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We pursue the development and application of the recently introduced linear optimization method
for determining the optimal linear and nonlinear parameters of Jastrow–Slater wave functions in a
variational Monte Carlo framework. In this approach, the optimal parameters are found iteratively
by diagonalizing the Hamiltonian matrix in the space spanned by the wave function and its
first-order derivatives, making use of a strong zero-variance principle. We extend the method to
optimize the exponents of the basis functions, simultaneously with all the other parameters, namely,
the Jastrow, configuration state function, and orbital parameters. We show that the linear
optimization method can be thought of as a so-called augmented Hessian approach, which helps
explain the robustness of the method and permits us to extend it to minimize a linear combination
of the energy and the energy variance. We apply the linear optimization method to obtain the
complete ground-state potential energy curve of the C2 molecule up to the dissociation limit and
discuss size consistency and broken spin-symmetry issues in quantum Monte Carlo calculations. We
perform calculations for the first-row atoms and homonuclear diatomic molecules with fully
optimized Jastrow–Slater wave functions, and we demonstrate that molecular well depths can be
obtained with near chemical accuracy quite systematically at the diffusion Monte Carlo level for
these systems. © 2008 American Institute of Physics. �DOI: 10.1063/1.2908237�

I. INTRODUCTION

Quantum Monte Carlo �QMC� methods �see, e.g.,
Refs. 1–3� constitute an alternative to standard quantum
chemistry approaches for accurate calculations of the elec-
tronic structure of atoms, molecules, and solids. The two
most commonly used variants, variational Monte Carlo
�VMC� and diffusion Monte Carlo �DMC�, use a flexible
trial wave function, generally consisting, for atoms and mol-
ecules, of a Jastrow factor multiplied by a short expansion in
configuration state functions �CSFs�, each consisting of a
linear combination of Slater determinants of orbitals ex-
panded in a localized one-particle basis. To fully benefit from
the considerable flexibility in the form of the wave function,
it is crucial to be able to efficiently optimize all the param-
eters in these wave functions.

In recent years, a lot of effort has been devoted to devel-
oping efficient methods for optimizing a large number of
parameters in QMC wave functions. One the most effective
approaches is the linear optimization method of Refs. 4 and
5. This is an extension of the zero-variance generalized ei-
genvalue equation approach of Nightingale and
Melik-Alaverdian6 to arbitrary nonlinear parameters, and it
permits a very efficient and robust energy minimization in a
VMC framework. This method was successfully applied to

the simultaneous optimization of Jastrow, CSF, and orbital
parameters of Jastrow–Slater wave functions for some all-
electron atoms and molecules in Refs. 4 and 7 and the C2 and
Si2 molecules with pseudopotentials in Ref. 5. It has also
been applied in Ref. 8 for optimizing Jastrow, CSF, and
backflow parameters to obtain very accurate wave functions
for the first-row atoms.

In this paper, we pursue the development and application
of the linear optimization method. We extend the method to
optimize the exponents of the basis functions, simulta-
neously with all the other parameters, a capacity rarely avail-
able in standard quantum chemistry methods �see, however,
Refs. 9–11�. This uses a slight generalization of the param-
etrization employed for Jastrow–Slater wave functions to al-
low nonorthogonal orbitals. Also, we show that the linear
optimization method can be thought of as a so-called aug-
mented Hessian approach. This allows us to clearly establish
the connection between the linear optimization method and a
stabilized Newton optimization method, helping to explain
the robustness of the approach. Moreover, this formulation
permits us to extend the method to minimize a linear com-
bination of the energy and the energy variance, as done in
Ref. 12 with the Newton method. We then apply the linear
optimization method to obtain the complete ground-state po-
tential energy curve of the C2 molecule up to the dissociation
limit and discuss size consistency and broken spin-symmetry
issues in QMC calculations. Finally, we perform calculations
for the first-row atoms and homonuclear diatomic molecules
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with fully optimized Jastrow–Slater wave functions, and we
demonstrate that molecular well depths can be obtained with
near chemical accuracy quite systematically at the DMC
level for these systems. When not explicitly indicated,
Hartree atomic units are assumed throughout this work.

II. WAVE FUNCTION OPTIMIZATION

A. Wave function parametrization

To optimize a large number of parameters of a wave
function, it is important to use a convenient and efficient
parametrization that eliminates redundancies. We use a
N-electron Jastrow–Slater wave function parametrized as
�see Ref. 4�

���p�� = Ĵ���e�̂��,�� �
I=1

NCSF

cI�CI���� , �1�

where Ĵ��� is a Jastrow operator, e�̂��,�� is an orbital trans-
formation operator, and �CI���� are configuration state func-
tions �CSFs�. The parameters to be optimized, collectively
designated by p= �� ,c ,� ,��, are the Jastrow parameters �,
the CSF parameters c, the orbital rotation parameters �, and
the basis exponent parameters �.

We use a flexible Jastrow factor consisting of the expo-
nential of the sum of electron-nucleus, electron-electron, and
electron-electron-nucleus terms, written as systematic poly-
nomial and Padé expansions13 �see also Refs. 14 and 15�.
Each CSF is a short linear combination of products of
spin-up and spin-down Slater determinants �Dk

↑����
and �Dk

↓����,

�CI���� = �
k

dI,k�Dk
↑�����Dk

↓���� , �2�

where the coefficients dI,k are fully determined by the spatial
and spin symmetries of the state considered. The N↑-electron
and N↓-electron Slater determinants are generated from the
set of non-necessarily orthonormal orbitals at the current op-
timization step, �Dk

↑����= âk1↑
0† ���âk2↑

0† ���¯ âkN↑
↑

0† ����vac� and

�Dk
↓����= âkN↑+1↓

0† ���âkN↑+2↓
0† ���¯ âkN↓

0† ����vac�, where âk�
0†���

�with �= ↑ ,↓� is the fermionic creation operator for the or-
bital ��k

0���� �the superscript 0 referring to the current opti-
mization step� in the spin-� determinant, and �vac� is the
vacuum state of second quantization. The �occupied and vir-
tual� orbitals are written as linear combinations of Nbas basis
functions �������� with current coefficients �k,�

0 ,

��k
0���� = �

�=1

Nbas

�k,�
0 �������� . �3�

Specifically, in this work, we use Slater basis functions
whose expression in position representation, using spherical
coordinates r= �r ,	 ,�� around an atom position ra, is

�r�������� = Nn�
����rn�−1e−��rSl�,m�

�	,�� , �4�

where Nn���=	�2��2n+1 / �2n!� is the radial normalization
constant and Sl,m�	 ,�� are the normalized real spherical
harmonics.

