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computing via density-based basis-set
correction
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Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz
into density-functional theory via density-basedbasis-set corrections to obtain quantitative quantum-
chemistry results on molecules that would otherwise require brute-force quantum calculations using
hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while
minimizing quantum resources is an essential challenge given the limited qubit capabilities of current
quantum processors. We provide a shortcut towards chemically accurate quantum computations by
approaching the complete-basis-set limit through coupling the density-based basis-set corrections
approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically
adapted to a given system and user-defined qubit budget. The resulting approach self-consistently
accelerates the basis-set convergence, improving electronic densities, ground-state energies, and
first-order properties (e.g. dipole moments), but can also serve as a classical, a posteriori, energy
correction to quantum hardware calculations with expected applications in drug design andmaterials
science.

Quantum computing (QC) offers a promising approach to solving
electronic-structure problems, with algorithms like quantum phase esti-
mation (QPE)andvariational quantumeigensolver (VQE)proving effective
in performing ground-state quantum-chemistry wave-function
calculations1–6. The electronic Hamiltonian is expressed in second quanti-
zation, employing anencoding thatmapsone spin–orbital to onequbit. This
mapping allows one to represent an exponentially large Hilbert space using
only a linear number of qubits. However, to achieve accurate and practically
valuable predictions for chemical systems in real-world applications, the
molecular Hamiltonian should be expressed and solved using extensive
basis sets of one-electron orbital functions. The number of qubits required
for such calculations quickly exceeds the available capacities on current
noisy intermediate scale quantum (NISQ) devices, upcoming early fault-
tolerant quantum computing (FTQC) devices, and high-performance
classical emulators. Therefore, while quantum chemistry has long been
stated as a promising application for quantum computing, the endeavors
have so far been limited to small molecular systems andminimal basis sets.

However, in practice,minimal basis sets fail to bepredictive for ground-state
energies, and chemically useful calculations require at least significantly
larger than double-zeta basis sets. Requirements for computing molecular
properties are even more drastic as they tend to converge more slowly with
the size of the basis set than energies.

In electronic-structure theory, the exact solution is defined by the full-
configuration interaction (FCI) method in the (infinite) complete-basis-set
(CBS) limit. However, in practice, the solution derived from a finite basis set
is used, which inherently suffers from truncation errors. These errors can be
substantial for small basis sets, but for large enough basis sets it is possible to
reach the target of chemical accuracy on energy differences, i.e., 1 kcal/mol
(1.6mHa). Unfortunately, employing sufficiently large basis sets becomes
very rapidly impractical for large systems, particularly those withmore than
a few dozen atoms. As a result, quantum chemists have developed a variety
of traditional (i.e., classical) computational methods to approach chemical
accuracy at a reasonable cost7–10. Similarly, on the quantum computing side,
the diversity of available methods has significantly increased11–14.
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In particular, the hybrid quantum-classical VQE techniques initially
designed to solve the general eigenvalue problem5, have been shown to be
particularly suited for chemical applications in the present NISQ era5,15,15,16.
VQE algorithms have evolved over the years in two directions: (i) fixed-
length ansätze, often inspired by classical coupled cluster, with approaches
such as the unitary coupled cluster (UCC) and its extensions (see refs. 17–19
and references therein); (ii) adaptive methods such as the adaptive
derivative-assembled pseudo-trotter ansatz variational quantum eigen-
solver (ADAPT-VQE)20 have also started to be particularly popular since
they allow tailoring system-specific ansätze with shorter circuits. In recent
years, ADAPT-VQE approaches have been systematically improved21–26

while alternative, resource-saving, adaptive techniques have also been
introduced27,28.

For applications to quantum computing, the inspiration coming from
classical approaches has not been limited14 toUCC-like techniques, and one
can particularly mention the importance of explicitly correlated
approaches29,30. Indeed, several quantum strategies originate from the latter
and aim to maintain full accuracy while further minimizing quantum
resources for obtaining more compact wave-function representations,
which is the key criterion for hardware implementations. We can particu-
larlymention theworks on transcorrelatedapproaches31–36, which introduce
short-range correlation effects such as the electron–electron cusp
condition37 through various Hamiltonian modifications. Therefore, expli-
citly correlated quantum computing ansätze based on the transcorrelated
approach has been shown to successfully evaluate ground-state energies
while using fewer resources38–42. Some of them have even been extended to
the evaluation of excited-state energies39. However, other strategies exist in
classical quantum chemistry and could be particularly suited to quantum
computing.

In particular, basis-set correction techniques such as the density-based
basis-set correction (DBBSC) method43–55, relying on density-functional
theory (DFT), have proven to be effective for calculating ground- and
excited-state energies, and also dipole moments, for a variety of systems,
including atoms, small organic molecules, and strongly correlated systems.
This approach provides the key benefit of an accelerated convergence to the
CBS limit with the basis-set size, which is a valuable asset for quantum
computing sinceminimizing quantum resources is paramount. To date, the
DBBSCmethod has only been applied to still relatively large basis sets,more
specifically the family of Dunning basis sets56 for which chemical accuracy
with respect to the CBS limit can be reached starting from a triple-zeta basis
set.We note that the approximations developed within the DBBSCmethod
target the CBS limit within a given wave-function ansatz. This means that
they do not address the intrinsic errors of the wave-function method itself,
such as the effects of neglected higher excitations in truncated
configuration-interaction (CI) or coupled-cluster methods.

In this work, we propose the integration of the DBBSC method with
quantum algorithms to expedite reaching the CBS limit and achieve che-
mical accuracy on complexmolecular systems. This strategy, which natively
limits the required qubit counts, can be applied to quantum algorithms that
tackle the ground-state quantum chemistry problem, such as the QPE or
VQE algorithms. While QPE can guarantee ground-state energy with
arbitrarily high precision given a carefully chosen initial state, it demands
large quantum circuits and will only be viable in the FTQC era. Conversely,
VQE lacks convergence guarantees but employs smaller circuits, aligning
better with this study’s aim of advancing short-term quantum computers
toward practical quantum-chemistry applications.

The paper is organized as follows. In Section “Methods”, we present
two variants of the application of the DBBSCmethod to wave-function QC
calculations, denoted as Strategy 1 and Strategy 2: (1) a basis-set correction a
posteriori added to the solution of the quantum algorithm, integrating two
contributions, namely a basis-set correlation density-functional correction
and a basis-set Hartree–Fock (HF) correction, and (2) a self-consistent
scheme integrating the DBBSC method to the quantum algorithm that
dynamically modifies the one-electron density used in the basis-set corre-
lation correction. Strategy 1 offers the possibility to correct any wave-

function QC energy calculation through a simple additive correction.
Strategy 2 enables one to self-consistently access an improved electronic
density, offering both improved energies and first-order molecular prop-
erties. Also,we introduce a new type of system-adapted basis sets (SABS) for
Gaussian-type orbitals (GTOs), with sizes comparable tominimal basis sets.
These new methodologies enable us to perform the first investigation of
DBBSC corrections in the minimal basis-set regime.

