conjugate of E0[v],

∀ρ ∈ R, FL[ρ] = sup
v∈V
(E0[v] − (v, ρ)). (20)

Just like the Levy–Lieb functional F, the Lieb functional FL gives
the exact ground-state energy as E0[v] = infρ∈R(FL[ρ] + (v, ρ)). In
general, the functionals F and FL are different, the Lieb functional
being, in fact, the lower semi-continuous convex (lscv) envelope of
the Levy–Lieb functional, i.e.,

FL = lscv(F) ≤ F. (21)

It turns out that the Lieb functional can also be expressed as a gen-
eralization of the Levy–Lieb functional, in which the constrained
search is extended from pure-state wave functions to ensemble den-
sity matrices.42,52 This implies that F[ρ] = FL[ρ] for densities ρ,
which are densities of a non-degenerate ground state of the Hamil-
tonian H[v] for some potential v. In the present case of two spin-
singlet electrons, the ground state is always non-degenerate, and
thus the Levy–Lieb and Lieb functionals are identical, i.e., F = FL.

B. First variant of basis-set correction
The first variant of basis-set correction corresponds to the one

introduced for the 3D Coulombic case in Ref. 8 and further devel-
oped in Refs. 9–12 and 14. We consider the Hamiltonian H[v] in
Eq. (15) on the two-electron Hilbert space HB associated with the
basis set B. For v ∈ V, the FCI ground-state energy is

EB
FCI[v] = min

Ψ∈WB
⟨Ψ, H[v]Ψ⟩, (22)

where WB, given in Eq. (11), is the set of normalized wave functions
restricted to HB. We define the corresponding Levy–Lieb density
functional for the basis set B as

∀ρ ∈ RB, FB
[ρ] = min

Ψ∈WB
ρ

⟨Ψ, (T +Wee)Ψ⟩, (23)

where WB
ρ = {Ψ ∈WB

∣ ρΨ = ρ} and RB is the set of densities
representable by a wave function Ψ ∈WB,

RB
= {ρ ∣ ∃ Ψ ∈WB, ρΨ = ρ}. (24)

A priori, this set is not convex and not easily characterized. The FCI
ground-state energy can be expressed as

EB
FCI[v] = min

ρ∈RB
(FB
[ρ] + (v, ρ)). (25)

We now decompose the exact Levy–Lieb density functional
F[ρ] in Eq. (18) as

∀ρ ∈ RB, F[ρ] = FB
[ρ] + ĒB

[ρ], (26)

where ĒB
[ρ] is the complementary basis-set correction density

functional,

ĒB
[ρ] = ⟨Ψ[ρ], (T +Wee)Ψ[ρ]⟩ − ⟨ΨB

[ρ], (T +Wee)ΨB
[ρ]⟩, (27)

and Ψ[ρ] and ΨB
[ρ] are minimizing wave functions in Eqs. (18) and

(23), respectively. Clearly, since WB
ρ ⊂Wρ, we have ∀ρ ∈ RB, FB

[ρ]
≥ F[ρ], and thus ĒB

[ρ] ≤ 0. Since the decomposition in Eq. (26)
is defined only for ρ ∈ RB, we cannot recover the exact ground-
state energy E0[v]. Instead, we can obtain the following approximate
energy obtained by restricting the minimization in Eq. (19) to
densities ρ in RB:

EB
0[v] = min

ρ∈RB
(F[ρ] + (v, ρ))

= min
ρ∈RB

⎛

⎝
min
Ψ∈WB

ρ

⟨Ψ, (T +Wee)Ψ⟩ + ĒB
[ρ] + (v, ρ)

⎞

⎠

= min
Ψ∈WB
(⟨Ψ, (T +Wee + V)Ψ⟩ + ĒB

[ρΨ]), (28)
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or, designating by ΨB
0 ∈WB a minimizing wave function in

Eq. (28),

EB
0[v] = ⟨Ψ

B
0 , (T +Wee + V)ΨB

0⟩ + ĒB
[ρΨB

0
]. (29)

It is easy to see that E0[v] ≤ EB
0[v] ≤ EB

FCI[v]. For a given basis set
B, the functional ĒB

[ρ] provides a (self-consistent) basis-set cor-
rection to the FCI energy so that EB

0[v] is a better approximation
to E0[v] than EB

FCI[v] is. Moreover, as the basis set is increased
toward completeness, EB

0[v] should converge much faster to E0[v]
than EB

FCI[v] does, since, roughly speaking, densities ρ typically
converge faster than wave functions Ψ with respect to the basis
set.

For simplicity, instead of performing the minimization in
Eq. (28), one may use a non-self-consistent approximation consist-
ing of using the FCI ground-state wave function ΨB

FCI in place of ΨB
0 ,

giving what we will call a “FCI+DFT” energy,

EB
FCI+DFT[v] = ⟨Ψ

B
FCI, (T +Wee + V)ΨB

FCI⟩ + ĒB
[ρΨB

FCI
], (30)

which is an upper bound of EB
0[v], i.e., EB

FCI+DFT[v] ≥ EB
0[v]. Again,

as the basis set is increased toward completeness, EB
FCI+DFT[v] should

converge much faster to E0[v] than EB
FCI[v] does.

One disadvantage of this basis-set correction scheme is that,
for a given finite basis set B, it does not give the exact ground-state
energy, even, in principle, if we knew the exact complementary basis-
set correction functional ĒB

[ρ]. This is due to the fact that FB
[ρ] is

defined only on the restricted set of densities RB. Another related
inconvenient is that since ĒB

[ρ] is defined only on this restricted set
of densities, it is not clear how to define the LDA for it. Defining
the LDA would, indeed, require considering uniform densities, but
uniform densities are not in RB. Even though uniform densities are
not in R either, they can be approached with densities from R,53,54

so it would be preferable to have a complementary basis-set correc-
tion functional defined on the entire set R. This would also permit
connecting, in principle, the basis-set correction scheme to the exact
ground-state energy. This is what is achieved by the second variant
of basis-set correction.

