
THE JOURNAL OF CHEMICAL PHYSICS 135, 084119 (2011)

Closed-shell ring coupled cluster doubles theory with range separation
applied on weak intermolecular interactions

Julien Toulouse,1,a) Wuming Zhu,2 Andreas Savin,1 Georg Jansen,3

and János G. Ángyán4

1Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, 75005 Paris, France
2Department of Physics, Hangzhou Normal University, HangZhou XiaSha, 310036 ZheJiang, China
3Fakultät für Chemie, Universität Duisburg-Essen, 45117 Essen, Germany
4CRM2, Institut Jean Barriol, Nancy University and CNRS, 54506 Vandoeuvre-lès-Nancy, France

(Received 18 June 2011; accepted 1 August 2011; published online 26 August 2011)

We explore different variants of the random phase approximation to the correlation energy derived
from closed-shell ring-diagram approximations to coupled cluster doubles theory. We implement
these variants in range-separated density-functional theory, i.e., by combining the long-range random
phase approximations with short-range density-functional approximations. We perform tests on the
rare-gas dimers He2, Ne2, and Ar2, and on the weakly interacting molecular complexes of the S22
set of Jurečka et al. [P. Jurečka, J. Šponer, J. Černý, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985
(2006)]. The two best variants correspond to the ones originally proposed by Szabo and Ostlund
[A. Szabo and N. S. Ostlund, J. Chem. Phys. 67, 4351 (1977)]. With range separation, they reach
mean absolute errors on the equilibrium interaction energies of the S22 set of about 0.4 kcal/mol,
corresponding to mean absolute percentage errors of about 4%, with the aug-cc-pVDZ basis
set. © 2011 American Institute of Physics. [doi:10.1063/1.3626551]

I. INTRODUCTION

In the last decade, there has been a revived interest in
the random phase approximation (RPA) and other related ap-
proximations for calculating the electron correlation energy
of atomic, molecular, and solid-state systems.1–41 One partic-
ularly appealing feature of RPA is its correct description of
dispersion forces at large separation.42–44 However, RPA is
a poor approximation to short-range correlations,1 and, in a
Gaussian localized basis, RPA calculations have a slow con-
vergence with respect to the basis size.2 A promising strategy
is thus to combine a long-range RPA-type approximation with
a short-range density-functional approximation,15–17, 28, 31, 33

hence avoiding the inaccurate description and slow basis-set
convergence of short-range correlations in RPA.

Among the different formulations of RPA, the one based
on a ring-diagram approximation to coupled cluster doubles
(CCD) theory14, 45–47 is particularly attractive since it avoids
the numerical integration over the adiabatic connection and
in principle is amenable to a fast algorithm.14 However, due
to the fact that the ring approximation breaks the antisymme-
try property of the coupled-cluster amplitudes, several non-
equivalent variants of ring CCD can be constructed, espe-
cially when the exchange terms are included. In this paper,
we explore these various ring CCD variants for closed-shell
systems and show that some of them correspond to the RPA
correlation energy expressions originally proposed by Szabo
and Ostlund.48, 49 We apply these closed-shell ring CCD vari-
ants in the context of range-separated density-functional the-
ory and test them on rare-gas dimers and on the weakly inter-
acting molecular complexes of the S22 set of Jurečka et al.50

a)Electronic mail: julien.toulouse@upmc.fr.

II. THEORY

We first show how to rigorously combine a long-range
CCD calculation with a short-range density functional (for
details on range-separated density-functional theory, see, e.g.,
Refs. 33, 51, and 52). We start from a self-consistent range-
separated hybrid (RSH) calculation52

ERSH = min
�

{〈
�

∣∣T̂ + V̂ext + Ŵ lr
ee

∣∣�〉 + Esr
Hxc[n�]

}
, (1)

where T̂ is the kinetic energy operator, V̂ext is the external
potential operator (e.g., nuclei-electron interaction), Ŵ lr

ee is a
long-range electron-electron interaction operator, Esr

Hxc[n] is
the associated short-range Hartree-exchange-correlation den-
sity functional, and � is a single-determinant wave function
with density n�. The long-range interaction is constructed
with the error function, wlr

ee(r) = erf(μr)/r , where μ is a pa-
rameter whose inverse gives the range of the separation. The
minimizing RSH single-determinant wave function is denoted
by �0 and its associated (approximate) density by n0. In prin-
ciple, the exact ground-state energy can be obtained from the
RSH energy by adding the long-range correlation energy Elr

c

E = ERSH + Elr
c . (2)

Several formally exact expressions can be derived for Elr
c .