Some parameters in the Jastrow factor are fixed by im-
posing cusp conditions16 on the wave function; the other
Jastrow parameters are freely varied. Due to the arbitrariness
of the overall normalization of the wave function, only
NCSF−1 CSF coefficients need to be varied, e.g., the coeffi-
cient of the first CSF is kept fixed. The only restrictions that
we impose on the exponents are the equality of the expo-
nents of the basis functions composing the 2l+1 components
of spherical harmonics having the same l �e.g., px, py, and pz�
and, of course, the equality of the exponents of symmetry-
equivalent basis functions on equivalent atoms. Finally, the
parametrization of the orbital coefficients through the orbital
rotation parameters �, to which we shall come next, allows
one to conveniently eliminate the redundancies due to the
invariance properties of determinants under elementary row
operations.

Because straightforward variation of the exponents � of
the basis functions results in orbitals being nonorthogonal, in
this work, we use an orbital optimization formalism that
applies to nonorthogonal orbitals. The general idea of this
formalism appears also in valence bond theory �see
Refs. 17–19� and is a direct generalization of the formalism
for optimizing orthonormal orbitals used in standard multi-
configuration self-consistent field �MCSCF� theory �see, e.g.,
Ref. 20� and in a QMC context in Ref. 4. At each optimiza-
tion step, the orbitals are transformed by using the operator
e�̂��,��, where �̂�� ,�� is the total real singlet orbital excitation
operator,

�̂��,�� = �
kl

�klÊkl��� , �5�

where the parameters �kl are nonzero only for nonredundant

orbital pairs �see below� and Êkl��� is the singlet excitation
operator from orbital l to orbital k

Êkl��� = âk↑
0†���b̂l↑

0 ��� + âk↓
0†���b̂l↓

0 ��� , �6�

where b̂l�
0 =�q�O−1�lqâq�

0 is the dual orbital annihilation op-
erator at the current optimization step written in terms of the
usual annihilation operators âq�

0 and the inverse of the over-
lap matrix O of the orbitals with elements Olq= ��l

0 ��q
0�. The

operators âk�
† and b̂l� satisfy the canonical anticommutation

relations 
âk�
0† , âl��

0† �=0, 
b̂k�
0 , b̂l��

0 �=0, and 
âk�
0† , b̂l��

0 �
=
kl
���. The action of the operator Êkl��� on a spin-� Slater
determinant is simply to replace the l spin-� orbital by the k
spin-� orbital. Thus, in practice, the calculation of the orbital
overlap matrix O is not needed. In contrast to the case of
orthonormal orbitals, the operator �̂�� ,�� is not anti-
Hermitian and, thus, the operator e�̂��,�� is not unitary. The
action of this operator on a Slater determinant is seen by

inserting e−�̂��,��e�̂��,��=1̂ after each orbital creation operator
making up the determinant and using e�̂��,���vac�= �vac�; this
leads to a new Slater determinant made with the transformed
orbital creation operators,

âk�
† ��,�� = e�̂��,��âk�

0†���e−�̂��,��, �7�

and, accordingly, the corresponding transformed orbitals are
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��k��,��� = e�̂��,����k
0���� = �

l

�e��lk��l
0���� , �8�

where the sum is over all �occupied and virtual� orbitals, and
�e��lk are the elements of the transformation matrix e� con-
structed as the exponential of the matrix � with elements �kl.
The nonredundant orbital excitations l→k have already been
discussed in Ref. 4. For a single-determinant �SD� wave
function, the nonredundant excitations are closed→open,
closed→virtual, and open→virtual. For a multiconfiguration
complete active space21 �CAS� wave function, the nonredun-
dant excitations are inactive→active, inactive→secondary,
and active→secondary. For both single-determinant and
multideterminant CAS wave functions, if l→k is an allowed
excitation in Eq. �5�, then the action of the reverse excitation
k→ l is zero, and one can choose to impose the condition
�lk=−�kl. In this case, � is a real antisymmetric matrix and,
thus, e� is an orthogonal matrix that simply rotates the orbit-
als. For a general multiconfiguration wave function �not
CAS�, some active→active excitations must also be in-
cluded and the action of the corresponding reverse excitation
is generally not zero. If the reverse excitation is independent,
one does not have to enforce the orthogonality condition
�lk=−�kl, in which case the transformation of Eq. �8� is no
longer a rotation. Of course, in addition to these restrictions,
only excitations between orbitals of the same spatial symme-
try have to be considered. We note that this orbital optimiza-
tion formalism is well suited for the use of localized orbitals,
although we do not explore this possibility in this work.

We note that it is also possible to keep the orbitals
exactly orthonormal when varying the basis exponents
�see Refs. 9 and 10�. If one starts from orthonormal orbitals
and uses basis functions that are, for instance, symmetrically
orthonormalized22,23

��̃�� = �
�=1

Nbas

�B−1/2������� , �9�

where B is the overlap matrix of the basis functions with
elements B��= ��� ����, then the orthonormality of the orbit-
als is preserved during the optimization. However, this com-
plicates the calculation of the derivatives of the wave func-
tion with respect to the exponent parameters �in particular,
one needs to calculate the derivatives of the matrix B−1/2 as
done in Ref. 24�, and the computational effort of the optimi-
zation is significantly increased. In practice, as discussed in
Sec. IV, we have found that using orthogonalized basis func-
tions does not significantly reduce the number of iterations
needed to reach convergence.

We denote by Np the total number of parameters to be
optimized. The parameters at the current optimization step
are denoted by p0= ��0 ,c0 ,�0=0 ,�0� and the corresponding
current wave function by

��0� = ���p0�� = Ĵ��0� �
I=1

NCSF

cI
0�CI��0�� . �10�

B. First-order derivatives of the wave function

We now give the expressions for the first-order deriva-
tives of the wave function ���p�� of Eq. �1� with respect to
the parameters pi at p=p0,

��i� = � ����p��
�pi



p=p0

, �11�

which collectively designate the derivatives with respect to
the Jastrow parameters,

���i
� =

�Ĵ��0�
��i

�
I=1

NCSF

cI
0�CI��0�� , �12�

with respect to the CSF parameters,

��cI
� = Ĵ��0��CI��0�� , �13�

with respect to the orbital parameters,

���kl
� = Ĵ��0� �

I=1

NCSF

cI
0Êkl��0��CI��0�� , �14�

and with respect to the exponent parameters,

����
� = Ĵ��0� �

I=1

NCSF

cI
0��CI��0��

���

. �15�

The derivatives with respect to the orbital parameters in
Eq. �14� are, thus, simply generated by single excitations of
orbitals out of the CSFs. In the derivatives with respect to the
exponent parameters in Eq. �15�, the orbital transformation
operator e�̂��,�� in Eq. �1� does not contribute since the
orbitals are transformed at each step so that we always have
�0=0.

C. Linear optimization method

We use the linear optimization method of Refs. 4 and 5
to optimize all the parameters in our wave functions. This is
an extension of the zero-variance generalized eigenvalue
equation approach of Nightingale and Melik-Alaverdian6 to
arbitrary nonlinear parameters, and it permits a very robust
and efficient energy minimization in a VMC context. We
review here this approach from a somewhat different per-
spective and show how the method can be extended to mini-
mize a linear combination of the energy and the energy
variance.