In the Section “Results anddiscussion”, we provide relevant tests of our
approach for different atomic and molecular systems using several families
of basis sets.Wecarry outnumerical simulations using graphics-processing-
unit (GPU) accelerated QC sparse emulation on up to 32 qubits, exploring
the applicability of this method to converge ground-state energies, dis-
sociation curves, and dipole moments. We consistently observe significant
improvements over typical quantum algorithm approaches, reaching an
accuracy level that would have otherwise required hundreds of qubits. We
thus expect the present approach to become a standard part of quantum-
enhanced wave-function calculations, particularly the approach of Strategy
1, which can immediately provide large improvements to existing results
with relatively simple efforts.

Finally, the Section “Conclusion” contains our conclusions. Additional
details and results are provided in the Supplementary Information (SI).

Results and discussion
We computed the ground-state energies, dissociation curves, and dipole
moments for the N2, H2O, LiH, and H2 molecules using both basis-set
correction strategies. For all systems except H2, the 1s molecular orbitals
were frozen, i.e., we use the frozen-core approximation. Correspondingly,
we use the frozen-core version of theDBBSCmethod as defined in ref. 44, in
which, in particular, the contribution to the density coming from the core
electrons is neglected in the basis-set correlation density functional. The
error in each calculation is quantified as the deviation from the CBS limit,
which itself is determined using a two-point extrapolation scheme based on
the cc-pVQZ and cc-pV5Z basis sets57. For the dipole–moment calculations
we employed only Strategy 2, using an expectation value over the
dipole–moment operator, avoiding a finite-difference approach prone to
numerical errors58. We remind the reader that these calculations are to be
interpreted in the framework of perfect (noiseless) logical qubits, and
therefore thediscussed errors canbeonly attributed to themethodused.The
Appendix presents the quantumcircuits thatwere used for all computations
and provides the number of CNOT gates required to perform for the
algorithm as well as the number of ADAPT-VQE iterations.

The classical computations, including basis-set corrections and the
calculation of reference energies and dipole moments, were carried out
using Quantum Package 2.059. In this software, the FCI energies are
approximated by the energy from aCIPSIwave function towhich a second-
order perturbation theory (PT2) correction is added. Given the demon-
strated nearly-FCI quality of this approximation for the systemswe studied,
we simplify our terminology by referring to this approach as simply FCI
rather than CIPSI+PT2.

The SABS are labeledVXZ-YwhereX is respectivelyD, T,Q, 5, or 6 for
cc-pVDZ, cc-pVTZ, up to cc-pV6Z basis sets, and Y is the target size. We
report in the SI the classically computed energies for the N2, H2O, LiH, and
H2 molecules.

Ground-state energies
Ground-state energies of the H2, LiH, H2O, and N2 molecules close to their
respective equilibriumgeometries arepresented inFig. 1 andTable 1.Details
regarding the ADAPT-VQE iterations and the associated “ADAPT” values
are provided in the SI, as well as additional tests on atoms and hydrogen
chains.

In Fig. 1, a general trend is observed: the basis-set corrected ground-
state energies with the small basis sets, i.e., STO-3G, 6-31G, or pcseg-060,
align with values between the cc-pVDZ and cc-pVTZ basis-set levels, while
requiringmuch fewer qubits than these latter basis sets. As we can see from
Table 1, both strategies provide the same quantitative improvements. These
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results are consistent with the conclusion from ref. 49 where the non-self-
consistent approximation was found sufficient for calculating energies.

For the best cases, the basis-set corrected ground-state energies have
errors in the order of tens ofmHa: 40mHa forH2Owith 24 qubits, 60mHa
forN2with 16qubits, and less than 10mHa for LiH andH2with less than 10
qubits. The results stay consistent for the other systems available in the SI
(H4, H6, H8). For H2 using the cc-pVDZ basis set, the basis-set corrected
ground-state energy reaches chemical accuracy relative to the CBS limit
while requiring 20 logical qubits. Similar convergence to the CBS limit is
observed in the SI for He and Be.Without the basis-set correction, reaching
a similar accuracy would have typically required more than a hundred
qubits.

In the initial work on theDBBSCmethod43, it was found that the basis-
set corrected ground-state energies of atoms reach chemical accuracy with
the cc-pVTZ basis set. Similarly, for the molecules studied here, if one had
access to a few hundred logical qubits required for the cc-pVTZ basis set,
achieving chemical accuracy would be theoretically feasible for all cases. To
support this claim, we report in the SI classically computed basis-set cor-
rected FCI ground-state energies using Dunning basis sets. The error rela-
tive to theCBS limit for the LiHmolecule is 0.2mHawith the cc-pVTZbasis
set. ForH2OandN2,we achieve errors of 3 and1mHa, respectively,with the
cc-pVTZ basis set.

Let us now discuss the results obtainedwith our SABS for LiH,N2, and
H2O. They were chosen to match the sizes of the small basis sets previously
discussed. Specifically for H2O, employing the V5Z-10 basis set (24 qubits)
achieves results slightly superior to those obtained with the 6-31G basis set.

ForH2O,we observed a reduction in theHF basis-set correction by 40mHa
when moving from the 6-31G to the V5Z-10 basis set, by over 100mHa
when comparing the STO-3G to the V5Z-4 basis set for the LiH molecule,
and more than a Hartree for the N2 molecule moving from the STO-3G to
theV5Z-6 andV5Z-11 basis sets. Based on these findings, we anticipate that
further exploration of this strategy could lead to a basis-set correction
scheme requiring only the correlation basis-set correction term. Of course,
the interest of SABS is to be systematically improvable toward the parent
Dunning basis set. It is important to note that this SABS systematic
improvement is not limited to quantum algorithms such as ADAPT-VQE
and is alsopresent for theHFandFCI calculations. Since theSABSapproach
strongly reduces the computational cost while maintaining accuracy, it
should offer further applications of theCIPSI approach in classical quantum
chemistry. Inpractice, a cc-pVTZ-likequality is reachedwith aV5Z-11basis
set (32 qubits) for N2, and with a V5Z-11 basis set (30 qubits) for H2O. A
V5Z-10 basis set (28 qubits) achieves a cc-pV5Z-like ground-state energy
accuracy for LiH. Overall, the SABS always provides the best ADAPT
energies with the self-consistent correlation basis-set correction (before the
addition of the HF basis-set correction).