The one that is most convenient for applying coupled-cluster
theory is

Elr
c = 〈� lr|Ĥ lr[n]|� lr〉 − 〈�0|Ĥ lr[n]|�0〉

+�Esr
Hxc −

∫
vsr

Hxc[n](r) �n(r)dr, (3)

where � lr is the ground-state wave function of the long-range
interacting Hamiltonian Ĥ lr[n] = T̂ + Ŵ lr

ee + V̂ext + V̂ sr
Hxc[n]
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with the short-range Hartree-exchange-correlation potential
operator V̂ sr

Hxc[n] = ∫
vsr

Hxc[n](r) n̂(r)dr written with the den-
sity operator n̂(r) and vsr

Hxc[n](r) = δEsr
Hxc[n]/δn(r). The

long-range wave function, � lr, is associated with the exact
density, n. In Eq. (3), the last two terms are the variation of
the energy functional, �Esr

Hxc = Esr
Hxc[n] − Esr

Hxc[n0], and the
variation of the associated potential expectation value due to
the variation of the density from the RSH one to the exact
one, �n = n − n0. The contribution of these last two terms is
expected to be small since it is of second order in �n

�Esr
Hxc −

∫
vsr

Hxc[n](r) �n(r)dr

= −1

2

∫∫
δEsr

Hxc[n0]

δn(r)δn(r′)
�n(r)�n(r′)drdr′ + O(�n3). (4)

Using a spin-unrestricted CCD ansatz (see the
Appendix for a review of CCD theory) for the long-
range wave function, |� lr

CCD〉 = exp(T̂2)|�0〉, where
T̂2 = (1/4)

∑
ijab(tab

ij )lrâ
†
aâi â

†
bâj is the cluster operator

for double excitations written in terms of the long-range
amplitudes (tab

ij )lr and occupied (i, j ) and virtual (a, b)
RSH spin-orbital creation and annihilation operators, we
approximate the long-range correlation energy as

Elr
c,CCD = 〈�0|Ĥ lr[n0]|� lr

CCD〉 − 〈�0|Ĥ lr[n0]|�0〉. (5)

In Eq. (5), the variation of the density has been neglected,
n ≈ n0 (and thus the contribution of Eq. (4) vanishes), which
seems appropriate if we define the coupled-cluster density as
the projected one, 〈�0|n̂(r)|� lr

CCD〉 = 〈�0|n̂(r)|�0〉 = n0(r),
which does not vary since the CCD wave function does not
contain single excitations. The long-range correlation energy
can be calculated as, for real spin orbitals,

Elr
c,CCD = 1

4
tr[BlrTlr] = 1

2
tr[KlrTlr], (6)

where B lr
ia,jb = 〈ab||ij 〉lr and K lr

ia,jb = 〈ab|ij 〉lr are the
matrices of antisymmetrized and non-antisymmetrized two-
electron integrals with long-range interaction wlr

ee(r), respec-
tively, and T lr

ia,jb = (tab
ij )lr is the amplitude matrix. The second

equality in Eq. (6) is due to the antisymmetry property of the
coupled-cluster amplitudes T lr

ia,jb with respect to the exchange
of the indices i and j . These amplitudes can be determined
by the usual coupled-cluster equations, replacing the normal
Hamiltonian by the long-range one Ĥ lr[n0], which amounts
to using the RSH orbital eigenvalues and the long-range two-
electron integrals. The present range-separated CCD method
can be seen as a special case of the more general range-
separated coupled-cluster approach of Goll et al.53 which also
includes single excitations and possibly perturbative triples.