C. Second variant of basis-set correction
For the second variant of basis-set correction, we work on the

full Hilbert space H (not restricted to the basis set B), and define the
following Hamiltonian:

HwB
[v] = T +WB

ee + V , (31)

where the kinetic-energy operator T and the external potential
operator V are still defined as before, but the electron–electron
interaction operator is now projected in the basis set B,

WB
ee = PBWeePB, (32)

where PB is the orthogonal projector onto the basis-set-restricted
Hilbert space HB. The notation “wB” is to remind us that only Wee is
projected. In fact, WB

ee is a complicated non-local two-electron oper-
ator. Using an orthonormal orbital basis {ϕi}i=1,...,M spanning the
same space as B, its integral kernel can be written as

WB
ee(x1, x2; x′1, x′2) =

M

∑
i=1

M

∑
j=1

M

∑
k=1

M

∑
l=1
ϕi(x1)ϕj(x2) ⟨ϕiϕj, Weeϕkϕl⟩

× ϕ∗k (x
′
1)ϕ

∗
l (x

′
2), (33)

where ⟨ϕiϕj, Weeϕkϕl⟩ = ∫Rϕ
∗
i (x)ϕ∗j (x)ϕk(x)ϕl(x)dx are the two-

electron integrals in the orbital basis {ϕi}. For v ∈ V, the associated
ground-state energy is

EwB
0 [v] = inf

Ψ∈W
⟨Ψ, HwB

[v]Ψ⟩. (34)

Clearly, if we were to restrict the minimization in Eq. (34) to the
set WB, EwB

0 [v] would reduce to EB
FCI[v] [Eq. (22)]. Therefore, we

have EwB
0 [v] ≤ EB

FCI[v]. Moreover, because Wee is a positive operator,
one would expect that projecting it in a finite basis should typically
decrease the ground-state energy, i.e., EwB

0 [v] ≤ E0[v], but this may
not be generally true.

We then define the corresponding Levy–Lieb functional for all
densities ρ ∈ R as

∀ρ ∈ R, FwB
[ρ] = min

Ψ∈Wρ
⟨Ψ, (T +WB

ee)Ψ⟩. (35)

For the same reasons as before, comparison with Eq. (23) shows that,
for ρ ∈ RB, FwB

[ρ] ≤ FB
[ρ]. The ground-state energy EwB

0 [v] can be
written as

EwB
0 [v] = inf

ρ∈R
(FwB
[ρ] + (v, ρ)). (36)

We now decompose the exact Levy–Lieb density functional
F[ρ] as

∀ρ ∈ R, F[ρ] = FwB
[ρ] + ĒwB

Hxc[ρ], (37)

which defines the complementary Hartree–exchange–correlation
(Hxc) basis-set correction functional ĒwB

Hxc[ρ]. Analogously to what
is done in multideterminant range-separated DFT,18,20,55–58 the
functional ĒwB

Hxc[ρ] can be decomposed as

ĒwB
Hxc[ρ] = ĒwB

Hx,md[ρ] + ĒwB
c,md[ρ], (38)

where ĒwB
Hx,md[ρ] is the Hartree–exchange (Hx) contribution defined

as the expectation value of the complementary interaction W̄B
ee

=Wee −WB
ee over the minimizing multideterminant (md) wave

function ΨwB
[ρ] (that we will assume to be unique up to a global

phase factor) in Eq. (35),

ĒwB
Hx,md[ρ] = ⟨Ψ

wB
[ρ], W̄B

eeΨ
wB
[ρ]⟩, (39)

and ĒwB
c,md[ρ] is the remaining correlation (c) contribution,

ĒwB
c,md[ρ] = ⟨Ψ[ρ], (T +Wee)Ψ[ρ]⟩

−⟨ΨwB
[ρ], (T +Wee)ΨwB

[ρ]⟩. (40)

Clearly, since Ψ[ρ] minimizes ⟨Ψ, (T +Wee)Ψ⟩, we have ĒwB
c,md[ρ]

≤ 0. Since the decomposition in Eq. (37) is defined for all densities ρ
∈ R, we can obtain the exact ground-state energy as

J. Chem. Phys. 156, 044113 (2022); doi: 10.1063/5.0076128 156, 044113-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

E0[v] = inf
ρ∈R
(FwB
[ρ] + ĒwB

Hxc[ρ] + (v, ρ))

= inf
ρ∈R
(min
Ψ∈Wρ
⟨Ψ, (T +WB

ee)Ψ⟩ + ĒwB
Hxc[ρ] + (v, ρ))

= inf
Ψ∈W
(⟨Ψ, (T +WB

ee + V)Ψ⟩ + ĒwB
Hxc[ρΨ]). (41)

For potentials v for which there exists a minimizing wave function
ΨwB

0 ∈W in Eq. (41), this wave function yields an exact ground-state
density ρ0, i.e., ρΨwB

0
= ρ0. It is, in fact, the minimizing wave function

in Eq. (35) giving the density ρ0, i.e., ΨwB
0 = Ψ

wB
[ρ0]. Using this fact

and combining Eqs. (38), (39), and (41), we can express the exact
ground-state energy as

E0[v] = ⟨ΨwB
0 , (T +Wee + V)ΨwB

0 ⟩ + ĒwB
c,md[ρΨwB

0
]. (42)

Thus, this second variant of basis-set correction leads to an energy
expression similar to Eq. (29) obtained for the first variant of basis-
set correction, with the functional ĒwB

c,md[ρ] replacing the functional
ĒB
[ρ] and the wave function ΨwB

0 replacing the wave function ΨB
0 .