Overall, concerning the basis sets, it is important to point out a key
anomaly, i.e., the remarkable performance of theminimal STO-3Gbasis set.
This was expected as Pople already discussed the outperformance of this
basis set in the seventies61. Indeed,Davidson andFeller detailed in their 1986
review62 the existence of error compensations and stated that “the smaller
the basis the more ab initio calculations assume an empirical flavor”. In
practice, among the available minimal basis-set possibilities, STO-3G

Fig. 1 | Ground-state energy errors with respect to the extrapolated CBS limit.
Outside the green box: ADAPT-VQE calculations. Inside the green box: FCI cal-
culations from a classical computer. Dot markers correspond to energies without
basis-set corrections. Crossmarkers correspond to energies correctedwith Strategy 1

[Eq. (6)]. On the x-axis, the labelsBþ symbolize basis-set corrected values. The blue
box corresponds to a range of 1.6 mHa around the extrapolatedCBS limit. The errors
for each ADAPT-VQE computation with respect to the FCI energy for a given basis
set are reported in the SI.
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Table 1 | Ground-state energies (in Ha) for H2O, N2, LiH, H2, and H8 calculated by FCI, ADAPT-VQE (denoted as ADAPT), and
basis-set corrected ADAPT-VQE according to Strategy 1, denoted as A+PBE+ ΔHF, and to Strategy 2, denoted as
SC(A+ PBE) and SC(A+PBE)+ ΔHF (i.e., without and with the HF basis-set correction, respectively)

H2O Nqubits FCI ADAPT A+ PBE+ ΔHF SC(A+ PBE) SC(A+ PBE)+ ΔHF

STO-3G 12 −75.01250 −75.01250 −76.30232 −75.197880 −76.30191

pcseg-0 24 −75.90855 −75.90843a −76.33681 −76.03999 −76.33279

6-31G 24 −76.11995 −76.11989b −76.28035 −76.23717 −76.32025

V5Z-10 24 −76.12626 −76.12409 −76.32705 −76.27418c −76.32505

V5Z-11 30 −76.15902 −76.15165 −76.33704 −76.28622 −76.33570

cc-pVDZ 46 −76.24165 – – – –

cc-pVTZ 114 −76.33250 – – – –

cc-pVQZ 228 −76.35985 – – – –

cc-pV5Z 400 −76.36877 – – – –

CBS – −76.37812 – – – –

N2 Nqubits FCI ADAPT A+ PBE+ ΔHF SC(A+ PBE) SC(A+ PBE)+ ΔHF

STO-3G 16 −107.65251 −107.65251 −109.36630 −107.86974 −109.36661

V5Z-6 16 −108.88869 −108.88869 −109.34552 −109.09850 −109.34608

V5Z-11 32 −108.89413 −109.11566 −109.37278 −109.27385 −109.37281

cc-pVDZ 52 −109.27698 – – – –

cc-pVTZ 116 −109.37527 – – – –

cc-pVQZ 216 −109.40558 – – – –

cc-pV5Z 360 −109.41505 – – – –

CBS – −109.42498 – – – –

LiH Nqubits FCI ADAPT A+ PBE+ ΔHF SC(A+ PBE) SC(A+ PBE)+ ΔHF

STO-3G 10 −7.88218 −7.88218 −8.02160 −7.89590 −8.02119

pcseg-0 14 −7.98139 −7.98139 −8.0160 −7.99166 −8.01561

6-31G 20 −7.99800 −7.99800 −8.01668 −8.00806 −8.01611

V5Z-4 10 −7.99287 −7.99287 −8.01758 −8.00562 −8.01690

V5Z-7 16 −7.99793 −7.99793 −8.01710 −8.01109 −8.01643

V5Z-10 28 −8.01302 −8.01302 −8.02575 −8.02134 −8.02540

cc-pVDZ 26 −8.01438 – – – –

cc-pVTZ 86 −8.02234 – – – –

cc-pVQZ 190 −8.02386 – – – –

cc-pV5Z 290 −8.02433 – — – –

CBS – −8.02482 – – – –

H2 Nqubits FCI ADAPT A+ PBE+ ΔHF SC(A+ PBE) SC(A+ PBE)+ ΔHF

STO-3G 4 −1.13415 −1.13415 −1.17606 −1.15590 −1.17594

6-31G 8 −1.15003 −1.15003 −1.16911 −1.16196 −1.16913

cc-pVDZ 20 −1.16275 −1.16275 −1.17239 −1.16858 −1.17246

V5Z-8 24 −1.16613 −1.16613 −1.17315 −1.17170 −1.17320

cc-pVTZ 56 −1.17041 – – – –

cc-pVQZ 120 −1.17182 – – – –

cc-pV5Z 220 −1.17223 – – – –

CBS – −1.17265 – – – –

H8 Nqubits FCI ADAPT A+ PBE+ ΔHF SC(A+ PBE) SC(A+ PBE)+ ΔHF

STO-3G 16 −4.24339 −4.24320 −4.45483 −4.32764 −4.45354

6-31G 32 −4.37032 −4.35752 −4.43488 −4.41275 −4.43502

cc-pVDZ 80 −4.42756 – – – –

cc-pVTZ 222 −4.47121 – – – –

cc-pVQZ 474 −4.47702 – – – –

cc-pV5Z 864 – – – – –

CBS – – – – – –

Here, PBE refers to thePBE-basedcorrelation basis-set correctionΔHF refers to theHFbasis-set correction, andSCstands for “self-consistent”. The frozen-core approximation hasbeen used forH2O,N2,
and LiH. The CBS limits are estimated by two-point extrapolations from cc-pVQZ and cc-pV5Z calculations.
a500 iterations with a 14,668-determinant CIPSI initial state.
b1000 iterations with a 10,879-determinant CIPSI initial state.
cThe value is −76.27636 when using an 11,016-determinant CIPSI initial state.
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proved to be the most robust and cost-efficient choice for the basis-set
corrections. Also, in the DBBSC schemes, the STO-3G basis set highly
benefits from theHF basis-set correction, which reduces as the basis set and
the number of qubits increases. When compared to SABS, for example,
STO-3G always displays smaller self-consistent basis-set corrected ADAPT
values and larger HF basis-set corrections. In practice, Pople also noted that
STO-3G is especially good for energies around the equilibrium geometry,
and larger basis sets are clearly required to describe accurately the notor-
iously more difficult dissociation curves and dipole moments.

Finally, one last aspect of the analysis of such large basis-set simulations
is related to the convergence of ADAPT-VQE. Indeed, in VQE-type
computations5, there is no formal guarantee of convergence, and ADAPT-
VQE belongs to such a heuristic family of methods. If, for systems like H2,
LiH, or N2 (see SI, Figs. 3–14), convergence is obtained in a few dozen
iterations, for more complex systems such as H2O, the number of required
iterations strongly increases when a double-zeta basis set is used. Clearly,
Figure 2 in the SI shows thatmore than a thousand iterations are required to
achieve full convergence starting from the HF initial state. This heuristic
aspectmeans that no anticipation of the exact required number of iterations
can bemade. Thismay bemanageable on a real quantumprocessor, but the
use of classical emulationmakes each iterationmore costly in terms of time-
to-solution than the previous one, limiting the overall convergence cap-
abilities. It is possible to force convergenceby replacing theHFstartingpoint
with a CIPSI one. Figure 2 in the SI shows that chemical accuracy can be
easily reached with a well-converged CIPSI solution. However, ADAPT-
VQE struggles to improve the solution, which is expected due to the
enormous size of the parameter space. Furthermore, the CIPSI-based initial
state already contains a significant amount of correlation. This represents a
hard challenge for the ADAPT-VQE procedure, which now needs to pick
the next ansatz operator to improve the existing quantum state. In any case,
starting from an unconverged CIPSI wave function is a robust solution to
strongly reduce the overall computational time. One example is given for
H2O and the V5Z-10 basis set which initially led to a not fully converged
result.With a betterCIPSI starting point, it is possible to recover a fewmilli-
Hartrees (see footnotes in Table 1). It is also possible to change the operator
pool, but the point here is that convergence becomes challenging when
tackling complexelectronic structures, and such computationswouldnot be
possible without GPU-accelerated emulation.