At each step of the optimization, the quantum-
mechanical averages are computed by sampling the probabil-
ity density of the current wave function �0�R�= �R ��0� in
the N-electron position representation �R�= �r1 ,r2 , . . . ,rN�.
We will denote the statistical average of a local quantity,
f�R�, by �f�R��= �1 /M��k=1

M f�Rk� with M electron configu-
rations Rk.

1. Minimization of the energy

Deterministic optimization method. The idea of the
method is to iteratively:
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�i� expand the normalized wave function ��̄�p��
= ���p�� /	���p� ���p�� to first order in the param-
eter variations 
p=p−p0 around the current param-
eters p0,

��̄lin�p�� = ��̄0� + �
j=1

Np


pj��̄ j� , �16�

where ��̄0�= ��̄�p0�� is the normalized current wave
function, and

��̄ j� =
1

	��0��0�
��� j� −

��0�� j�
��0��0�

��0�
 �17�

are the first-order derivatives of the normalized wave

function ��̄�p�� with respect to the parameters at p0,
written in terms of the first-order derivatives �� j� of
the unnormalized wave function ���p�� given in Sec.
II B;

�ii� minimize the expectation value of the Hamiltonian Ĥ
over this linear wave function with respect to the
parameter variations 
p

Elin = min

p

��̄lin�p��Ĥ��̄lin�p��

��̄lin�p���̄lin�p��
; �18�

�iii� update the current parameters as p0→p0+
p.

The energy minimization step �ii� can be written in
matrix notation as

Elin = min

p

�1 
pT�� E0 gT/2

g/2 H̄

� 1


p



�1 
pT��1 0T

0 S̄

� 1


p

 , �19�

where E0= ��̄0�Ĥ��̄0� is the current energy, g is the gradient
of the energy with respect to the Np parameters with compo-

nents gi=2��̄i�Ĥ��̄0�, H̄ is the Hamiltonian matrix in the
basis consisting of the Np wave function derivatives with

elements H̄ij = ��̄i�Ĥ��̄ j�, and S̄ is the overlap matrix in this

basis with elements S̄ij = ��̄i ��̄ j�. Clearly, the minimization
of Eq. �19� is equivalent to solving the following
�Np+1�-dimensional generalized eigenvalue equation

� E0 gT/2

g/2 H̄

� 1


p

 = Elin�1 0T

0 S̄

� 1


p

 , �20�

for its lowest eigenvector. Each optimization step, thus, con-
sists of a standard Rayleigh–Ritz approach. When applied to
the specific case of the orbital rotation parameters, this linear
optimization method is known in the quantum chemistry lit-
erature as the super configuration interaction or generalized
Brillouin theorem approach.25–28 It can also be seen as an
instance of the class of augmented Hessian optimization

methods with a particular choice of the matrix H̄, sometimes
also called rational function optimization methods, which are
based on a rational quadratic model of the function to opti-
mize at each step rather than a quadratic one and which are

known to be very powerful for optimizing MCSCF wave
functions and molecular geometries �see, e.g., Refs. 29–38�.

We note that after solving Eq. �20�, and before updating
the current parameters, the parameter variations 
p can be
advantageously transformed according to Eq. �32� of Ref. 4
which corresponds to changing the normalization of the

wave function ��̄�p��.39

Implementation in variational Monte Carlo. Nightingale
and Melik-Alaverdian6 showed how to efficiently realize this
energy minimization approach on a finite Monte Carlo �MC�
sample, which is not as obvious as it may seem. The proce-
dure makes use of a strong zero-variance principle and can
be described as follows. If the current wave function and its
first-order derivatives with respect to the parameters


��̄0� , ��̄1� , . . . , ��̄Np
�� form a complete basis of the Hilbert

space considered �or, less stringently, span an invariant sub-

space of the Hamiltonian Ĥ�, then there exist optimal param-
eters variations 
p so that the linear wave function of

Eq. �16� is an exact eigenstate of Ĥ and, therefore, satisfies
the local Schrödinger equation for any electron configuration
Rk,

�Rk�Ĥ���̄0� + �
j=1

Np


pj��̄ j�
 = �Rk�Elin���̄0� + �
j=1

Np


pj��̄ j�
 ,

�21�

where the 
pj are independent of Rk. Multiplying this equa-

tion by �̄i�Rk� /�̄0�Rk�2 �where i=0,1 , . . . ,Np� and averag-

ing over the M points Rk sampled from ��̄0�R��2 leads to the
following stochastic version of the generalized eigenvalue
equation of Eq. �20�:

� ME0
MgR

T/2
MgL/2 MH̄


� 1


p

 = Elin�1 0T

0 MS̄

� 1


p

 , �22�

whose lowest eigenvector solution gives the desired optimal
parameter variations 
p independently of the MC sample,
i.e., with zero variance. In Eq. �22�, ME0= �EL�R�� is the

average of the local energy EL�R�= �R�Ĥ��0� /�0�R� �the
superscript M denoting the dependence on the MC sample�,
MgL and MgR are two estimates of the energy gradient with
components

MgL,i = 2� �̄i�R�

�̄0�R�

�R�Ĥ��̄0�

�̄0�R�
� = 2���i�R�

�0�R�
EL�R��

− ��i�R�
�0�R���EL�R��� , �23�

where �̄i�R� /�̄0�R�=�i�R� /�0�R�− ��i�R� /�0�R�� has
been used,
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MgR,j = 2��R�Ĥ��̄ j�

�̄0�R�
� = 2��� j�R�

�0�R�
EL�R��

− �� j�R�
�0�R���EL�R�� + �EL,j�R��� , �24�

where EL,j�R�= �R�Ĥ�� j� /�0�R�− �� j�R� /�0�R��EL�R� is
the derivative of the local energy with respect to the param-

eter pj �which is 0 in the limit of an infinite sample�, MH̄ is
the following nonsymmetric estimate of the
Hamiltonian matrix:

MH̄ij =� �̄i�R�

�̄0�R�

�R�Ĥ��̄ j�

�̄0�R�
� = ��i�R�

�0�R�
� j�R�
�0�R�

EL�R�� − ��i�R�
�0�R���� j�R�

�0�R�
EL�R�� − �� j�R�

�0�R����i�R�
�0�R�

EL�R��
+ ��i�R�

�0�R���� j�R�
�0�R���EL�R�� + ��i�R�

�0�R�
EL,j�R�� − ��i�R�

�0�R���EL,j�R�� , �25�

and MS̄ is the estimated overlap matrix,

MS̄ij =� �̄i�R�

�̄0�R�

�̄ j�R�

�̄0�R�
� = ��i�R�

�0�R�
� j�R�
�0�R��

− ��i�R�
�0�R���� j�R�

�0�R�� . �26�

Now, in practice for nontrivial problems, the basis


��̄0� , ��̄1� , . . . , ��̄Np
�� is never complete and, consequently,

solving Eq. �22� actually gives an eigenvector solution M
p
and associated eigenvalue MElin that do depend on the MC
sample. However, this solution is not the solution that would
be obtained by naively minimizing the energy of the MC
sample,

MElin � min

p

�1 
pT�� ME0
MgR

T/2
MgL/2 MH̄


� 1


p



�1 
pT��1 0T

0 MS̄

� 1


p

 , �27�

which would yield instead a generalized eigenvalue equation
similar to Eq. �22� but with symmetrized analogs of the en-

ergy gradients MgL, MgR, and the Hamiltonian matrix MH̄. In
fact, solving the generalized eigenvalue equation of Eq. �22�
leads to parameter variations with statistical fluctuations
about one or two orders of magnitude smaller than the pa-
rameter fluctuations obtained by using the symmetrized
eigenvalue equation resulting from the minimization of
Eq. �27�. Of course, in the limit of an infinite sample
M→�, the generalized eigenvalue equation of Eq. �22�
and the minimization of Eq. �27� become equivalent.