One advantage of this second variant of basis-set correction is that
it gives the exact ground-state energy E0[v]. The price to pay is that
the minimization in Eq. (41) is more complicated than in Eq. (28)
since it is over general wave functions Ψ ∈W and not simply wave
functions restricted to WB. Moreover, the minimization involves
not only the functional ĒwB

c,md[ρ], but also the functional ĒwB
Hx,md[ρ]

in Eq. (39), which did not appear in the first variant of basis-set
correction.

Similarly to the first variant of basis-set correction, we can
define a non-self-consistent approximation consisting of using the
FCI ground-state wave function ΨB

FCI in place of ΨwB
0 in Eq. (42),

giving an alternative “FCI+DFT” energy,

EwB
FCI+DFT[v] = ⟨Ψ

B
FCI, (T +Wee + V)ΨB

FCI⟩ + ĒwB
c,md[ρΨB

FCI
], (43)

which is quite similar but not equivalent to Eq. (30) since the com-
plementary basis-set correction functional is different. Like for the
first variant of basis-set correction, when the basis set is increased
toward completeness, EwB

FCI+DFT[v] should converge much faster to
E0[v] than EB

FCI[v] does.
Finally, we define the Lieb density functional for this second

variant of basis-set correction,

∀ρ ∈ R, FwB
L [ρ] = sup

v∈V
(EwB

0 [v] − (v, ρ)). (44)

Like in standard DFT, by the theory of Legendre–Fenchel transfor-
mations, this Lieb functional FwB

L must be the lower semi-continuous
convex envelope of the Levy–Lieb functional FwB, i.e.,

FwB
L = lscv(FwB

) ≤ FwB. (45)

One could also write down this Lieb functional as a constrained-
search over ensemble density matrices, and again we should have
FwB
[ρ] = FwB

L [ρ] for densities ρ, which are densities of a non-
degenerate ground state of the Hamiltonian HwB

[v] for some poten-
tial v. As already mentioned, in the present case of two spin-singlet
electrons, the ground state is always non-degenerate, and thus the
Levy–Lieb and Lieb functionals are identical, i.e., FwB

= FwB
L . As we

will see in Sec. IV B, the definition in Eq. (44) is useful to calculate the

functional in practice since it involves an unconstrained maximiza-
tion over potentials v, whereas the definition in Eq. (35) involves a
potentially more complicated constrained minimization over wave
functions yielding a fixed density ρ.

In summary, the advantage of the second variant of basis-set
correction over the first variant is that it is connected with the exact
ground-state energy [via Eq. (41) or Eq. (42)] and that it involves a
complementary basis-set correction functional that is defined for all
densities in R. In Sec. IV, we exploit this in order to construct a LDA
for the functional ĒwB

c,md[ρ].

IV. LOCAL-DENSITY APPROXIMATION FROM FINITE
UNIFORM-ELECTRON GAS

In standard DFT, the LDA is based on the infinite UEG.
Essentially, for the 1D case, calculating the energy per particle of
the infinite UEG amounts to plugging an uniform density ρunif : x
↦ ρ0 ∈ (0,+∞) in the density functional F[ρ] and taking the ther-
modynamic limit, i.e., limN→∞F[ρunif]/N. One difficulty is that a
non-zero uniform density function ρunif defined on the entire real
line R is obviously not N-representable. For the 3D case, the infi-
nite UEG was rigorously mathematically defined in Refs. 53 and 54
by first convoluting the uniform density with a function of compact
support (so that the convoluted density is N-representable) and then
taking the thermodynamic limit N →∞ (after removing the Hartree
energy, which is divergent for the Coulombic 3D case). Here, in the
spirit of Ref. 59, we will, instead, consider a finite UEG, i.e., for a
finite electron number N.

A. Finite uniform-electron gas
for the complete-basis-set case

To define a 1D finite UEG, we generalize the standard DFT of
Sec. III A from the real line R to a finite interval Ωa = (−a/2, a/2)
of length a. Hence, the one-electron Hilbert space is ha = L2

(Ωa,C)
and the two-electron Hilbert space is Ha = ha ⊗ ha. For external local
potentials v ∈ Va (where the space Va will be specified below) and
N = 2 electrons, we define the ground-state energy of the Hamilto-
nian H[v] = T +Wee + V [Eq. (15)] restricted to the Hilbert space
Ha as

E0,a[v] = inf
Ψ∈Wa
⟨Ψ, H[v]Ψ⟩a, (46)

with the set of admissible wave functions

Wa = {Ψ ∈ Ha ∣ Ψ ∈ H1
per(Ω

2
a,C), ⟨Ψ,Ψ⟩a = 1}, (47)

where ⟨Ψ1,Ψ2⟩a = ∫Ω2
a
Ψ∗1 (x1, x2)Ψ2(x1, x2)dx1dx2 is the inner

product on Ha and H1
per designates the set of functions

in H1 with periodic boundary conditions on the domain
(see, e.g., Ref. 60), which can be defined as H1

per(Ω2
a,C)

= {Ψ∣Ω2
a
∣ Ψ ∈ H1

loc(R
2,C), Ψ is aZ2

− periodic}, where Ψ∣Ω2
a

desig-

nates the restriction of Ψ to Ω2
a and H1

loc(R
2,C) is the local

first-order Sobolev space.
The corresponding Levy–Lieb density functional is

∀ρ ∈ Ra, Fa[ρ] = min
Ψ∈Wa,ρ

⟨Ψ, (T +Wee)Ψ⟩a, (48)
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whereWa,ρ = {Ψ ∈Wa, ρΨ = ρ} andRa is the set of N-representable
densities on Ωa,