We now consider the ring-diagram approximation for
closed-shell systems. A number of closed-shell ring CCD
variants can be defined. In the ring approximation, without
exchange terms, the direct RPA (dRPA, also sometimes re-
ferred to as RPA or time-dependent Hartree) amplitudes for
spin-singlet excitations, 1Tlr

dRPA, are obtained by the follow-

ing Riccati equation:14

1Klr + 1Llr 1Tlr
dRPA + 1Tlr

dRPA
1Llr + 1Tlr

dRPA
1Klr 1Tlr

dRPA = 0,

(7)

with the spin-adapted matrices 1K lr
ia,jb = 2〈ab|ij 〉lr and

1Llr
ia,jb = �εia,jb + 1K lr

ia,jb, where �εia,jb = (εa − εi)δij δab

is the matrix of the RSH orbital eigenvalue differences (i, j
and a, b refer now to occupied and virtual spatial orbitals, re-
spectively). Contracting the dRPA amplitudes with the non-
antisymmetrized two-electron integrals 1Klr gives the dRPA
long-range correlation energy (also referred to as dRPA-I in
Ref. 54)

Elr
c,dRPA = 1

2
tr
[

1Klr 1Tlr
dRPA

]
. (8)

Contracting the dRPA amplitudes with the spin-singlet-
adapted antisymmetrized two-electron integrals 1B lr

ia,jb

= 2〈ab|ij 〉lr − 〈ab|ji〉lr gives the dRPA + SOSEX (or just
SOSEX for short) long-range correlation energy23, 28

Elr
c,SOSEX = 1

2
tr
[

1Blr 1Tlr
dRPA

]
. (9)

Similarly, in the ring approximation with exchange terms,
that we will refer to as RPAx (also sometimes referred to as
RPA or time-dependent Hartree-Fock), the singlet and triplet
amplitudes 1Tlr

RPAx and 3Tlr
RPAx are obtained by the equations

1Blr + 1Alr 1Tlr
RPAx + 1Tlr

RPAx
1Alr + 1Tlr

RPAx
1Blr 1Tlr

RPAx = 0

(10)

and
3Blr + 3Alr 3Tlr

RPAx + 3Tlr
RPAx

3Alr + 3Tlr
RPAx

3Blr 3Tlr
RPAx = 0,

(11)

where 1Alr
ia,jb = �εia,jb + 2〈ib|aj 〉lr − 〈ib|ja〉lr, 3Alr

ia,jb

= �εia,jb − 〈ib|ja〉lr, and 3B lr
ia,jb = −〈ab|ji〉lr. Using

these amplitudes in the CCD correlation energy expression
of Eq. (A9) gives what we call the RPAx-II long-range
correlation energy (see, also, Refs. 48, 49, 54, and 56)

Elr
c,RPAx-II = 1

4
tr
[

1Blr 1Tlr
RPAx + 33Blr 3Tlr

RPAx

]
, (12)

which is equivalent to the plasmon formula expression of
McLachlan and Ball.57 Using the same amplitudes in the al-
ternative CCD correlation energy expression of Eq. (A11)
gives another RPAx correlation energy which is the second
approximation proposed by Szabo and Ostlund [Eq. (3.22)
of Ref. 49] as a zeroth iteration of the self-consistent RPA
scheme58–60

Elr
c,RPAx-SO2 = 1

2
tr
[1Klr 1Tlr

RPAx

]
. (13)

Equations (12) and (13) are not equivalent because the ring
approximation does not preserve the antisymmetry of the am-
plitudes with respect to the exchange of two spin-orbital in-
dices. Using the same amplitudes in place of the singlet and
triplet restricted amplitudes in the CCD correlation energy ex-
pression of Eq. (A23) gives another alternative RPAx correla-
tion energy corresponding to the first approximation proposed
by Szabo and Ostlund [Eq. (3.20) of Ref. 49, or Eq. (17) of
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FIG. 1. Interaction energy curves of He2, Ne2, and Ar2 calculated by the full-range (left) and range-separated (right) RPA methods with the aug-cc-pV6Z basis
set. Cubic splines are used to interpolate between the calculated points. The accurate curves are from Ref. 55.

Ref. 48] which is an alternative zeroth iteration of the self-
consistent RPA scheme

Elr
c,RPAx-SO1 = 1

2
tr
[1Blr (1Tlr

RPAx − 3Tlr
RPAx

)]
. (14)