2. Minimization of a linear combination of the energy
and the energy variance

In some cases, it is desirable to minimize a linear
combination of the energy E and the energy variance

V: �1−q�E+qV, where 0�q�1. For instance, it has been
shown that mixing in a small fraction of the energy variance
�e.g., q=0.05� in the optimization can significantly decrease
the variance while sacrificing almost nothing of the energy.12

Also, there is a theoretical argument suggesting that if one
wants to minimize the number of MC samples needed to
obtain a fixed statistical uncertainty on the average energy in
DMC, then one should minimize in VMC a linear combina-
tion of the energy and the energy variance �usually, the en-
ergy dominates by far in this linear combination�.40,41 In-
deed, in practice, the number of MC samples needed in
DMC is often reduced by a few percent by using q=0.05
rather then q=0.12 Finally, the energy variance may be more
sensitive to some parameters than the energy.

The formulation of the linear optimization method as an
augmented Hessian approach clearly shows how to introduce
minimization of the energy variance in the method. Suppose
that, at each optimization step, we have some quadratic
model of the energy variance to minimize

Vmin = min

p
�V0 + gV

T · 
p +
1

2

pT · hV · 
p� , �28�

where V0= ��̄0��Ĥ−E0�2��̄0� is the energy variance of the

current wave function ��̄0�, gV is the gradient of the energy

variance with components gV,i=2��̄i��Ĥ−E0�2��̄0�, and hV is
some approximation to the Hessian matrix of the energy
variance. Then, alternatively, one could minimize the follow-
ing rational quadratic model:

Vmin = min

p

�1 
pT�� V0 gV
T/2

gV/2 hV/2 + V0S̄

� 1


p



�1 
pT��1 0T

0 S̄

� 1


p

 , �29�

which agrees with the quadratic model in Eq. �28� up to
second order in 
p and which leads to the following gener-
alized eigenvalue equation:
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� V0 gV
T/2

gV/2 hV/2 + V0S̄

� 1


p

 = Vmin�1 0T

0 S̄

� 1


p

 . �30�

On a finite MC sample, the overlap matrix S̄ is estimated as
before by the expression given in Eq. �26�, the energy vari-
ance is estimated as MV0= �EL�R�2�− �EL�R��2, its gradient is
calculated as12

MgV,i = 2��EL,i�R�EL�R�� − �EL,i�R���EL�R��

+ ��i�R�
�0�R�

EL�R�2� − ��i�R�
�0�R���EL�R�2�

− MgL,i�EL�R��� , �31�

and its Hessian can be approximated by the �positive-
definite� Levenberg–Marquardt approximation12

MhV,ij = 2��EL,i�R�EL,j�R�� − MgL,i�EL,j�R��

− MgL,j�EL,i�R�� + MgL,i
MgL,j� . �32�

We have also tested the use of the exact Hessian of the en-
ergy variance of the linear wave function of Eq. �16�, but this
Hessian containing a quadricovariance term tends to be more
noisy than the simpler Hessian of Eq. �32�, is not guaranteed
to be positive definite, and leads to a less efficient optimiza-
tion.

It is clear that an arbitrary linear combination of the
energy and the energy variance can be minimized by com-
bining the augmented Hessian matrix of the energy on the
left-hand-side of Eq. �22� with the augmented Hessian matrix
of the energy variance on the left-hand-side of Eq. �30� with
the estimators of Eqs. �31� and �32�. We note, however, that
this procedure destroys the zero-variance principle described
in the previous section which holds if only the energy is
minimized. In practice, introducing only a small fraction
��5% � of the energy variance does not adversely affect the
benefit gained from the zero-variance principle and, in fact,
in most cases, makes the optimization converge more rap-
idly. We note that if we were to undertake the additional

computational effort of computing �R�Ĥ2��̄i�, then it is pos-
sible to formulate an optimization method that obeys the
strong zero-variance principle even when optimizing the en-
ergy variance or a linear combination of the energy and the
energy variance.

In fact, by following this procedure, any penalty function
imposing some constraint, for which we have estimates of
the gradient and of some approximation to the Hessian, can
be added to the energy and optimized with the linear method,
hopefully without spoiling very much the benefit of the zero-
variance principle for the energy.

3. Robustness of the optimization

The linear optimization method has been found to be
somewhat more robust than the Newton optimization method
in Ref. 42 using an approximate Hessian, and even than that
in Ref. 12 using the exact Hessian, for optimizing QMC
wave functions. On a finite MC sample, when minimizing

the energy, the zero-variance principle of Nightingale and
Melik-Alaverdian6 is certainly a major ingredient in the ro-
bustness of the method. However, even in the limit of an
infinite MC sample, augmented Hessian approaches are
known in the quantum chemistry literature to be more robust
than the simple Newton method. In fact, it has been shown
that augmented Hessian methods can have a greater radius of
convergence than the Newton method.32 This can be under-
stood by rewriting the generalized eigenvalue equation �20�
as �see Refs. 32 and 34�

�h − 2
ES̄� · 
p = − g , �33a�

2
E = gT · 
p , �33b�

where h=2�H̄−E0S̄� is a Np-dimensional matrix and 
E
=Elin−E0�0 is the energy stabilization obtained from going

from the current wave function ��̄0� to the linear wave func-

tion ��̄lin� �which is necessarily negative within statistical
noise�. Equations �33� show that the linear optimization
method is equivalent to a Newton method with an approxi-
mate Hessian matrix h which is level shifted by the positive-

definite matrix −2
ES̄, which acts as a stabilizer. This
method is, thus, closely related to the stabilized, approximate
Newton method in Ref. 42. The advantage of the present
approach, besides the previously discussed zero-variance
principle, is that the stabilization constant −2
E is automati-
cally determined from the solution of the generalized eigen-
value equation. Clearly, from Eq. �33b�, −2
E tends to be
large far from the minimum and tends to zero at conver-
gence.