Ra = {ρ ∣ ∃ Ψ ∈Wa, ρΨ = ρ}

= {ρ ∈ L1
(Ωa) ∣ ρ ≥ 0, ∫

Ωa

ρ(x)dx = N,
√
ρ ∈ H1

per(Ωa)},

(49)

and H1
per(Ωa) = { f ∈ H1

(Ωa) ∣ limx→−a/2 f (x) = limx→a/2 f (x)}.
We have Ra ⊂ Xa, where Xa is the Banach space Xa
= Cper(Ωa) ∩ L1

(Ωa) with Cper(Ωa) being the space of con-
tinuous functions on Ωa with periodic boundary conditions.
Therefore, the space of external potentials to consider is the
continuous dual space of Xa, i.e., Va = X′a =Mper(Ωa) + L∞(Ωa),
where Mper(Ωa) is the space of bounded Radon measures on
Ωa with periodic boundary conditions. In the limit of an infinite
interval (a→∞), we recover the standard theory on the real line
R, i.e., lima→∞ Fa[ρ] = F[ρ], where F[ρ] is the standard Levy–Lieb
functional defined in Eq. (18). Similarly, we could generalize the
Lieb density functionals in Eq. (20) to the finite interval Ωa.

We now define a finite UEG (fUEG) by considering the uni-
form density ρunif : x ↦ ρ0 = N/a on the interval Ωa for the fixed
electron number N = 2. Note that ρunif is, in fact, the unique uni-
form density belonging to Ra. The energy per particle of this finite
UEG is

εfUEG(ρ0) =
Fa[ρunif]

N
(50)

and is a function of the only variable ρ0 since N is fixed and a = N/ρ0.
The value of Fa[ρunif] corresponds to the ground-state energy of the
two-electron Hamiltonian with zero external potential,

HfUEG = H[0] = T +Wee, (51)

with periodic boundary conditions on Ωa, provided that the
ground-state density is the uniform density ρunif (i.e., no trans-
lational symmetry breaking). We note that in Refs. 61–64, 1D
finite UEGs mapped to a ring were introduced using the Coulomb
electron–electron interaction. Here, instead, we use the Dirac-delta
electron–electron interaction and we do not work on a ring.

For a given density ρ0 in the range [0, 10] a.u. and for the fixed
electron number N = 2 and interval length a = N/ρ0, we calculate the
ground-state energy by performing a FCI calculation using a one-
electron plane-wave (pw) orthonormal basis {pn}n∈Z, ∣n∣≤npw

max
, where

pn(x) = (1/
√

a)eiknx and kn = 2πn/a. The one-electron kinetic inte-
grals ⟨pn1 , tpn2⟩a = (2π

2n2
1/a

2
)δn1 ,n2 and the two-electron integrals

⟨pn1 pn2 , Weepn3 pn4⟩a = (1/a)δn1+n2 ,n3+n4 are trivial. We use a plane-
wave cutoff npw

max = 60, which leads to FCI energies converged to at
least 1 mhartree (and, in fact, generally better than that). As usual,
the finite UEG energy per particle can be decomposed as

εfUEG(ρ) = ts,fUEG(ρ) + εH,fUEG(ρ) + εx,fUEG(ρ) + εc,fUEG(ρ), (52)

with the non-interacting kinetic energy per particle ts,fUEG(ρ) = 0
[since N = 2, the only occupied orbital is the constant plane wave
p0(x) = 1/

√
a, which has a zero kinetic energy], the Hartree energy

per particle εH,fUEG(ρ) = ρ/2, the exchange energy per particle
εx,fUEG(ρ) = −ρ/4, and the correlation energy per particle εc,fUEG(ρ).

FIG. 3. FCI correlation energy per particle εc,fUEG(ρ) [Eqs. (50) and (52)] of the 1D
finite UEG as a function of the density ρ for N = 2 electrons and a plane-wave cut-
off npw

max = 60. The exact second-order perturbation theory (PT2) correlation energy
per particle, which is independent of N and ρ, is indicated as a horizontal line. The
correlation energy per particle of the infinite UEG (N →∞) as parameterized
by Magyar and Burke24 from essentially numerically exact Bethe-ansatz results is
also plotted for comparison.

The correlation energy per particle εc,fUEG(ρ) is plotted in
Fig. 3. In the high-density limit, εc,fUEG(ρ) tends to the correlation
energy per particle in second-order perturbation theory (PT2) with
respect to the electron–electron interaction Wee,

lim
ρ→∞

εc,fUEG(ρ) = ε
PT2
c,fUEG = −

1
24

, (53)

which is a constant independent of ρ. It turns out that this constant is
the same for N = 2 and N →∞.24 In the low-density limit, εc,fUEG(ρ)
goes to zero linearly with ρ (see Ref. 65),

εc,fUEG(ρ) ∼
ρ→0
−
ρ
4

, (54)

so as to exactly cancel out the Hartree and exchange energies per
particle. This is due to the fact that, in this limit, the probability
density of finding the electrons at the same point of space is zero,
and thus the Dirac-delta electron–electron interaction has no effect.
This is the 1D version of the strong-interaction limit of DFT.66–69

Equation (54) is also true for N →∞,24,70 and is, in fact, true inde-
pendently of N.65 In Fig. 3, we also show the correlation energy per
particle of the infinite UEG (N →∞) as parameterized by Mag-
yar and Burke24 from essentially numerically exact Bethe-ansatz
results. Not only the correlation energies per particle for N = 2 and
N →∞ agree well for small and large densities, as they should since
they have the same N-independent asymptotic behaviors [Eqs. (53)
and (54)], but they also agree very well for intermediate densi-
ties (the maximal deviation between the two curves being about
0.4 mhartree), showing that the thermodynamic limit N →∞ is
essentially already reached at N = 2 for this 1D UEG. Hence, there
is no need for considering 1D UEGs with N > 2 electrons. This
must be due to the very short-range nature of the Dirac-delta
electron–electron interaction. For the 1D UEG with the Coulomb
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interaction, the correlation energy per particle depends much more
strongly on the electron number.62