Dissociation curves
We pursue the dissociation energies reported in Fig. 2. Clearly, the simple
ADAPT-VQE/STO-3G level of theory appears quite far from an accurate
description of the dissociation (compared to the calculations in the largest
basis sets), which is achieved with FCI/triple-zeta (and beyond) levels. The
non-corrected ADAPT-VQE values are represented with bold lines,
whereas the corrected values are reported with dashed curves. These dis-
sociation curves are extremely challenging as they involve several regimes of
correlation going from weak correlation happening typically at short dis-
tances to strong correlation effects at large distances. First, we notice that for
all the cases, the basis-set corrected values around the equilibriumare always
substantially closer to the large cc-pV5Z reference values than the uncor-
rected ones and improve with the basis-set size and the use of SABS. For
larger distances, the basis-set requirements appear even more stringent. In
practice, the three dissociation curves manage to converge to high accuracy
thanks to the use of SABS: we obtain nearly a triple-zeta quality forN2 using
the basis-set correction with the V5Z-6 basis set (16 qubits). A triple-zeta-
like quality can be achieved using the larger V5Z-11 basis-set at the price of
more qubits (32 qubits, see Table 2). In the same line, nearly a cc-pV5Z
quality for H2 using the basis-set correction with the V5Z-8 basis set, and
nearly a cc-pV5Zquality for LiHusing the basis-set correctionwith aV5Z-7
basis set. For H2, the basis-set corrected cc-pVDZ curve matches the cc-
pV5Z reference up to a distance of 2.5Å, and a slight discrepancy appears at
long distances. This is consistent with classical computations leading to
convergence to theCBS limit onlywhen the basis-set correction is applied to
the cc-pVTZ basis set (114 qubits). It is possible to fix this issue more

affordably by using a V5Z-8 basis set requiring only 24 qubits. For LiH, it is
also possible to fix the small discrepancies observed on the V5Z-7 basis-set
dissociation curve using a larger V5Z-10 basis set (28 qubits) which reaches
the CBS limit.

Finally, it is important to highlight the good performance of the
DBBSC method for the prediction of the dissociation curve of the triple-
bonded N2 molecule. Indeed, such computation is well-documented in the
literature and known as extremely difficult as it requires both a multi-
reference treatment and various weak correlation effects going from short-
range to charge polarization effects63–66. At the cost of a minimal basis set
(i.e., 16 qubits), our N2 DBBSC computations achieved nearly a cc-pVTZ
quality, providing an accuracy that would have required around 100 logical
qubits in the context of a brute-force simulation. To the best of our
knowledge, these results are the most accurate using a quantum algorithm
when compared to the recent results from the literature. Indeed, a group of
researchersmanaged topredict this dissociation curve using a LocalUnitary
Cluster Jastrow (LUCJ) ansatz coupled to double-zeta basis sets (6-31G and
cc-pVDZ)67. The computation required the use of massive computational
resources, namely hundreds of compute nodes of the Fugaku classical
supercomputer coupled to a QPU. Alternatively, in the context of the fer-
mionic quantum emulator, N2 simulations used ADAPT-VQE coupled to
the 6-31G and def2-SVP (56 qubits) basis sets to perform computation via
approximateMatrixProduct States (MPS)68. In thepresentwork,we achieve
a better accuracy with far fewer qubits and, again, these results can be
systematically improved using larger SABS. Indeed, access to a cc-pVTZ-
like basis set accuracy is possible using the next (larger) SABS in terms of
size, i.e., V5Z-11 (32 qubits).

Dipole moments
Wealso explore the idea of extending the basis-set correction scheme inQC
calculations of molecular properties such as the dipole moment. As pointed
out by Halkier et al.69, the dipole moment also suffers from a slow basis-set
convergence, which can be thought of as an indirect impact of the missing
short-range correlation effects in a finite basis set. Therefore, it is relevant to
apply the basis-set correction to the dipole moment, as already shown in
ref. 49. We report in Table 2 the dipole moments of H2O and LiH. We
calculate the basis-set corrected dipole moment as the expectation value
over the dipole-moment operator over the lastADAPT-VQEwave function
coming out of the self-consistent basis-set correctionmethod.We also add a
posteriori theHFbasis-set correction to thedipolemoment, calculatedas the
difference between theHF dipolemoment in the aug-cc-pV5Z basis set and
theHF dipolemoment in the considered basis set. FromTable 2, we see that
the correlation basis-set correction is not sufficient to converge the dipole
moments. However, the addition of theHF basis-set correction significantly
improves the basis-set convergence. For both molecules, strong improve-
ments are observed with respect to the ADAPT-VQE/STO-3G level. Fur-
ther improvements are observed as the size of the basis set increases. Finally,
we remark the ADAPT-VQE slow convergence in terms of iterations is also
the source of small errors in the dipole moments.

Conclusions
Wedemonstrated the applicability of theDBBSCmethod toQC algorithms
for quantumchemistry.UsingADAPT-VQE, these approacheswere shown
to be able to systematically improve minimal basis-set results by predicting
ground-state energies that are intermediate between double-zeta and triple-
zeta FCI qualities. Overall, the presented self-consistent basis-set corrected
ground-state energies are very close to their non-self-consistent counter-
parts. As the latter a posteriori basis-set correction approach can be very
easily applied to any wave-function QC calculation performed on real
quantum hardware, it provides an affordable improvement strategy for
current QC chemistry computations. The self-consistent basis-set correc-
tion scheme is still useful since it permits the calculationof properties such as
dipole moments thanks to the availability of improved QC densities.

Anadditional reductionof the requiredbasis-set size is providedbyour
SABS approach. Besides being fast, as SABS can be generated within
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seconds, such a “black-box” pivoted Cholesky strategy for the on-the-fly
generation of basis sets has been shown to be competitive and often superior
to available standard choices. It offers systematic computational savings for
large basis sets, reducing significantly the qubit requirements. Thus the
SABS’ usefulness is not limited to QC algorithms as they also offer sys-
tematically improvable solutions for performing reference classical

computations. Indeed, since SABS are user-defined truncated versions of
theDunningbasis sets that canmatch aqubit budget, they alsooffer reduced
cost access to improved accuracy for any quantum-chemistry method.