In some cases, when the initial parameters are very bad
or the MC sample is not large enough, it is necessary to
further stabilize the optimization. A variety of different sta-
bilization schemes are conceivable. In practice, we have
found that adding a positive constant adiag to the diagonal of

the Hamiltonian matrix, i.e., H̄→H̄+adiagI, where I is the
identity matrix, works well. The value of adiag is adjusted at
each optimization step by performing three very short MC
calculations using correlated sampling with wave function
parameters obtained with three trial values of adiag, and the
value of adiag that minimizes the energy is predicted by para-
bolic interpolation, with some bounds imposed. In addition,
adiag is forced to increase if the norm of linear wave function

variation �� j=1
Np 
pj��̄ j�� or the norm of the parameter varia-

tions �
p� exceeds some chosen thresholds, or if some pa-
rameters exit their allowed domain of variation �e.g., if a
basis exponent becomes negative�.

III. COMPUTATIONAL DETAILS

We now give some details of the calculations that we
have performed on the first-row atoms and homonuclear di-
atomic molecules in their ground states. We start by gener-
ating a standard ab initio wave function using the quantum
chemistry program GAMESS,43 typically a restricted Hartree–
Fock �RHF� wave function or a MCSCF wave function with
a complete active space generated by distributing n valence
electrons in m valence orbitals �CAS�n ,m��. We use the
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CVB1 Slater basis of Ema et al.,44 each Slater function being
actually approximated by a fit to 14 Gaussian functions45–47

in GAMESS.
This standard ab initio wave function is then multiplied

by a Jastrow factor, imposing the electron-electron cusp con-
dition, but with essentially all other free parameters chosen
to be initially zero to form our starting trial Jastrow–Slater
wave function, and QMC calculations are performed with the
program CHAMP

48 using the true Slater basis set rather than
its Gaussian expansion. The Jastrow, CSF, orbital, and expo-
nent parameters are simultaneously optimized with the linear
energy minimization method in VMC using an accelerated
Metropolis algorithm.49,50 We usually start with 10 000 MC
iterations for the first optimization step and then this number
is progressively increased at each step �typically by a factor
1.5– to 4� during the optimization until the energy is con-
verged to 10−4 �for the lighter systems� or 10−3 �for the
heavier systems� hartree within a statistical accuracy of
5�10−5 hartree or 5�10−4 hartree, respectively. The opti-
mization typically converges in less than ten steps. Once the
trial wave function has been optimized, we perform a DMC
calculation within the short-time and fixed-node �FN� ap-
proximations �see, e.g., Refs. 51–55�. We use an imaginary
time step of usually �=0.01 hartree−1 in an efficient DMC
algorithm featuring very small time-step errors.56 For Ne and
Ne2, we computed the DMC energies at four time steps,
0.020, 0.015, 0.01, and 0.005 hartree−1, and performed an
extrapolation to zero time step.

We found it convenient to start from the CVB1 basis
exponents and from CSF and orbital coefficients generated
by GAMESS but, in fact, the ability to optimize all these pa-
rameters in QMC allows us to also start from cruder starting
parameters without relying on a external quantum chemistry
program. In this case, a larger number of optimization itera-
tions are needed to achieve convergence.

IV. OPTIMIZATION OF THE BASIS FUNCTION
EXPONENTS

In Ref. 4, the optimization of the Jastrow, CSF, and or-
bital parameters has been discussed in detail. We complete
here the discussion with the optimization of the exponent
parameters.

Figure 1 shows the convergence of the VMC total en-
ergy of the all-electron C2 molecule during the optimization
of the 12 exponent parameters in a wave function composed
of a Jastrow factor multiplied by a single Slater determinant,
where the Jastrow and orbital parameters have been previ-
ously optimized �with the exponents fixed at the CVB1 val-
ues�. Crude initial exponents have been intentionally chosen
as the integers nearest to the exponent values of the CVB1
basis. One sees that the linear energy minimization method
yields a fast convergence of the energy in about three itera-
tions, typically as fast as when optimizing the other param-
eters. The simultaneous optimization of the Jastrow, CSF,
orbital, and exponent parameters generally converges as fast
as the simultaneous optimization of only the Jastrow, CSF,
and orbital parameters reported in Ref. 4.

When optimizing the exponents without simultaneous
optimization of the orbitals, we have found the optimization

to be very stable, the introduction of the stabilization con-
stant adiag often being unnecessary. However, when simulta-
neously optimizing the orbital and exponent parameters, the
optimization tends to be less stable because of near redun-
dancies between these two sets of parameters, and adiag typi-
cally increases up to 10−3–10−4 to retain stability.

Tests on a few atoms have shown that, for the optimiza-
tion of exponents only, the use of the orthonormalized basis
functions of Eq. �9� tends to be a bit more stable. Typically,

the overlap matrix S̄ of the wave function derivatives has
eigenvalues that span about seven orders of magnitude from
1 to 10−7 for �unnormalized or normalized� nonorthogonal-
ized functions, whereas for orthonormalized basis functions,
the eigenvalues span only about four-orders of magnitude
from 1 to 10−4. Thus, orthogonalization of the basis functions
reduces the range of the eigenvalues, attenuating near redun-
dancies among the exponent parameters. However, the wave
function derivatives with respect to the exponents take sig-
nificantly longer to compute when using orthonormalized ba-
sis functions, and in addition, when also optimizing the or-
bitals, the near redundancies between some orbital and
exponents parameters make adiag increase anyway. Thus, we
have not found it worthwhile for our purpose to use or-
thonormalized basis functions.

For the first-row atoms, optimizing the exponents
�simultaneously with the other parameters� rather than using
the exponents of the CVB1 basis typically yields improve-
ments of the total VMC energies between 0.1 and
1 mhartree, which is at the edge of statistical significance
and accuracy of the optimization. Thus, at the accuracy that
we are concerned with, the exponents of the CVB1 basis for
these atoms are nearly optimal for Jastrow–Slater wave func-
tions. As expected, larger improvements are obtained for the
first-row diatomic molecules. The largest improvement of the
total energy is observed for the O2 molecule with a gain of
about 3.4 mhartrees in VMC and 1.2 mhartrees in DMC with
a Jastrow–Slater single-determinant wave function. The larg-
est improvement of the standard deviation of the energy is

FIG. 1. �Color online� Convergence of the VMC total energy of the all-
electron C2 molecule during the optimization of the 12 exponent parameters
in a wave function composed of a single Slater determinant multiplied by a
Jastrow factor. Crude initial exponents have been intentionally chosen as the
integers nearest to the exponent values of the CVB1 basis.43 In this calcu-
lation, the number of MC sample was initially 10000 and this number was
progressively increased at each iteration until a final statistical uncertainty of
0.5 mhartree was reached.
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obtained for the Be2 dimer using a Jastrow–Slater single-
determinant function, with a gain of 0.25 hartree. �The stan-
dard deviation of the energy is �=0.57 hartree with the
CVB1 exponents and �=0.32 hartree with the reoptimized
exponents using pure energy minimization. A mixed minimi-
zation with an energy weighting of 0.95, a variance weight-
ing of 0.05, and reoptimized exponents results in the same
energy but a � of 0.32, whereas a pure variance minimiza-
tion yields a variational energy that is higher by 1 mhartree
and a � of only 0.24.� Properties other than the energy might
be more sensitive to the basis exponents. We note that the
optimization method that we are using is designed to find
local minima, and we cannot be sure that we have found the
global minimum for the form of the trial wave function con-
sidered. In particular, optimization of the exponent param-
eters typically leads to multiple local minima. We have found
that by optimizing the exponents, it is possible to reduce the
size of the basis, without sacrificing the energy or the energy
variance, but the results in this paper were all obtained using
a basis size corresponding to the CVB1 basis. A smaller basis
has also the advantage of having fewer local minima.