This last variant is the one preferred by Szabo and Ostlund
because in a supermolecule approach it consistently gives a
dispersion coefficient C6 identical to the one given by the
Casimir-Polder formula applied with the RPAx polarizabili-
ties of the fragments, which is not the case for the other vari-
ants RPAx-II and RPAx-SO2. On the other hand, among the
three RPAx methods proposed here, RPAx-SO2 has the ad-
vantage of involving only singlet excitations and thus is not
subject to triplet instabilities. The RPAx method of Refs. 15
and 33, that we will rename RPAx-I here, is yet another alter-
native correlation energy expression that involves only singlet
excitations, but for which, as far as we know, the numerical

integration over the adiabatic connection cannot be avoided
(although in practice a single-point quadrature works well31).
It can be shown that the SOSEX, RPAx-I, RPAx-II, RPAx-
SO1, and RPAx-SO2 correlation energies all correctly reduce
to the MP2 correlation energy at second order in the electron-
electron interaction, but dRPA does not. Finally, we note that
an another RPAx correlation energy variant, first proposed by
Fukuda et al.61 and defined as 2Ec,RPAx-II − Ec,MP2, has also
been discussed in the literature.41, 47–49 It, obviously, correctly
reduces to the MP2 correlation energy at second order but
numerical experience41 shows that this variant gives very in-
accurate correlation energies.

III. COMPUTATIONAL DETAILS

All calculations have been done with a development ver-
sion of MOLPRO 2008,63 implementing Eqs. (7)–(14). We
first perform a self-consistent RSH calculation with the short-
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TABLE I. Interaction energies (in kcal/mol) for the complexes of the S22 set from the range-separated RPA methods with the aug-cc-pVDZ basis set. For
comparison, range-separated CCD results (without the ring approximation) are also reported. The geometries of complexes are taken from Ref. 50 and the
reference interaction energies in the rightmost column are taken as the CCSD(T)/CBS estimates of Ref. 62. Mean errors (ME), mean absolute errors (MAE),
and mean absolute percentage errors (MA%E) are given.

No. Complex dRPA SOSEX RPAx-I RPAx-II RPAx-SO1 RPAx-SO2 CCD Reference

Hydrogen-bonded complexes (HB7)
1 (NH3)2 −2.87 −2.92 −3.07 −3.26 −3.20 −3.18 −3.20 −3.17
2 (H2O)2 −5.16 −5.23 −5.33 −5.42 −5.40 −5.39 −5.41 −5.02
3 Formic acid dimer −20.30 −20.55 −20.81 −20.98 −20.94 −20.98 −20.94 −18.80
4 Formamide dimer −16.51 −16.68 −17.03 −17.48 −17.32 −17.27 −17.25 −16.12
5 Uracil dimer C2h −21.03 −21.36 −21.80 −22.58 −22.04 −22.15 −22.00 −20.69
6 2-pyridoxine/2-aminopyridine −17.07 −17.28 −17.81 −18.89 −18.25 −18.20 −18.08 −17.00
7 Adenine/thymine WC −16.53 −16.73 −17.29 −18.25 −17.81 −17.69 −17.62 −16.74

ME −0.28 −0.46 −0.80 −1.33 −1.06 −1.05 −0.99 0.00
MAE 0.42 0.53 0.83 1.33 1.06 1.05 0.99 0.00
MA%E 3.7% 4.3% 5.6% 8.6% 6.8% 6.6% 6.4% 0.0%

Complexes with predominant dispersion contribution (WI8)
8 (CH4)2 −0.30 −0.31 −0.42 −0.56 −0.53 −0.51 −0.51 −0.53
9 (C2H4)2 −0.97 −1.02 −1.28 −1.66 −1.52 −1.47 −1.45 −1.50
10 Benzene/CH4 −0.92 −0.98 −1.23 −1.75 −1.47 −1.43 −1.40 −1.45
11 Benzene dimer C2h −1.27 −1.38 −2.05 −4.28 −2.72 −2.61 −2.40 −2.62
12 Pyrazine dimer −2.99 −3.10 −3.78 −6.12 −4.49 −4.34 −4.14 −4.20
13 Uracil dimer C2 −8.22 −8.46 −9.38 −11.93 −10.25 −10.13 −9.94 −9.74
14 Indole/benzene −2.58 −2.75 −3.70 −7.12 −4.64 −4.48 −4.17 −4.59
15 Adenine/thymine stack −9.38 −9.68 −10.97 −15.14 −12.23 −12.02 −11.72 −11.66

ME 1.21 1.08 0.43 − 1.53 − 0.20 − 0.09 0.07 0.00
MAE 1.21 1.08 0.43 1.53 0.20 0.13 0.13 0.00
MA%E 34.3% 31.2% 13.9% 31.7% 3.1% 2.5% 3.8% 0.0%