B. Finite uniform-electron gas
for the incomplete-basis-set case

We now generalize the second variant of basis-set correction of
Sec. III C from the real line R to a finite interval Ωa = (−a/2, a/2) of
length a. For v ∈ Va and N = 2 electrons, we define the ground-state
energy of the restriction to the Hilbert space Ha of the Hamiltonian
HwB
[v] = T +WB

ee + V [Eq. (31)], featuring the electron–electron
interaction projected in the basis set B used for the 1D He-like
atom, as

EwB
0,a[v] = inf

Ψ∈Wa
⟨Ψ, HwB

[v]Ψ⟩a. (55)

The corresponding Levy–Lieb density functional is

∀ρ ∈ Ra, FwB
a [ρ] = min

Ψ∈Wa,ρ
⟨Ψ, (T +WB

ee)Ψ⟩a (56)

and the corresponding Lieb density functional is

∀ρ ∈ Ra, FwB
L,a[ρ] = sup

v∈Va

(EwB
0,a[v] − (v, ρ)a), (57)

where (v, ρ)a = ∫Ωa
v(x)ρ(x)dx. Again, in the limit of an infinite

interval (a→∞), we recover the theory of Sec. III C.
For a given basis set B, we now define an associated finite

UEG by considering the uniform density ρunif : x ↦ ρ0 = N/a on
the interval Ωa for the fixed electron number N = 2. The kinetic
+ electron–electron energy per particle of this B-dependent finite
UEG is

f wB
fUEG(ρ0) =

FwB
a [ρunif]

N
, (58)

where

FwB
a [ρunif] = ⟨ΨwB

[ρunif], (T +WB
ee)Ψ

wB
[ρunif]⟩a, (59)

and ΨwB
[ρunif] is the ground-state wave function (assumed to be

unique up to a global phase factor) of the two-electron Hamiltonian,

HwB
fUEG = T +WB

ee + VwB, (60)

with periodic boundary conditions on Ωa and with VwB

= ∑
N
i=1vwB

(xi), where vwB
(x) is the local potential (that we

assume to exist and which is defined up to an additive constant),
which enforces the constraint that the ground-state wave function
ΨwB
[ρunif] yields, indeed, the uniform density ρunif. Since the

projected electron–electron interaction WB
ee breaks translation

invariance, the addition of the potential vwB is necessary to restore a
uniform density. This is in contrast with the UEG for the complete-
basis-set case for which no external potential was necessary to
obtain a uniform density [Eq. (51)]. To conveniently obtain the
potential vwB, we use the fact that, since the two-electron finite UEG
has a non-degenerate ground state, the Levy–Lieb functional FwB

a
and the Lieb functional FwB

L,a are identical. The potential vwB then
just corresponds to the maximizing potential in Eq. (57) for ρ = ρunif
(see Refs. 71–73),

vwB
= argmax

v∈Va

(EwB
0,a[v] − (v, ρunif)a). (61)

For a given basis set B, for a given density ρ0 in the range [0, 10]
a.u., and for the fixed electron number N = 2 and interval length
a = N/ρ0, we calculate the energy EwB

0,a[v] by performing a FCI cal-
culation using a plane-wave orthonormal basis {pn}n∈Z, ∣n∣≤npw

max
. The

one-electron kinetic integrals are still ⟨pn1 , tpn2⟩a = (2π
2n2

1/a
2
)δn1 ,n2 .

The integrals of the electron–electron interaction projected in the
basis set B [see Eq. (33)] can be calculated as

⟨pn1 pn2 , WB
eepn3 pn4⟩a =

M

∑
i=1

M

∑
j=1

M

∑
k=1

M

∑
l=1

S∗i,n1 S∗j,n2

× ⟨ϕiϕj, Weeϕkϕl⟩ Sk,n3 Sl,n4 , (62)

where ⟨ϕiϕj, Weeϕkϕl⟩ are the two-electron integrals in terms of the
HF orbitals {ϕi}i=1,...,M of the 1D He-like atom expanded in the basis
set B (see Sec. II B) and Si,n = ⟨ϕi, pn⟩a = ∫Ωa

ϕ∗i (x)pn(x)dx are the
overlap integrals between the HF orbitals and the plane-wave basis
functions. The potential v to optimize in Eq. (61) is also expanded
on the same plane-wave basis set,

v(x) = ∑
n∈Z,∣n∣≤npw

max

cnpn(x), (63)

with coefficients cn ∈ R and we impose c−n = cn in order to have
a real-valued and parity-even potential. The one-electron potential
integrals, needed to calculate EwB

0,a[v], are

⟨pn1 , vpn2⟩a = ∫
Ωa

p∗n1(x)v(x)pn2(x)dx =
cn1−n2√

a
, (64)

and the second term in Eq. (61) is simply (v, ρunif)a =
√

ac0ρ0.
Finally, for the optimization of the potential, it is useful to have
the derivative of F[v] = EwB

0,a[v] − (v, ρunif)a with respect to the
coefficient cn. Using the Hellmann–Feynman theorem, we find

∂F[v]
∂cn

= (pn, ρΨv)a − (pn, ρunif)a

=
1
√

a ∑
n1∈Z,∣n1 ∣≤npw

max

γn1 ,n1+n −
√

aρ0δn,0, (65)

where we have used ρΨv(x) = ∑n1∈Z,∣n1 ∣≤npw
max∑n2∈Z,∣n2 ∣≤npw

max

γn1 ,n2 pn1(x)p
∗
n2(x) with the one-particle reduced density matrix γ

of the ground-state wave function Ψv of HwB
[v]. In practice, we

use a plane-wave cutoff of npw
max = 30. We can use a smaller cutoff

than the cutoff used for the complete-basis-set UEG in Sec. IV A
since the FCI energy EwB