As noted in Ref. 10, because the virial theorem within
the Born–Oppenheimer approximation at the equilibrium
nuclear geometry holds if the energy is stationary with re-
spect to scaling of the electron coordinates, optimization of
the basis exponents along with optimization of the scaling
factors of the interelectron coordinates in the Jastrow factor
permits one to exactly satisfy the virial theorem in VMC in
the limit of infinite sample size.

V. POTENTIAL ENERGY CURVE OF THE C2
MOLECULE

In Fig. 2, we show the total energy curve of the all-
electron C2 molecule as a function of the interatomic dis-
tance R calculated in �plot a� RHF, VMC, and DMC with a
fully optimized Jastrow�single-determinant wave function
�J�SD� and in �plot b� MCSCF CAS�8,8�, VMC, and DMC
with a fully optimized Jastrow�multideterminant CAS�8,8�
wave function �J�CAS�8,8��. In each case, the horizontal
line represents twice the energy of an isolated atom calcu-
lated with the same method and provides a check of the size
consistency of the method. We stress that the wave functions
have been optimized by energy minimization rather than
variance minimization, and in Appendix A, we present an
argument suggesting that, as regards size consistency,
energy-optimized wave functions are to be preferred over
variance-optimized wave functions. For comparison, we also
plot a Morse potential,57 EMorse�R�=Eexact�Re�+De�1−e−x2

�2,
where x=2��R−Re� /Re and �=�e / �4	BeDe�, by using an
estimate of the exact energy at equilibrium Eexact�Re�
=−75.9265 hartrees �Ref. 58� and accurate spectroscopic
constants: Equilibrium distance Re=2.3481,14 well depth
De=6.44 eV,58 first vibrational frequency �e=1855 cm−1,59

and rotational constant Be=1.819 84 cm−1.60 For analysis, we
report in Table I the distribution of the four � electrons
among the two carbon atoms A and B in the dissociation
limit, the remaining eight � electrons being unimportant for
the study of the dissociation.

We note that Sorella et al.61 have also recently reported
QMC calculations of the potential energy curve of the C2

molecule using a pseudopotential and Jastrow antisymme-
trized geminal power wave functions.

At very large interatomic distances, lack of ergodicity in
the QMC calculations may be an issue, as electrons tend to
remain stuck around an atom, and nonequilibrated results can
be obtained. In VMC calculations, it is always possible to
make large moves of the electrons between the two atoms, as
done, for example, in Ref. 61, but this is not possible in
DMC calculations where dynamics of the moves is specified
and becomes exact only in the small time-step limit. One can
nevertheless avoid being deceived by using a large popula-
tion of walkers �thereby improving the sampling of the con-
figuration space�, looking at the evolution of the results as
the bond is stretched and performing several runs with dif-
ferent starting locations of the walkers.

We first discuss the single-determinant case. RHF is, of
course, not size consistent and leads to a large percentage of
incorrect ionic dissociations �62.5%�. Our Jastrow factor has
a multiplicatively separable form �at dissociation, it reduces
to the product of the Jastrow factors employed for the iso-
lated atoms�, so that fulfillment of size consistency in VMC

FIG. 2. �Color online� Total energy of the all-electron C2 molecule as a
function of the interatomic distance R calculated in �plot a� RHF, VMC and
DMC with a fully optimized Jastrow�single-determinant wave function
�J�SD�, and �plot b� MCSCF CAS�8,8�, VMC and DMC with a fully
optimized Jastrow�multi-determinant CAS�8,8� wave function
�J�CAS�8,8��, using the CVB1 Slater basis form.43 In each case, the hori-
zontal line represents twice the energy of an isolated atom calculated with
the same method, and provides a check of the size consistency of the
method. For comparison, a Morse potential56 using accurate spectroscopic
constants is also shown �see text�.

174101-8 J. Toulouse and C. J. Umrigar J. Chem. Phys. 128, 174101 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



calculations is only dependent on the determinantal part of
the wave function. The VMC calculation using a single de-
terminant is not size consistent, but the Jastrow factor re-
duces the size-consistency error and decreases the percentage
of ionic dissociations to about 31%. Interestingly, the DMC
calculation using the nodes of a non-size-consistent single-
determinant trial wave function appears to be size consistent
within the accuracy of the calculation, ionic dissociations
being negligible. Moreover, examination of the distribution
of electrons in the DMC calculation shows that the distribu-
tion A�↑↓ �+B�↑↓ � has a vanishing probability in the disso-
ciation limit �see Table I�. Only the distributions
A�↑↑ �+B�↓↓ � and A�↓↓ �+B�↑↑ � remain at dissociation. In
Appendix B, we show that this implies that the singlet-spin
symmetry of the ground state is broken with an expectation

value of the total spin operator Ŝ2 over the FN wave function
of 2. In quantum chemistry, it is well-known that spin-
�and/or spatial� symmetry breaking frequently occurs in un-
restricted Hartree Fock �HF� or unrestricted Kohn–Sham cal-
culations at large interatomic distances where electron corre-
lation gets stronger. Our results show that spin-symmetry
breaking can also occur in DMC calculations even using an
unbroken-symmetry trial wave function, meaning that its
nodal surface does not impose the spin symmetry. One may
wonder how the repeated application of a spin-independent
Green’s function to an initial trial wave function that is a spin
eigenstate �neglecting the small spin contamination that can
be introduced by imposing spin-dependent electron-electron
cusp conditions in the Jastrow factor62� can result in a wave
function that is not a spin eigenstate. In fact, breaking of spin
symmetry is possible in DMC calculations because the
Green function is not applied exactly but only by finite sam-
pling. After all, the fermion-sign problem can also be seen as
resulting from the breaking of the antisymmetry of the trial
wave function due to finite sampling.

We now discuss the multideterminant case. The MCSCF
calculation in a full valence CAS �FVCAS�, i.e., CAS�8,8�
for the C2 molecule, is size consistent, the corresponding
atomic calculation being taken as a MCSCF CAS�4,4� cal-
culation as in Refs. 4 and 5. Not surprisingly, the correspond-
ing VMC and DMC calculations are also size consistent. The
DMC energy curve agrees closely with the reference Morse
potential. For these three calculations, at the dissociation

limit, the distributions A�↑↓ �+B�↑↓ �, A�↑↑ �+B�↓↓ �, and
A�↓↓ �+B�↑↑ � are obtained with equal weights, which is ex-
pected for a proper spin-singlet wave function describing
two dissociated carbon atoms, as noted in Ref. 61.