Our methodology allows us to compute chemically meaningful ener-
gies and properties on systems that would have required far more than 100
logical qubits. For example, the computation of the H2 total energy at the

Fig. 2 | Dissociation curves of H2, LiH, and N2

molecules. Blue and orange lines correspond to
Dunning basis sets using the FCI method. The
notation VXZ stands for the basis set cc-pVXZ.
Green and purple plain lines correspond toADAPT-
VQE calculations without basis-set corrections.
Green and purple dash-dotted lines correspond to
basis-set corrected dissociation curves. Raw data are
available in the SI.
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FCI/cc-pV5Z level,whichwouldhave requiredmore than220 logical qubits,
can be achieved here with only 24 qubits using our basis-set correction
scheme and our SABS technique. Overall, we were able to converge four
systems to the FCI/CBS limit, including He, Be, H2, and LiH. We were also
able to provide accurate dissociation curves for H2, LiH, and N2. Compu-
tations on H2 and LiH required the use of only a single GPU. Since most
quantum-chemistry studies are presently out of reach of quantum com-
puters, this research opens the path to more affordable quantitative
quantum-chemistry simulationsof smallmolecules usingQCalgorithms. In
particular, the present a posteriori basis-set corrections can be easily added
to any type of STO-3GVQE fermionic computations on real hardware5,70,71,
allowing one to improve significantly their accuracy at very little compu-
tational cost. Since adaptive simulations on real hardware are making some
progress27 while the hardware itself improves, basis-set corrected simula-
tions should be progressively possible on future quantum computers pro-
viding a route to FCI/CBSquality computations. This strategy is particularly
suited for resources demanding computations that converge slowly and
require large basis sets associated with large qubit counts. Finally, the
DBBSC method is not limited to ground-state computations and can be
extended to excited states via a linear-response formalism53. This will be the
subject of future QC research.

In this context, besides the state-of-the-art ADAPT-VQE hybrid
quantum-classical algorithm, it would be interesting to revisit accurate fixed
wave-function ansätze72, such as UCCSDT73 and others, to analyze their
convergencewhencoupled to theDBBSCmethod. Inpractice, thepresented
basis-set correction framework is not restricted to a givenQCwave-function
ansatz and can leverage any future QC algorithmic improvements. Our
present DBBSC/SABS methodology still requires the use of qubits either
through quantum hardware or through the use of a classical quantum

emulator. The qubit count is, therefore, our main limitation. The compu-
tations of this paper used up to 32 logical qubits and represent a proof-of-
concept study of what one can presently do with quantum emulation to
prepare the advent of fault-tolerant quantumcomputing74, seeAppendix for
detailed resource estimations. However, state-vector simulations have
limitations due to memory. Indeed, if they are theoretically possible up to
40-50 qubits on very large exascale supercomputers, they start to become
relatively unpractical for quantum-chemistry simulationswhen reaching 36
qubits due to the high computational resources and time-to-solution
requirements. To explore further the chemical electronic space with
quantum algorithms, we are currently upgrading our Hyperion-1 frame-
work to increase our emulatedqubit counts by goingbeyond the state-vector
formalism thanks to various elements from the CUDA-Q SDK75,76 devel-
oped byNVIDIA.We are also presently testing various implementations of
the DBBSC algorithms on available quantum hardware. To conclude, by
reducing the number of qubits required to reach the CBS limit, we expect to
tackle predictive real-world quantum chemistry applications with strategies
applicable to both NISQ and FTQC algorithms.

Methods
The overall methodological procedure is illustrated in Fig. 3. The procedure
startswith the definition of the system, and a standard basis set or our SABS.
After defining the second-quantized Hamiltonian, the quantum state is
prepared on a quantum processing unit (QPU) or a GPU-accelerated
quantum emulator. The basis-set corrections are calculated on the classical
CPU using one of the two DBBSC variants labeled as Strategy 1 and
Strategy 2.

Density-based basis-set correction method
In the infinite-dimensional (antisymmetric) N-electron Hilbert space,
H¼ VNL2ðR3 × f";#g;CÞ, we consider an atomic or molecular system
with Hamiltonian

Ĥ ¼ T̂ þ Ŵee þ V̂ne; ð1Þ

where T̂ is the kinetic-energy operator, Ŵee is the Coulomb electron-
electron operator, and V̂ne is the nuclei-electron potential operator. The
exact ground-state energy is defined as

E0 ¼ min
Ψ2W

hΨ; ĤΨi; ð2Þ

where W ¼ fΨ2 VNH1ðR3 × f";#g;CÞ j hΨ;Ψi ¼ 1g is the space of
admissible wave functions, H1 is the first-order Sobolev space, and 〈 ⋅ , ⋅ 〉
designates the standard inner product of H. In quantum-chemistry
calculations, we normally introduce a one-electron basis set B �
H1ðR3 × f";#g;CÞ and we work in the finite-dimensional N-electron
Hilbert space generated by this basis set, i.e., HB¼ VN span ðBÞ. The FCI
ground-state energy is then defined as

EB
FCI ¼ min

Ψ2WB
hΨ; ĤΨi; ð3Þ

whereWB ¼ fΨ 2 HB j hΨ;Ψi ¼ 1g is the space of B-representable wave
functions. In the CBS limit, the FCI ground-state energy tends to the exact
ground-state energy, i.e.,EB!CBS

FCI ¼ E0, but the convergence is infamously
slow due to short-range electron correlation57.

In the DBBSC method43,49, for the given basis set B, we introduce the
following approximation to the ground-state energy

EB
0 ¼ min

Ψ2WB
hΨ; ĤΨi þ �EB½nΨ�

� �
; ð4Þ

where �EB½nΨ� is a basis-set correction density functional evaluated at the
one-electron density ofΨ. This basis-set correction density functional must
vanish in the CBS limit so that EB

0 properly converges to the exact ground-

Table 2 | Dipole moments (in atomic units) of LiH and H2O
calculated by FCI and self-consistently basis-set corrected
ADAPT-VQE, denoted asSC(A+ PBE) andSC(A+PBE)+ ΔHF
(without and with and the HF basis-set correction,
respectively)