0,a[v] has a fast convergence with npw
max

due to the presence of the projected electron–electron interaction
WB

ee. To optimize the coefficients {cn} of the potential, we use the
conjugate gradient method.33 Since the term n = 0 in Eq. (63) is just
an arbitrary constant, we keep the coefficient c0 fixed to 0. With a
zero potential v, the FCI density ρΨv=0(x) can deviate from the target
density ρ0 by about as much as 0.2 a.u. for the basis set B of smallest
size (i.e., M = 1). With our optimized potentials vwB, the density
ρΨ

vwB (x) deviates from the target density ρ0 to at most about 10−4

a.u.
Besides, it might be worthwhile to stress here that in the Hamil-

tonian in Eq. (60), the kinetic-energy operator T is not projected in
the basis set B. We observed that if T is also projected in the basis
set B, then the high-lying states of T collapse to the lower part of the
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spectrum, which inevitably pollutes the nature of the ground state
of the finite UEG Hamiltonian and renders numerically impossible
to find a potential restoring a uniform density. This is why in the
second-variant of basis-set correction in Sec. III C, we have decided
to project only the electron–electron interaction Wee in the basis
set B.

The optimized potentials vwB
(x) obtained from Eq. (61) are

plotted in Fig. 4 for the example of the target density ρ0 = 2 a.u. and
for different sizes nmax of the basis set B of the 1D He-like atom
introduced in Sec. II B. To compensate for the breaking of trans-
lation invariance of the projected electron–electron interaction, all
potentials show oscillations with maximum amplitude on the edges
of the interval. As expected, when nmax increases, the amplitude
of the potential decreases, as it must eventually go to zero in the
complete-basis-set limit nmax →∞.

Once the FCI ground-state wave function ΨwB
[ρunif] = ΨvwB

for the optimal potential vwB has been obtained, we calculate the
following energy per particle using this wave function,

εwB
fUEG(ρ0) =

⟨ΨwB
[ρunif], (T +Wee)ΨwB

[ρunif]⟩a

N
, (66)

which we can decompose in the same way as in Eq. (52),

εwB
fUEG(ρ) = ts,fUEG(ρ) + εH,fUEG(ρ) + εx,fUEG(ρ) + ε

wB
c,fUEG(ρ), (67)

with the same kinetic, Hartree, and exchange contributions as in
Eq. (52), and a new correlation energy per particle εwB

c,fUEG(ρ). This
latter quantity is plotted in Fig. 5 for different sizes nmax of the basis
set B of the 1D He-like atom. As expected, when nmax increases,
εwB

c,fUEG(ρ) becomes more negative and gets closer to the correla-
tion energy per particle εc,fUEG(ρ) of the complete-basis-set limit
nmax →∞. For finite nmax, it can be observed that, in the high-
density limit, the correlation energy per particle εwB

c,fUEG(ρ) goes to
zero, unlike in Eq. (53). This is due to the fact that, as the density
increases, the relevant electron–electron distances contributing to
the correlation energy become smaller and the basis setB is unable to

FIG. 4. External optimized potential vwB
(x) [Eq. (61)] keeping a uniform density

ρ0 = 2 a.u. for the 1D finite UEG for N = 2 electrons and for different sizes nmax of
the basis set B of the 1D He-like atom.

FIG. 5. FCI correlation energy per particle εwB
c,fUEG(ρ) [Eqs. (66) and (67)] of the

1D finite UEG as a function of the density ρ for N = 2 electrons and for different
sizes nmax of the basis set B of the 1D He-like atom. The curve labeled as “HF”
corresponds to the limiting case where the basis set B contains only the exact HF
occupied orbital.

resolve the Dirac-delta electron–electron interaction at a fine enough
distance scale.

Finally, we calculate the complementary multideterminant cor-
relation energy per particle of the finite UEG for the basis set B [see
Eq. (40)],

ε̄wB
c,md,fUEG(ρ) = εfUEG(ρ) − ε

wB
fUEG(ρ), (68)

which is plotted in Fig. 6 for different basis sizes nmax. As nmax
increases, the magnitude of ε̄wB

c,md,fUEG(ρ) decreases and must even-
tually go to zero in the complete-basis-set limit nmax →∞. The
magnitude is largest for high densities since ε̄wB

c,md,fUEG(ρ) must

FIG. 6. FCI complementary correlation energy per particle ε̄wB
c,md,fUEG(ρ) [Eq. (68)]

of the 1D finite UEG as a function of the density ρ for N = 2 electrons and for
different sizes nmax of the basis set B of the 1D He-like atom. The curve labeled
“HF” corresponds to the limiting case where the basis setB contains only the exact
HF occupied orbital.
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compensate for the inability of the basis set B to represent the Dirac-
delta electron–electron interaction at a small distance scale. Perhaps
surprisingly, there is also a local maximum of the magnitude of
ε̄wB

c,md,fUEG(ρ) at small densities. This is due to the fact that, at small
densities, ε̄wB

c,md,fUEG(ρ) does not exactly cancel out the Hartree and
exchange energies per particle, in contrast to the complete-basis-
set case [Eq. (54)]. Again, this must come from the inability of the
basis set B to represent the Dirac-delta electron–electron interac-
tion sufficiently precisely to give a zero probability density of finding
the electrons as the same point of space in the low-density limit.
Interestingly, in between the small and the large-density regime, for
nmax ≥ 5, the magnitude of ε̄wB

c,md,fUEG(ρ) passes through a minimum.
In particular, for nmax = 70, ε̄wB

c,md,fUEG(ρ) is almost zero at around
ρ ≈ 0.5 a.u., which means that the basis set B accurately captures the
effect of the Dirac-delta electron–electron interaction at this density.