VI. RESULTS ON FIRST-ROW ATOMS AND
HOMONUCLEAR DIATOMIC MOLECULES

In Table II, we report total energies of the first-row at-
oms and homonuclear diatomic molecules at their experi-
mental bond length using several computational methods:
RHF, MCSCF in a full valence complete active space �FV-
CAS�, VMC with Jastrow�single determinant �J�SD� and
Jastrow�multideterminant FVCAS �J�FVCAS� wave
functions �where the Jastrow, CSF, orbital, and exponent pa-
rameters have been simultaneously optimized�, and DMC
with the same J�SD and J�FVCAS wave functions. For
atoms, the active space of FVCAS wave functions consists
of the 2s and 2p orbitals. For the molecules, it consists of all
the orbitals coming from the n=2 atomic shells, i.e.,
2�g2�u3�g1�u,x1�u,y1�g,x1�g,y3�u �this is the energy order-
ing of the HF orbitals for five molecules out of the eight
molecules�. For the atoms Li, N, O, F, and Ne and for the
dimer Ne2, orbital occupations and symmetry constraints im-
ply that the FVCAS wave functions contain only a single
determinant. Thus, for these systems, the FVCAS MCSCF
wave functions are identical to the RHF wave functions, and
the J�FVCAS wave functions are identical to J�SD wave
functions. The well depths �dissociation energy+zero-point
energy� have been calculated consistently by using single-
determinant wave functions for both the molecule and the
atom or multideterminant FVCAS wave functions for both
the molecule and the atom. The errors of the computed well
depths are plotted in Fig. 3.

The largest errors of the DMC total energy using
J�FVCAS wave functions are obtained for the heaviest sys-
tems and are of the order of 15 mhartrees for the atoms and
30 mhartrees for the molecules. Of course, one can always
improve the total energy by increasing the number of CSFs
as done, for example, by Brown et al.,8 but good well depths
are already obtained with J�FVCAS wave functions due to
a compensation of errors between the atoms and the mol-
ecule. DMC calculations using J�FVCAS wave functions
give well depths with near chemical accuracy �1 kcal /mol

TABLE I. Distribution of the electrons among the two carbon atoms A and B of the C2 molecule in the
dissociation limit. For the neutral dissociations, only the distribution of the four � electrons is considered since
the remaining eight � electrons are unimportant for the study of the dissociation. The same methods used in Fig.
2 are compared. For the RHF and MCSCF wave functions, the percentages of the distributions can be calculated
analytically.

Neutral dissociation

Ionic dissociationA�↑↓ �+B�↑↓ � A�↑↑ �+B�↓↓ � A�↓↓ �+B�↑↑ �

RHF 25% 6.25% 6.25% 62.5%
VMC J�SD �43% �13% �13% �31%
DMC J�SD �0% �50% �50% �0%
MCSCF CAS�8,8� 33.33% 33.33% 33.33% 0%
VMC J�CAS�8,8� �33% �33% �33% �0%
DMC J�CAS�8,8� �33% �33% �33% �0%
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TABLE II. Total energies �in hartree� and well depths �in eV� of first-row atoms and homonuclear diatomic molecules at their experimental bond lengths R0 �in bohr� using several computational methods �see text�. The
RHF and MCSCF calculations have been performed with the Slater CVB1 basis set �Ref. 43�, expanding each Slater function into 14 Cartesian Gaussian functions. The QMC calculations have been performed with the
true Slater basis set rather than its Gaussian expansion. The Jastrow, CSF, orbital, and exponent parameters of the Jastrow-Slater wave functions have been optimized in VMC, and the resulting wave functions have been
used in DMC. The DMC energies are for time step �=0.01 hartree−1, with the exception of Ne and Ne2 for which the energies extrapolated to �=0 are given. The well depths have been consistently calculated by using
single-determinant �SD� wave functions for both the molecule and the atom or full valence complete active space �FVCAS� multideterminant wave functions for both the molecule and the atom.

Atoms

Li �2S� Be �1S� B �2P� C �3P� N �4S� O �3P� F �2P� Ne �1S�

Numbers of CSFs in FVCAS wave functions
1 2 2 2 1 1 1 1

Total energies �hartree�
RHF −7.432 71 −14.572 99 −24.529 03 −37.688 49 −54.400 60 −74.810 65 −99.409 37 −128.545 56
MCSCF FVCAS −14.616 63 −24.563 72 −37.707 77
VMC J�SD −7.477 93�5� −14.649 72�5� −24.629 36�5� −37.817 05�6� −54.562 8�1� −75.035 2�1� −99.700 3�1� −128.905 7�1�
VMC J�FVCAS −14.666 68�5� −24.644 09�5� −37.826 07�5�
DMC J�SD −7.478 05�1� −14.657 17�1� −24.639 90�2� −37.829 66�4� −54.575 87�4� −75.051 87�7� −99.718 27�5� −128.923 46�3�
DMC J�FVCAS −14.667 27�1� −24.649 96�1� −37.836 20�1�
Estimated exact −7.478 06a −14.667 36a −24.653 91a −37.845 0a −54.589 2a −75.067 3a −99.733 9a −128.937 6a

Molecules
Li2 �1�g

+� Be2 �1�g
+� B2 �3�g

−� C2 �1�g
+� N2 �1�g

+� O2 �3�g
−� F2 �1�g

+� Ne2 �1�g
+�

Interatomic distances �bohr�
5.051b 4.65c 3.005d 2.3481d 2.075b 2.283b 2.668b 5.84e

Numbers of CSFs in FVCAS wave functions
8 38 137 165 107 30 8 1

Total energies �hartree�
RHF −14.871 27 −29.131 48 −49.089 61 −75.401 54 −108.986 50 −149.658 81 −198.763 23 −257.091 05
MCSCF FVCAS −14.897 58 −29.221 11 −49.220 09 −75.639 91 −109.135 85 −149.764 53 −198.843 07
VMC J�SD −14.982 55�5� −29.297 68�4� −49.345 7�5� −75.808 8�5� −109.452 0�5� −150.224 8�5� −199.420 9�5� −257.809 56�2�
VMC J�FVCAS −14.992 29�5� −29.331 80�5� −49.391 6�2� −75.886 2�2� −109.485 1�3� −150.243 6�2� −199.444 3�3�
DMC J�SD −14.991 67�2� −29.318 95�5� −49.382 64�9� −75.867 2�1� −109.503 9�1� −150.287 2�2� −199.486 1�2� −257.847 07�5�
DMC J�FVCAS −14.994 56�1� −29.337 36�2� −49.406 7�2� −75.910 6�1� −109.520 6�1� −150.294 37�9� −199.497 0�1�
Estimated exact −14.995�1� −29.338 0�4� −49.415�2� −75.926 5f −109.542 7f −150.327 4f −199.530 4f −257.875 3