LiH Nqubits FCI SC(A+PBE) SC(A+PBE)+ ΔHF

STO-3G 10 −1.81835 −1.86299 −2.31321

pcseg-0 14 −2.33313 −2.37289 −2.25650

6-31G 20 −2.16646 −2.20768 −2.23674

V5Z-4 10 −2.37818 −2.44145 −2.22886

V5Z-7 16 −2.23095 −2.27789 −2.25618

V5Z-10 28 −2.24997 −2.27458 −2.31438

cc-pVDZ 26 −2.25566 – –

cc-pVTZ 86 −2.29998 – –

cc-pVQZ 190 −2.30361 – –

cc-pV5Z 290 −2.30647 – –

H2O Nqubits FCI SC(A+PBE) SC(A+PBE)+ ΔHF

STO-3G 12 −0.63584 −0.67084 −0.77162

pcseg-0 24 −0.95822 −0.99450 −0.77065

6-31G 24 −0.99020 −1.01898 −0.76342

V5Z-10 24 −0.99305 −1.01887 −0.77634

V5Z-11 30 −0.99185 −1.02170 −0.77737

cc-pVDZ 46 −0.76073 – –

cc-pVTZ 114 −0.75013 – –

cc-pVQZ 228 −0.74994 – –

cc-pV5Z 400 −0.74241 – –

Here, ΔHF corresponds to the HF basis-set correction to the dipole moment, calculated as the
difference between the HF dipole moment in the aug-cc-pV5Z basis set and the HF dipole moment
in the considered basis set. More data are available in the SI.
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state energy, i.e., EB!CBS
0 ¼ E0, but it must be such that it accelerates the

convergence to the CBS limit. In ref. 44, based on the
Perdew–Burke–Ernzerhof (PBE) correlation density functional77, such a
basis-set correction density functional was constructed in a semilocal form

�EB½n� ¼
Z
R3
�eBðnðrÞ;∇nðrÞÞ d r; ð5Þ

wheren(r) and ∇n(r) are thedensity anddensity gradient at point r, and the
function �eBðn;∇nÞ, including how the dependence on the basis set B is
included, can be found in ref. 44. We will now discuss how the DBBSC
method can be adapted to wave-function QC calculations.

Strategy 1: a posteriori basis-set correction. In Strategy 1, we use a
non-self-consistent approximation to Eq. (4). The idea is to calculate the
FCI energy EB

FCI, or a good approximation to it, on a quantum computer,
and then add a posteriori the basis-set correlation correction of Eq. (5)
and a HF basis-set correction, both calculated on a classical computer.
This leads to the following approximation to the ground-state energy

EB
1 ¼ EB

FCI þ �EB½nBHF� þ ΔEB
HF: ð6Þ

As in previous works43,44, the basis-set correlation correction is evaluated at
the HF density in the basis set B, leading to a calculation of �EB½nBHF� with a
marginal computational costwith respect to the cost of calculatingEB

FCI. The
PBE-based basis-set correlation correction only corrects for basis-set
incompleteness errors due to short-range electron correlation. However,
when using small basis sets, a significant part of the basis-set error also
comes from the fact the HF part of the energy is not converged to the CBS
limit. Similarly to Refs. 54,55, we thus add a HF basis-set correction. In the

presentwork,we choose it simply as thedifference between theHFenergy in
the CBS limit, that we estimate as the value E5Z

HF obtained with the cc-pV5Z
basis set78, and the HF energy EB

HF in the basis set B

ΔEB
HF ¼ E5Z

HF � EB
HF: ð7Þ

Wenote that it is also possible to avoid performing aHF calculationwith the
cc-pV5Z basis set for estimating the CBS limit of the HF energy by using a
complementary auxiliary basis set, as in refs. 54,55, but we have not found it
necessary for the present work.

Let us emphasize again that the PBE-based basis-set correction men-
tioned above only takes care of the correlation part and therefore does not
correct the basis-set error of the HF energy. Hence, there is no double
counting between the two basis-set corrections, as shown in Refs. 54,55.

Strategy 2: self-consistent basis-set correction. In Strategy 2, we use
the self-consistent version of the DBBSC method in Eq. (4), using the
basis-set correlation correction of Eq. (5) in the self-consistent part of the
calculation, andwe only add a posteriori the fixedHF basis-set correction.
This leads to the following approximation to the ground-state energy that
can be applied to any variational quantum ansatz

EB
2 ¼ min

Ψ2WB
hΨ; ĤΨi þ �EB½nΨ�

� �
þ ΔEB

HF: ð8Þ

The minimization in Eq. (8) leads to the following self-consistent
Schrödinger equation49

P̂
B ~̂H

B
½nΨB �ΨB ¼ EBΨB; ð9Þ

Fig. 3 | Architecture of the hybrid quantum-classical scheme introducing the
DBBSC method to wave-function QC calculations. The QPU workload can be
either performed by quantum hardware or replaced by a GPU-accelerated quantum
emulator. The input are the definition of the system and the basis set (standard basis
sets or our SABS can be used). In Strategy 1, theQPU/GPUcomputes the expectation

value of the standardHamiltonian hĤi and the non-self-consistent correlation basis-
set correction and the HF basis-set correction are shifted to the CPU of the classical
computer. In Strategy 2, the model includes a self-consistent basis-set correction
potential which is iteratively optimized between QPU/GPU and CPU. The insets
depict the effect of the basis-set corrections for the two strategies.
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where P̂
B
is the projector on the N-electron Hilbert space generated by the

basis set B, i.e.,HB , and ~̂H
B
½n� is the effective Hamiltonian

~̂H
B
½n� ¼ Ĥ þ �̂V

B½n�: ð10Þ

Here, �̂V
B½n� is the basis-set correction one-electron potential operator

�̂V
B½n� ¼

Z
R3
�vB½n�ðrÞ n̂ðrÞ d r; ð11Þ

where �vB½n�ðrÞ ¼ δ�EB½n�=δnðrÞ is the derivative of the basis-set correlation
correction with respect to the density, and n̂ðrÞ is the density operator.

The idea is now to solve iterativelyEq. (9) on aquantumcomputer. The

potential �vB½n�ðrÞ, and therefore the Hamiltonian ~̂H
B
½n�, is iteratively

updated with the density nBi of the wave-function ansatz solutionΨB
i of the

ith iteration. The convergence criterion is reached when the difference
between the last two iterated energy eigenvalues EB

i is less than 0.1 mHa. In
practice, this is fulfilled after two iterations.

Finally, the self-consistent basis-set corrected energy EB
2 can be directly

computed from the last energy eigenvalueEB anddensitynB ¼ nΨB coming
out from the quantum solver as follows

EB
2 ¼ EB þ �EB½nB� �

Z
R3
�vB½nB�ðrÞnBðrÞ d rþ ΔEB

HF; ð12Þ

where the HF basis-set correction ΔEB
HF is identical to the one used in

Strategy 1.
In Strategy 2, the density of theQCwave-function ansatzΨneeds to be

calculated. For this, we calculate the one-particle density matrix

npq;σ ¼ hΨ; âyp;σ âq;σΨi; ð13Þ

where âyp;σ and âq;σ are the creation and annihilation operators, respectively,
for the pth and qth orbitals and with spin σ∈ {↑, ↓}. This is achieved with a
Jordan-Wigner mapping of the operator âyp;σ âq;σ and the state Ψ prepared
using the parameterizedansatz. Thedensitymatrix is thenused to classically
update the Hamiltonian in Eq. (10) and to calculate dipole moments.