C. Finite local-density approximation
We can now define the finite LDA (fLDA) for the comple-

mentary multideterminant correlation density functional ĒwB
c,md[ρ]

[Eq. (40)] involved in the second-variant of basis-set correction
using the previously determined complementary correlation energy
per particle ε̄wB

c,md,fUEG(ρ) of the 1D finite UEG,

ĒwB
c,md,fLDA[ρ] = ∫

R
ρ(x)ε̄wB

c,md,fUEG(ρ(x))dx. (69)

We recall that in standard LDA, the functional of an inhomoge-
neous system for a finite electron number N is approximated using
the UEG for infinite electron number N →∞. Here, instead, in the
present finite LDA, the functional of the inhomogeneous system is
approximated using the UEG of the same electron number N. The
use of this finite LDA in lieu of the standard LDA should not be seen
as a crucial point for the basis-set correction theory but more like
a convenient alternative. For a sufficiently short-range complemen-
tary interaction W̄B

ee =Wee −WB
ee, the LDA should not depend much

on the electron number used in the definition of the underlying
UEG.

We then correct the FCI energy of the 1D He-like atom
using this fLDA functional in the non-self-consistent approximation
introduced in Eq. (43), obtaining what we will call the “FCI+fLDA”
energy,

EwB
FCI+fLDA = ⟨Ψ

B
FCI, (T +Wee + Vne)ΨB

FCI⟩ + ĒwB
c,md,fLDA[ρΨB

FCI
]. (70)

In practice, we calculate ĒwB
c,md,fLDA[ρΨB

FCI
] by numerical integration

using cubic interpolation between calculated values of ε̄wB
c,md,fUEG(ρ).

The FCI densities of the 1D He-like atom take values from 0 to about
3.5 a.u.

In Fig. 7, the FCI+fLDA energy is plotted as a function of
the basis size nmax. It is clear that the basis-set correction provides
a spectacular improvement of the FCI energy. For example, for
nmax = 0, the FCI energy is about 55 mhartree above the exact energy,
while the FCI+fLDA energy is only 1.5 mhartree below the exact
energy. For nmax ≥ 20, the FCI+fLDA energy is within 1 mhartree of
the exact energy. We note that the residual error must come from
the fact that in Eq. (42), the functional ĒwB

c,md[ρ] is approximated
with the fLDA functional and also that the wave function ΨwB

0 is
approximated by the FCI wave function ΨB

FCI.

FIG. 7. FCI ground-state energy EB
FCI [Eq. (10)] and FCI+fLDA ground-state energy

EwB
FCI+fLDA [Eq. (70)] of the 1D He-like atom as a function of the basis size nmax. The

first point labeled as “HF” corresponds to the limiting case where the basis set B
contains only the exact HF occupied orbital (in this case, FCI simply reduces to
HF). The exact energy is taken from Ref. 24.

V. CONCLUSION
In this work, we have re-examined the recently introduced

DFT-based basis-set correction theory on a 1D model with delta-
potential interactions, which is a convenient setting to carefully
study the slow basis convergence problem of quantum-chemistry
wave-function methods. We provided mathematical details about
the formulation of the theory, as well as a new variant of basis-
set correction, which has the advantage that the basis-set correction
functional is defined for all N-representable densities. This allowed
us to define a LDA for the basis-set correction functional, not based
on range-separated DFT as in all previous studies, but directly on a
1D finite UEG adapted to the basis set employed. We showed that
this approach is very effective to correct for the basis-set incom-
pleteness error in the FCI ground-state energy. We believe that the
present work puts the basis-set correction theory on firmer grounds.

Future efforts will focus on the extension of the present work to
3D Coulombic systems. The extension of the theory is straightfor-
ward. What remains to be seen is whether the present work adapts
well to the standard Gaussian-type-orbital basis sets used in quan-
tum chemistry and whether we can still construct an accurate LDA
for the basis-set correction functional based on a 3D UEG with the
Coulomb electron–electron interaction projected in the basis set.
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APPENDIX: CONVERGENCE RATE OF THE
EXPECTATION VALUE OF A DIRAC-DELTA
POTENTIAL IN A BASIS OF HERMITE FUNCTIONS
1. One-electron Dirac-delta potential

Let us consider the 1D hydrogen-like Hamiltonian,

h = −
1
2

d2

dx2 − Zδ(x), (A1)

with nuclear charge Z ∈ (0,+∞). The ground-state wave function is
(see, e.g., Refs. 74 and 75)

∀x ∈ R, φ(x) =
√

Ze−Z∣x∣, (A2)

which exhibits a cusp identical to the 3D Coulombic case. We
expand φ in the orthonormal basis of Hermite functions { f αn}n∈N
[Eq. (8)],

∀x ∈ R, φ(x) =
∞

∑
n=0

cn f αn(x), (A3)

with coefficients cn = ∫R f αn(x)φ(x)dx, which are non-zero only for
even integers n. Using the following asymptotic equivalent of the
unnormalized Hermite functions, for fixed x,76

Hn(
√

2αx)e−αx2

∼
n→∞

2n
√
π
Γ(

n + 1
2
) cos(x

√
4αn −

nπ
2
), (A4)

and the well-known asymptotic equivalent of the gamma function,

Γ(z) ∼
z→∞

√
2π zz−1/2e−z , (A5)

we obtain the following asymptotic equivalent of the normalized
Hermite functions,

f αn(x) ∼n→∞

√
2
π
α1/4

n1/4 cos(x
√

4αn −
nπ
2
). (A6)

Writing n = 2p with p ∈ N, we then find the leading term of the
asymptotic expansion of the coefficients c2p by integrating over x,

c2p ∼
p→∞

Z3/2
√

2π α3/4

(−1)p

(2p)5/4 . (A7)