Mixed complexes (MI7)
16 Ethene/ethyne −1.31 −1.36 −1.48 −1.67 −1.58 −1.57 −1.55 −1.51
17 Benzene/H2O −2.90 −2.96 −3.16 −3.52 −3.34 −3.30 −3.29 −3.29
18 Benzene/NH3 −1.83 −1.88 −2.11 −2.57 −2.33 −2.29 −2.27 −2.32
19 Benzene/HCN −4.20 −4.31 −4.54 −4.98 −4.72 −4.71 −4.65 −4.55
20 Benzene dimer C2v −1.92 −2.00 −2.39 −3.40 −2.77 −2.70 −2.61 −2.71
21 Indole/benzene T-shape −4.54 −4.65 −5.17 −6.57 −5.66 −5.57 −5.44 −5.62
22 Phenol dimer −6.48 −6.62 −7.07 −8.16 −7.49 −7.43 −7.35 −7.09

ME 0.56 0.47 0.17 −0.54 −0.11 −0.07 −0.01 0.00
MAE 0.56 0.47 0.17 0.54 0.11 0.09 0.11 0.00
MA%E 15.8% 13.5% 5.0% 13.6% 2.7% 2.2% 2.6% 0.0%

Total ME 0.53 0.40 −0.04 −1.15 −0.44 −0.39 −0.30 0.00
Total MAE 0.75 0.71 0.47 1.15 0.44 0.41 0.40 0.00
Total MA%E 18.7% 17.0% 8.4% 18.6% 4.1% 3.7% 4.3% 0.0%

range Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional of Ref. 64 and add the long-range RPA correla-
tion energies calculated with RSH orbitals. The range separa-
tion parameter is taken at μ = 0.5 bohr−1, according to pre-
vious studies,65 without trying to readjust it. For the rare-gas
dimers, we also carry out full-range RPA calculations using
PBE orbitals66 for comparison. The Riccati equation (7) is
solved by decomposing the matrix 1Llr into diagonal and off-
diagonal parts and iteratively extracting 1Tlr

dRPA from its prod-
uct with the diagonal part and updating it in the other terms,
and similarly for Eqs. (10) and (11). For RPAx-I calculations,
the adiabatic-connection integration is performed by a 8-point
Gauss-Legendre quadrature for the rare-gas dimers and by a
single-point quadrature [Eq. (14) of Ref. 31] for the S22 set.
We use the correlation-consistent basis sets of Dunning.67, 68

Core electrons are kept frozen (i.e., only excitations of

valence electrons are considered). Basis set superposition er-
ror is removed by the counterpoise method. The geometries
of the complexes of the S22 set are taken from Ref. 50. The
geometries of the isolated monomers are fixed to those in the
dimers; thus, the so-called monomer deformation energy is
not included in the interaction energy. For each method, mean
error (ME), mean absolute error (MAE), and mean absolute
percentage error (MA%E) are given using as a reference the
CCSD(T) values extrapolated to the complete basis set (CBS)
limit of Takatani et al.62

In our present implementation, the computational cost of
all the RPA methods used here formally scales as N3

v N3
o for

large basis sets, where Nv and No are the numbers of virtual
and occupied orbitals, respectively. The computational cost
of the CCD (or CCSD) method without the ring approxima-
tion is higher and it scales as N4

v N2
o for large basis sets.69
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Of course, far better scalings should be obtained by using
integral-direct methods and resolution-of-identity/Cholesky-
decomposition techniques.14

IV. RESULTS

The interaction energy curves of He2, Ne2, and Ar2 cal-
culated by the full-range and range-separated RPA methods
are compared in Fig. 1. We use the large aug-cc-pV6Z basis
set to ensure that the full-range calculations are converged.
Full-range dRPA and SOSEX strongly underestimate the in-
teraction energies, while full-range RPAx-II and RPAx-SO1
strongly overestimate them. The best full-range methods are
RPAx-I and RPAx-SO2, which is in agreement with the re-
cent study of Heßelmann.41, 70 In passing, we note that the
full-range RPAx-I method better performs for Ne2 and Ar2

when using PBE orbitals than when using HF orbitals, as
done in Ref. 33. Range separation greatly improves the accu-
racy of all the RPA variants. However, range-separated dRPA
and SOSEX still underestimate the interaction energies, and
range-separated RPAx-II significantly overestimates the inter-
action energy of Ar2. Range-separated RPAx-I, RPAx-SO1,
and RPAx-SO2 give the most reasonable interaction energy
curves.