GPU-accelerated QPU emulation and shift of the basis-set correc-
tion to classical resources. The DBBSC method does not increase the
qubit count as the basis-set correction is performed classically using a
density functional and a HF correction. In practice, such computations
present no advantage to be performed at the QC level since they would
consume a large number of qubits without accuracy benefit over its
classical counterpart. Therefore a hybrid QC wave-function/classical
DBBSC approach is highly preferable. In this work, VQE/DBBSC com-
putations are performed classically on GPU-accelerated computing
nodes, the GPUs replacing the quantum processing unit (QPU) through
the use of a classical quantum emulator. The basis-set correction con-
tributions can be then shifted to the unused CPUs to maximize the
computational efficiency while the computationally challenging VQE

algorithm is fully offloaded on GPUs for optimal time-to-solution per-
formances. Of course, the proposed hybrid schemes are also fully tract-
able on a real quantum computer, as the basis-set correction
contributions can be entirely shifted to classical resources harnessing
GPUs/CPUs to preserve the qubit count while the core wave-function
ansatz is maintained on the QPU.

System-adapted basis-set generation
Within the DBBSCmethod, the natural choice for basis sets is the Dunning
correlation-consistent basis-set family that offers a path to a reliable con-
vergence to the CBS limit, as demonstrated in initial DBBSC classical
quantum-chemistry studies43–55. For QC calculations, such basis sets are
unfortunately usually out of reach of quantum hardware/emulators as they
are associatedwith very large qubit counts. In the present section,we address
the task of generating atomic-orbital (AO) basis sets under a basis-size
budget, with controllable accuracy79. We propose a mathematical formula-
tion of this goal in terms of a constraint optimization problem, as follows.

Given a molecule composed of Natm atoms, with fixed nuclear coor-
dinates frag1≤ a≤Natm

, let

B ¼ fχμg1≤ μ≤Nbas
¼

[Natm

a¼1

fχaμðr� raÞg1≤ μ≤Na
bas

denote a spatial basis set of atom-centered GTOs. It is assumed that a one-
electron density, denoted by nB0 , is available after a converged ground-state
energy minimization procedure (e.g., HF or CI). Our main purpose is to a
posteriori extract subsets of the given “large" basis set B, denoted by BI ¼
fχμgμ2I � B for any index subset I⊆ {1,…,Nbas}, achieving (i) a target size,

and (ii)minimal accuracy loss on the givendensitynB0 used as a reference. In
the present computing scheme, since the DBBSCmethod uses the cc-pV5Z
basis set for theHFbasis-set correction,we chooseB = cc-pV5Z. Inpractice,
this choice is motivated by the fact that such a quintuple-zeta basis set fairly
approaches chemical accuracy compared to quasi-exact all-electron
numeric atom-centered orbital computations80. Hence, given a target basis
sizeM smaller than Nbas, we seek the optimal index subset, denoted by IM,
thatminimizes the best approximation error of the density nB0 over the set of
BI-representable one-electron densities, for any I ⊆ {1, …, Nbas} with
∣I∣ =M, where ∣ ⋅ ∣denotes the cardinal of a set, or, inotherwords,we solve an
optimization problem under constraints:

IM :¼ arg min
I � f1; . . . ;Nbasg

jIj ¼ M

min
nBI

knB0 � nBIk;
ð14Þ

where ∥ ⋅ ∥ is a given norm for functions over R3. In the present work,
we use the norm induced by the Coulomb inner product
hu; vic :¼

R
R3

R
R3 d r d r0 uðrÞvðr0Þjr� r0j�1. Let us emphasize that Eq.

(14) requires knowledge of the density nB0 , which is assumed to be pre-
computed on a classical computer. Such quantity is available in the
framework of theDBBSC scheme sinceHF computations are systematically
performed at the cc-pV5Z level to estimate the CBS limit of the HF energy.

Table 3 | Walltime (in minutes) required to grow the wave-function ansatz of size Nadapt for a given molecular system using
Hyperion-1 state-vector emulator on Ngpus NVIDIA GPUs

Molecule/basis set Nadapt Nqubits Ngpus A100 walltime [min] H100 walltime [min]

H2O/6-31G 500 24 1 644 503

H12/STO-3G 500 24 1 174 134

H14/STO-3G 300 28 8 283 184

H16/STO-3G 100 32 128 450 147

The results have been obtained on A100 (80 GB) and H100 (80 GB) GPUs using CUDA Toolkit 12.0 and NVIDIA HPC SDK 23.3.
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The problem in Eq. (14) can be solved as follows. Our approach is to
identify a greedy procedure for discarding elements of the full AO-product
set that spans the space containing the reference density nB0 , which admits
the expansion

nB0 ¼
XNbas

μ;ν¼1

Dμνχμχν ;

where D =CC⊤ is the density matrix and C is the Nbas ×Nocc matrix of the
coefficients in theAObasis of theNocc occupiedmolecular orbitals.Weplan
to achieve this by eliminating linear dependencies present in the AO-
product set81. ThepivotedCholeskydecomposition (PCD)of amatrix82 is an
algebraic tool for eliminating linear dependencies occurring betweenmatrix
rows (resp. columns), which may be interpreted as an iterative greedy
procedure for discarding elements that do not contribute to the full row
(resp. column) space, up to an orthogonal projection error tolerance. PCD
has been previously applied to the auxiliary basis-set generation for density
fitting81,83,84. In the present work, we employ PCD within a new scheme,
named system-adaptedbasis-set (SABS) generation, for solving theproblem
in Eq. (14).

Let us formulate our scheme in detail. Prior to the AO-product
selection and in order to ensure orbital symmetry of the resulting SABS, we
pre-process the initial basisB andfirst contract all angular components (e.g.,
all three p-type components px, py, pz) ofGTOs.To this end,we consider the
partition fBigNorb

i¼1 of {1,…,Nbas}, each Bi being an index block containing all
angular components of a single GTO in B, and theNorb ×Nbas contraction
matrix P, defined for any 1 ≤ i ≤Norb as Pij = 1 if j∈ Bi and zero otherwise.
Next, we define the four-index tensor T with entries

Tpqrs ¼
XNbas

μ;ν;κ;λ¼1

PpμPqνDμν hχμχν ; χκχλic DκλPrκPsλ;

and fold pairwise its first two and its last two dimensions, in order to form
the Nprod ×Nprod Gram matrix of weighted AO products, denoted by G,
with Nprod ¼ ðNorbÞ2. As a last pre-processing step, we discard rows and
columns ofG corresponding to productsmade of components not centered
on the same atom and denote the resulting submatrix A. Now, PCD is
applied toA, using themachine epsilon as a tolerance threshold, yielding an
index set sorted in pivot-descending order. Given a targetM, we define the
selectedAO-product index set, denoted by SCholM , as theM-first pivot indices.
Lastly, we recover the underlying AO index set

JM ¼
[

ðp1 ;p2Þ2SCholM

fp1; p2g;

and post-process it in order to ensure that the same GTO-parameter set
is assigned to all atoms of the same chemical type. For this purpose,
the new basis set associated to a chemical type is the union of parameters of
those GTOs in BJM

that are centered on any atom of that type. This yields
a solution IM⊇ JM to our problem in Eq. (14) and the resulting SABS isBIM

.
Note that our generation schemedirectlyfixes the sizeMof the selected

products, i.e., jSCholM j ¼ M. The actual size of theAObasis set, equal to ∣IM∣, is
only implicitly controlled during our procedure. In practice, as numerical
results show, ∣IM∣ is very close to M for s- and p-type basis sets, while it
remains the same order asM for higher angular-momentum orbital types.
Overall, the SABS generation approach is extremely fast and offers access to
compact basis sets, specifically adapted to a given system and user-defined
qubit budget. Examples of SABS generation can be found in the SI.