This is perfectly consistent with the results of Refs. 77 and 78,
which shows that an exponentially decaying function φ having a
square-integrable first weak derivative [i.e., φ ∈ H1

(R)], but a non-
square-integrable second weak derivative [i.e., φ ∉ H2

(R)] must
have Hermite expansion coefficients cn going to zero as n−k with

k ∈ (1, 3/2]. The leading term of the asymptotic expansion of
c2p f α2p(x) is thus

c2p f α2p(x) ∼p→∞

Z3/2

π
√
α

1
(2p)3/2 cos(x

√
8αp), (A8)

and, in particular at x = 0,

c2p f α2p(0) ∼p→∞

Z3/2

π
√
α

1
(2p)3/2 . (A9)

Calling φ̃ the best approximation (in the sense of the L2 norm) to φ
obtained with a maximal quantum number nmax, i.e.,

∀x ∈ R, φ̃(x) =
nmax

∑
n=0

cn f αn(x), (A10)

we find that φ̃(0) converges slowly to the exact value φ(0) =
√

Z as

φ̃(0) ∼
nmax→∞

φ(0) −
Z3/2

π
√
α

1
n1/2

max
, (A11)

and the expectation value of the Dirac-delta potential vne(x)
= −Zδ(x) has a similar convergence behavior in 1/n1/2

max,

⟨φ̃, vneφ̃⟩ = −Zφ̃(0)2

∼
nmax→∞

−Zφ(0)2
+

2Z5/2φ(0)
π
√
α

1
n1/2

max
. (A12)

We also expect the total energy to converge as 1/n1/2
max in a basis of

Hermite functions.

2. Two-electron Dirac-delta interaction
Let us consider the Hamiltonian of the 1D two-electron

Hooke’s atom,24

H = −
1
2
∂2

∂x2
1
−

1
2
∂2

∂x2
2
+

1
2
ω2x2

1 +
1
2
ω2x2

2 + δ(x1 − x2), (A13)

where ω is the angular frequency parameter of the external har-
monic potential. In contrast to the 1D He-like atom [Eq. (1)], the
1D two-electron Hooke’s atom has the advantage to be solvable
in terms of special functions. Indeed, changing the variables to
the center-of-mass (cm) coordinate X = (x1 + x2)/2 and the relative
(rel) coordinate x12 = (x1 − x2)makes the Hamiltonian separable,

H = hcm + hrel, (A14)

where

hcm = −
1
4

∂2

∂X2 + ω
2X2 (A15)

and

hrel = −
∂2

∂x2
12
+

1
4
ω2x2

12 + δ(x12). (A16)
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The total ground-state energy is then

E0 = E0 + ε0, (A17)

where E0 = ω/2 is the ground-state energy of hcm and ε0 is the
ground-state energy of hrel, which is found from equation24,79

2
√

2ω
Γ(− ν0

2 +
1
2)

Γ(− ν0
2 )

= −1, (A18)

where ν0 = ε0/ω − 1/2. For example, for ω = 1 a.u., we have ε0
= 0.806 746 a.u.24 The ground-state wave function is

∀(X, x12) ∈ R2, Ψ(X, x12) = Φ(X)ψ(x12), (A19)

where the center-of-mass wave function is just given by the first
Hermite function Φ(X) = f 2ω

0 (X) and the relative wave function is
given by79

∀x12 ∈ R, ψ(x12) = cDν0(
√
ω∣x12∣), (A20)

where c is a real-valued normalization constant and x ↦ Dν(x) with
ν ∈ R is the parabolic cylinder function.76 The relative wave function
has the same cusp as in Eq. (5), i.e., ψ(x12) = ψ(0)[1 + (1/2)∣x12∣

+O(x2
12)].

Let us consider now the expansion of the wave function
Ψ in the tensor-product orthonormal basis of Hermite func-
tions {(x1, x2)↦ f αn1(x1) f αn2(x2)}(n1 ,n2)∈N2 . Due to invariance of
the harmonic-oscillator Hamiltonian to a rotation of coordi-
nates, the same space is spanned by the rotated orthonormal
basis {(X, x12)↦ f 2α

n1 (X) f α/2n2 (x12)}(n1 ,n2)∈N2 (see Refs. 77 and 78).
This means that the relative wave function ψ is independently
expanded as

∀x12 ∈ R, ψ(x12) =
∞

∑
n=0

dn f α/2n (x12), (A21)

with coefficients dn = ∫R f α/2n (x12)ψ(x12)dx12, which are non-zero
only for even integers n. Using Eq. (A6) and with the help of Math-
ematica,80 we find the leading term of the asymptotic expansion of
the coefficients d2p,

d2p ∼
p→∞
−

(−1)p c
α3/42μ0+1/4Γ(μ0)

1
(2p)5/4 , (A22)

where μ0 = −ν0/2 + 1/2. Introducing the best approximation to ψ
obtained with a maximal quantum number nmax,

∀x12 ∈ R, ψ̃(x12) =
nmax

∑
n=0

dn f α/2n (x12), (A23)

we find that ψ̃(0) converges slowly to the exact value ψ(0)
= c
√

2π/[2μ0Γ(μ0)] as

ψ̃(0) ∼
nmax→∞

ψ(0) +
c

√
πα 2μ0Γ(μ0)

1
n1/2

max
, (A24)

and the expectation value of the Dirac-delta interaction Wee

= δ(x12) has a similar convergence behavior in 1/n1/2
max,

⟨ψ̃, Weeψ̃⟩ = ψ̃(0)2

∼
nmax→∞

ψ(0)2
+

2cψ(0)
√
πα 2μ0Γ(μ0)

1
n1/2

max
. (A25)

We thus see that the two-electron energy converges as 1/n1/2
max in a

basis of Hermite functions.
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