The interaction energies for the complexes of the S22 set
calculated with the range-separated RPA methods with the
aug-cc-pVDZ basis set are given in Table I. For comparison,
range-separated CCD results (without the ring approxima-
tion) are also reported. Although the aug-cc-pVDZ basis
set may appear small, range-separated RPA methods are
weakly dependent on the basis size,15, 33 and indeed it was
estimated in Ref. 31 that when going from the aug-cc-pVDZ
to the aug-cc-pVTZ basis set the range-separated RPAx-I
interaction energies of the S22 set are lower by at most 7%,
and the corresponding total MA%E decreases by less than
2%. Therefore, we believe that the aug-cc-pVDZ basis set
is sufficient to compare the different range-separated RPA
methods.

The S22 set includes seven hydrogen-bonded complexes
(HB7 subset), eight weakly interacting complexes with pre-
dominant dispersion contributions (WI8 subset), and seven
mixed complexes also featuring multipole interactions (MI7
subset). The trends are quite different for the HB7 subset on
the one hand, and the WI8 and MI7 subsets on the other hand.
It was previously argued that the general overestimation of
the interaction energies of hydrogen-bonded complexes is due
to the approximate short-range density functional.31, 71 The
fact that dRPA and SOSEX give the smallest MAEs for the
HB7 subset is, thus, not believed to be significant but rather
due to a compensation of errors between an underestimated
long-range contribution and an overestimated short-range
contribution. This is corroborated by the relatively large
overestimation of the interaction energies of this subset by
range-separated CCD which should most accurately describe
the long-range correlation energies. We will, thus, focus our
analysis on the WI8 and MI7 subsets.

For the WI8 and MI7 subsets, dRPA gives largely un-
derestimated interaction energies, with MA%Es of 34.3%
and 15.8%, respectively. SOSEX barely improves dRPA with

MA%Es of 31.2% and 13.5%, respectively. This may not be
surprising since, in the limit of large separation, SOSEX only
adds exponentially decaying exchange interactions between
the monomers, but does not change the coupled-cluster am-
plitudes and thus does not change the polarizabilities of the
monomers. The RPAx-I method of Refs. 15 and 33, which in-
corporates exchange effects in the monomers, greatly reduces
the underestimation of the interaction energies, with MA%Es
of 13.9% and 5.0%, respectively. The RPAx-II variant, which
may be seen as the most straightforward way of defining a
closed-shell ring CCD with exchange terms, is disappoint-
ingly inaccurate. It overestimates the interaction energies by
about the same amount that dRPA underestimates them. Fi-
nally, the two variants RPAx-SO1 and RPAx-SO2 give re-
markably accurate interaction energies, with MA%Es of 3.1%
and 2.7% for RPAx-SO1, and 2.5% and 2.2% for RPAx-SO2.
They are globally as accurate as range-separated CCD without
the ring approximation. However, it must be noted that RPAx-
SO1 and RPAx-SO2 tend to overestimate dispersion energies,
while RPAx-I underestimates them. Therefore, increasing the
basis size will likely increase the MA%Es of RPAx-SO1 and
RPAx-SO2, while it will decrease the MA%E of RPAx-I.

V. CONCLUSION

We have studied various RPA variants that can be cast
in the form of closed-shell ring CCD approximations. We
have tested these variants with range separation, i.e., by com-
bining a long-range RPA-type approximation with a short-
range density-functional approximation, on rare-gas dimers
and on the weakly interacting complexes of the S22 set.
Among all these variants, the ones first proposed by Sz-
abo and Ostlund,48, 49 called here RPAx-SO1 [Eq. (14)] and
RPAx-SO2 [Eq. (13)], give the most accurate dispersion ener-
gies. The other variants tend to either strongly underestimate
(dRPA and SOSEX) or strongly overestimate (RPAx-II) the
interaction energies. For comparison, we have also reported
results from the RPAx-I method of Refs. 15 and 33, which
is not based on a ring CCD approximation but on the adi-
abatic connection formula, and which gives reasonable in-
teraction energies as well. From a practical point of view,
RPAx-SO2 appears to be the most convenient variant since,
contrary to RPAx-I, it does not use any numerical adiabatic-
connection integration and, contrary to RPAx-SO1, it in-
volves only singlet excitations and is thus not subject to triplet
instabilities.
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APPENDIX: CCD CORRELATION ENERGY