We note that the adaptation and generation of basis sets to the mole-
cular geometry has been the subject of several publications exploring other
strategies. Among them, we can cite some recent works85,86, but also some
other research in the context of quantumcomputing focusing on theneed to

limit the qubit requirements through basis-set reoptimization such as
refs. 87,88. Alternatively, Kottman and Aspuru89 proposed a basis-set-free
approach through an adaptive representation using pair-natural orbitals
which was tested up to 22 qubits.

Table 4 | CNOT-gate counts for qubit and qubit-excitation-
based (QEB) operator pools

H2 Nqubits NCNOT

(if QEB)
NCNOT

(if qubit)
Nop Nadapt iter

STO-3G 4 13 6 1 1

6-31G 8 71 34 7 7

cc-pVDZ 20 233 110 21 21

V5Z-8 24 395 186 35 35

H4 Nqubits NCNOT

(if QEB)
NCNOT

(if qubit)
Nop Nadapt iter

STO-3G 8 207 98 19 19

H6 Nqubits NCNOT

(if QEB)
NCNOT

(if qubit)
Nop Nadapt iter

STO-3G 12 2437 1134 199 199

H8 Nqubits NCNOT

(if QEB)
NCNOT

(if qubit)
Nop Nadapt iter

STO-3G 16 12677 5870 999 999

6-31G 32 8855 4090 685 685

He Nqubits NCNOT

(if QEB)
NCNOT

(if qubit)
Nop Nadapt iter

pc-seg0 4 19 10 3 3

6-31G 4 19 10 3 3

cc-pVDZ 10 58 28 6 6

Be Nqubits NCNOT

(if QEB)
NCNOT

(if qubit)
Nop Nadapt iter

STO-3G 8 39 18 3 3

pc-seg0 10 58 28 6 6

6-31G 16 207 98 19 19

cc-pVDZ 26 292 136 26 26

LiH Nqubits NCNOT

(if QEB)
NCNOT

(if qubit)
Nop Nadapt iter

STO-3G 10 90 44 10 10

pc-seg0 14 258 124 26 26

6-31G 20 511 242 47 47

VQZ-4 10 90 44 10 10

V5Z-4 10 90 44 10 10

V5Z-7 16 291 138 27 27

V5Z-10 28 1083 506 91 91

H2O Nqubits NCNOT

(if QEB)
NCNOT

(if qubit)
Nop Nadapt iter

STO-3G 12 729 342 63 63

6-31G 24 12657 5862 999 999

V5Z-11 30 12647 5858 999 999

N2 Nqubits NCNOT

(if QEB)
NCNOT

(if qubit)
Nop Nadapt iter

STO-3G 16 4868 2256 386 386

V5Z-6 16 9714 4492 758 758

V5Z-11 32 11718 5420 916 916

Nop is the number of operators in the final wave-function ansatz, and Nadapt iter is the number of
ADAPT-VQE iterations achieved and at which we collect the values in the Table.

The numbers of CNOT gates, NCNOT, are evaluated as N3
single þ 13Ndouble for the QEB pool, and as

N2
single þ 6Ndouble for thequbit pool, whereNsimple is the number of single-qubit operators andNdouble

is the number of two-qubit operators.
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Computational details
In the present study, we perform ADAPT-VQE computations20 using the
Qubit-Excitation-Based pool of operators, which is considered a standard22.
Additional details about the ADAPT-VQE methodology can be found in
the SI. The communication of the Hamiltonian from the CPU to the QPU/
GPU is done by using standard FCIDUMP files to communicate the one-
and two-electron integrals to the QPU/GPU software in order to construct
the fermion operators. TREXIO files90 are also useful to communicate a
wider range of relevant information.

ADAPT-VQE computations were performed using the Hyperion-1
GPU-accelerated state-vector sparse emulator91 up to 32 qubits.Hyperion-1
uses classical computing systems and is groundedonanefficientmulti-GPU
ensemble of fast custom sparse linear-algebra libraries accelerating Hyper-
ion-1’s exact/noiseless simulations. In this paper, computations were per-
formedonNVIDIADGXA100nodes (8× 80GBA100GPUs per node) and
NVIDIA DGX H100 nodes (4× & 8× 80GB H100 GPUs per node). QC
calculations being stronglymemory-dependent, a single GPU can carry out
a 20-qubit ADAPT-VQE simulation depending on the nature (i.e.,
Hamiltonian sparsity) of the system whereas a single node (8 GPUs) can
handle up to 28 qubits.Multi-node computations are required beyond such
a qubit count. Further details about Hyperion-1 and its full capabilities will
be given in a forthcoming publication. Convergence for all ADAPT-VQE
computations were set to 10−6 Ha. Most computations started from a HF
initial state. For selected ones (indicated in the text and Tables), we started
the ADAPT-VQE procedure from a rough configuration-interaction
perturbatively-selected-iteratively (CIPSI)92 initial state (converged to only
10−2 Ha) to save some computational time within Hyperion-1. This reflects
a commonly adopted strategy where a multi-determinant initial state is
employed instead of a single HF determinant to increase the ground-state
support in the initial state. The Quantum State Preparation of such
classically-derived CIPSI wave functions has been studied in the context of
VQE25 and QPE26. Also, we report in Table 3, the walltime required for
several ground-state energy calculations. As one can see, the walltime is not
only a function of the number of qubits, sparsity is also important. For
example, theHamiltonian of theH12molecule is sparser than the one of the
water molecule resulting in a faster convergence. Besides the increased
computing power ofH100GPUs leading to improved time-to-solution, our
results also highlight the importance of fast node-to-node interconnects
when performing large-scale quantum emulation. Indeed, the benefit of
H100 over A100 is striking for the largest 32 qubits simulations on 16 nodes
where an improvement of factor 3was observed on theDGXH100 systems.
Such speedup is, therefore, also partially related to higher node-to-node
bandwidth observed on DGX H100 versus A100 systems.

Appendix: CNOT counts
CNOT-gate counts for qubit and qubit-excitation-based (QEB) operator
pools are presented in Table 4.

Data availability
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