In this appendix, we review several equivalent CCD cor-
relation energy expressions, in view of justifying the different
ring CCD variants.
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1. CCD correlation energy in spin-orbital basis

The spin-unrestricted CCD wave function ansatz is

|�CCD〉 = exp(T̂2)|�〉, (A1)

where |�〉 is a single-determinant reference wave function,
and T̂2 is the cluster operator for double excitations which is
written in a spin-orbital basis as

T̂2 = 1

4

∑
ijab

tab
ij â†

aâi â
†
bâj , (A2)

where i, j and a, b refer to occupied and virtual spin-orbitals,
respectively, and the amplitudes tab

ij must be antisymmet-
ric with respect to any exchange of two indices: tab

ij = −tab
ji

= −tba
ij = tba

ji . The CCD correlation energy is obtained by the
transition formula

ECCD
c = 〈�|Ĥ |�CCD〉 − 〈�|Ĥ |�〉 = 〈�|Ĥ T̂2|�〉

= 1

4

∑
ijab

〈ab||ij 〉tab
ij = 1

4
tr[BT], (A3)

where Bia,jb = 〈ab||ij 〉 are the antisymmetrized two-electron
integrals over real spin orbitals and Tia,jb = tab

ij is the ampli-
tude matrix. Using the antisymmetry of the amplitudes, the
CCD correlation energy can also be written as

ECCD
c = 1

2

∑
ijab

〈ab|ij 〉tab
ij = 1

2
tr[KT], (A4)

where Kia,jb = 〈ab|ij 〉 are the two-electron integrals.

2. CCD correlation energy in spatial-orbital basis
for closed-shell systems

a. Expression in terms of the singlet and triplet amplitudes.
For spin-restricted closed-shell calculations, all the matrices
in the spin-orbital excitation basis encountered so far (e.g., A,
B, K, T) have the following spin block structure

C =

⎛
⎜⎜⎜⎜⎝

C↑↑,↑↑ C↑↑,↓↓ 0 0

C↓↓,↑↑ C↓↓,↓↓ 0 0

0 0 C↑↓,↑↓ C↑↓,↓↑
0 0 C↓↑,↑↓ C↓↑,↓↑

⎞
⎟⎟⎟⎟⎠ , (A5)

and can be brought to a block-diagonal spin-adapted matrix
C̃ = UT C U by the orthogonal transformation

U = 1√
2

⎛
⎜⎜⎜⎜⎝

1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

⎞
⎟⎟⎟⎟⎠ . (A6)

Applying this transformation to the matrix B gives the follow-
ing decomposition into singlet and triplet excitations:

B̃ =

⎛
⎜⎜⎜⎜⎝

1B 0 0 0

0 3B 0 0

0 0 3B 0

0 0 0 −3B

⎞
⎟⎟⎟⎟⎠ , (A7)

where 1Bia,jb = 2〈ab|ij 〉 − 〈ab|ji〉 and 3Bia,jb = −〈ab|ji〉,
with i, j referring now to occupied spatial orbitals and
a, b refers to virtual spatial orbitals. Notice the minus sign
for the last triplet block. Using Kramers symmetry for
spin-conserving real coupled-cluster amplitudes (see, e.g.,
Ref. 72), one can show that spin adaptation of the matrix T
leads to a similar form

T̃ =

⎛
⎜⎜⎜⎝

1T 0 0 0

0 3T 0 0

0 0 3T 0

0 0 0 −3T

⎞
⎟⎟⎟⎠ , (A8)

where 1Tia,jb = Ti↑a↑,j↑b↑ + Ti↑a↑,j↓b↓ and 3Tia,jb

= Ti↑a↑,j↑b↑ − Ti↑a↑,j↓b↓ = Ti↑a↓,j↓b↑. The CCD corre-
lation energy can, thus, be expressed as

ECCD
c = 1

4
tr[1B 1T + 33B 3T]. (A9)

Spin adaptation of the matrix K gives only a contribution from
the singlet excitations

K̃ =

⎛
⎜⎜⎜⎝

1K 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ , (A10)

where 1Kia,jb = 2〈ab|ij 〉, which leads to an alternative form
for the CCD correlation energy

ECCD
c = 1

2
tr[1K 1T]. (A11)

b. Expression in terms of the restricted amplitudes. In
practice, the CCD correlation energy is normally calculated
starting from the spin-restricted closed-shell CCD wave func-
tion ansatz

|�CCD〉 = exp(RT̂2)|�〉, (A12)

where the restricted cluster operator RT̂2 is written in a spatial-
orbital basis as

RT̂2 = 1

2

∑
ijab

Rtab
ij ÊaiÊbj , (A13)

where Êai = â
†
a↑âi↑ + â

†
a↓âi↓ is the singlet excitation opera-

tor and Rtab
ij are the restricted amplitudes which must be sym-

metric with respect to the exchange of both i, j and a, b, i.e.,
Rtab

ij = Rtba
ji , but not antisymmetric with respect to the ex-

change of only two indices. The CCD correlation energy is
obtained by the transition formula

ECCD
c = 〈�|Ĥ |�CCD〉 − 〈�|Ĥ |�〉 = 〈�|Ĥ RT̂2|�〉

=
∑
ijab

(2〈ab|ij 〉 − 〈ab|ji〉) Rtab
ij = tr[1B RT],

(A14)

where RTia,jb = Rtab
ij .
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c. Expression in terms of the singlet and triplet restricted
amplitudes. Another equivalent correlation energy expres-
sion can be obtained by decomposing the restricted ampli-
tudes into spin-singlet and spin-triplet components. Indeed,
the restricted cluster operator can be decomposed as (see, e.g.,
Refs. 73 and 74)

RT̂2 = 1

2

∑
ijab

(
1,Rtab

ij Ŝaibj + 3,Rtab
ij T̂aibj

)
, (A15)

where 1,Rtab
ij are singlet restricted amplitudes

1,Rtab
ij = Rtab

ji + Rtab
ij , (A16)

which are totally symmetric (i.e., 1,Rtab
ij = 1,Rtab

ji = 1,Rtba
ij

= 1,Rtba
ji ), and 3,Rtab

ij are the triplet restricted amplitudes

3,Rtab
ij = Rtab

ji − Rtab
ij , (A17)

which are totally antisymmetric (i.e., 3,Rtab
ij = −3,Rtab

ji

= −3,Rtba
ij = 3,Rtba

ji ). In Eq. (A15), Ŝaibj is the singlet double-
excitation operator

Ŝaibj = Ŝ
0,0
ai Ŝ

0,0
bj = 1

2
ÊaiÊbj , (A18)

constructed with the singlet single-excitation operator

Ŝ
0,0
ai = 1√

2

(
â
†
a↑âi↑ + â

†
a↓âi↓

) = 1√
2
Êai, (A19)

and T̂aibj is the triplet double-excitation operator

T̂aibj = T̂
1,1
ai T̂

1,−1
bj − T̂

1,0
ai T̂

1,0
bj + T̂

1,−1
ai T̂

1,1
bj

= Êaj Êbi + 1

2
ÊaiÊbj , (A20)

constructed with the triplet single-excitation operators

T̂
1,1
ai = −â

†
a↑âi↓, (A21a)

T̂
1,0
ai = 1√

2

(
â
†
a↑âi↑ − â

†
a↓âi↓

)
, (A21b)

T̂
1,−1
ai = â

†
a↓âi↑. (A21c)

Using the symmetry properties of 1,Rtab
ij and 3,Rtab

ij , it is
easy to check that Eqs. (A13) and (A15) are equivalent. Com-
bining Eqs. (A16) and (A17) leads to the decomposition of the
restricted amplitudes into spin components

Rtab
ij = 1

2

(
1,Rtab

ij − 3,Rtab
ij

)
, (A22)

and the CCD correlation energy [Eq. (A14)] can thus be
written as

ECCD
c = 1

2
tr[1B(1,RT − 3,RT)]. (A23)

This corresponds to the definition of singlet and triplet contri-
butions to the correlation energy, ES

c = (1/2)tr[1B 1,RT] and
ET

c = −(1/2)tr[1B 3,RT]. By using the symmetry properties
of 1,RT and 3,RT, one can show that they are equivalent to

the more usual expressions in terms of the restricted ampli-
tudes (see, e.g., Ref. 75): ES

c = (1/4)tr[(1B − 33B)RT] and
ET

c = (3/4)tr[(1B + 3B)RT].
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