Well depths �eV�
RHF 0.159 −0.395 0.858 0.668 5.042 1.021 −1.510 −0.001 89
MCSCF FVCAS 0.875 −0.331 2.521 6.105 9.106 3.897 0.662
VMC J�SD 0.726�3� −0.048�3� 2.367�3� 4.75�1� 8.88�1� 4.20�1� 0.55�1� −0.050�5�
VMC J�FVCAS 0.991�3� −0.042�3� 2.814�6� 6.369�6� 9.78�1� 4.713�8� 1.19�1�
DMC J�SD 0.9679�8� 0.125�1� 2.798�3� 5.656�3� 9.583�3� 4.992�7� 1.349�6� 0.004�2�
DMC J�FVCAS 1.0465�6� 0.0767�8� 2.906�3� 6.482�3� 10.037�3� 5.187�5� 1.645�4�
Estimated exact 1.06�4�e 0.09�1�c 2.92�6�g 6.44�2�f 9.908��3�f 5.241��3�e 1.693�5�f 0.003 65e

aReference 67.
bReference 60.
cReference 59.
dReference 14.
eReference 69.
fReference 58.
gReference 68.
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�0.04 eV�, the largest absolute error being of about 0.1 eV
for the N2 molecule. In particular, we note that, although the
Be2 dimer is unbound at the RHF, MCSCF, and VMC levels,
the weak bond is well reproduced at the DMC level. Because
of the extremely weak van der Waals bond of the Ne2 dimer,
we computed the DMC energies of Ne and Ne2 at four time
steps �=0.020, 0.015, 0.010, and 0.005 hartree−1 and ex-
trapolated to zero time step. The time-step error at �=0.01
for Ne2 was −0.0023 hartree, whereas that for Ne was
−0.000 68 hartree.

VII. CONCLUSIONS

To summarize, we have extended our earlier published
linear optimization method to allow for nonorthogonal orbit-
als. This then makes it possible to optimize all the param-
eters in the wave function, including the basis exponents.
Moreover, by noting that the linear optimization method can
be seen as an augmented Hessian method, we have shown
that it is possible to minimize a linear combination of the
energy and the energy variance with the linear optimization
method. We have applied the method to the calculation of the
full ground-state potential energy curve of the C2 molecule,
and we have shown that although a VMC calculation using a
spin-restricted single-determinant Jastrow–Slater wave func-
tion is not size consistent, the corresponding DMC calcula-
tion using the same trial wave function is size consistent
within statistical uncertainty. The price to pay for this size
consistency is the breaking of the spin-singlet symmetry at
dissociation: The fixed-node DMC wave function has an ex-

pectation value of 2 for the total spin operator Ŝ2, although

the spin-singlet trial wave function is an eigenstate of Ŝ2 with
eigenvalue 0. Of course, by using multideterminant FVCAS
Jastrow–Slater wave functions, both the VMC and the DMC
calculations are size consistent without breaking of spin
symmetry. Finally, we have performed calculations on the
first-row atoms and homonuclear diatomic molecules and
showed that well depths can be computed with near chemical
accuracy using just fully optimized multideterminant FV-
CAS Jastrow–Slater wave functions.
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APPENDIX A: A REMARK ON SIZE CONSISTENCY
AND VARIANCE MINIMIZATION

In this appendix, we briefly review the concept of size
consistency of an electronic-structure method �see, e.g.,
Refs. 20, 63, and 64 for more details�, and we give an argu-
ment for preferring energy-optimized wave functions over
variance-optimized wave functions as regards size consis-
tency.

1. Definition of size consistency

Consider an electronic system AB made of two
noninteracting fragments A and B �e.g., a diatomic molecule
at dissociation�. This system has a Hamiltonian

ĤAB = ĤA + ĤB, �A1�

where ĤA and ĤB are the Hamiltonians of the fragments,
commuting with each other. If EA and EB are the �approxi-
mate� energies of the fragments given by some method and
EAB is the �approximate� energy of the composite system
given by the same method, then this method is said to be size
consistent if and only if

EAB = EA + EB, �A2�

i.e., the energy is additive.

In particular, if �A�= �̂A�vac� and �B�= �̂B�vac� are the
�approximate� wave functions given by the method under

consideration where �̂A and �̂B are second-quantized wave
operators �commuting or anticommuting with each other�,
then a sufficient condition for size consistency of the method
is that it leads to an �approximate� wave function for the
composite system of the product form

�AB�P = �̂A�̂B�vac�; �A3�

i.e., the wave function is multiplicatively separable. How-
ever, this is not a necessary condition, as exemplified by
perturbation theory �see, e.g., the discussion in Ref. 64�.
Also, in general, due to the nonlocality of the total spin op-

erator Ŝ2, one has, in fact, to consider a sum of products of
degenerate spin-multiplet component wave functions of the
fragments to accommodate non-singlet-spin symmetry, but it

FIG. 3. �Color online� Error in well depths of the first-row homonuclear
diatomic molecules using several computational methods �see text and
Table II�
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is sufficient to take the simple product form of Eq. �A3� for
our purpose. If the wave function of the system AB has this
product form, then it is easy to show that the energy variance
is also additively separable,

VAB = VA + VB, �A4�

where VAB= �AB��ĤAB−EAB�2�AB� / �AB �AB� is the energy

variance of the system AB, and VA= �A��ĤA−EA�2�A� / �A �A�
and VB= �B��ĤB−EB�2�B� / �B �B� are the energy variances of
the fragments.

2. Multiplicative separability of energy-optimized
linear wave functions

Before discussing variance-optimized wave functions, it
is useful to briefly repeat the proof of the multiplicative sepa-
rability of energy-optimized linear wave functions, given for
instance in Ref. 20.

Consider that the fragments are described by the follow-
ing linearly parametrized �approximate� wave functions:

�A� = �
i

ciA�iA� �A5a�

and

�B� = �
j

cjB�jB� , �A5b�

where �iA�= �̂iA�vac� and �jB�= �̂ jB�vac� are some many-body
basis states, and the coefficients ciA and cjB are determined
by requiring the stationarity of the energy of each fragment,

�EA

�ciA
= 2

�iA�ĤA − EA�A�
�A�A�

= 0, �A6a�

�EB

�cjB
= 2

�jB�ĤB − EB�B�
�B�B�

= 0. �A6b�

Correspondingly, consider that the composite system is de-
scribed by a linearly parametrized wave function in the prod-

uct basis �iAjB�= �̂iA�̂ jB�vac�,

�AB� = �
ij

cij�iAjB� , �A7�

where the coefficients cij are also consistently determined by
imposing the stationarity of the energy,

�EAB

�cij
= 2

�iAjB�ĤAB − EAB�AB�
�AB�AB�

= 0. �A8�

It is then easy to see that the product wave function �AB�P

= �̂A�̂B�vac� makes the corresponding energy EAB
P stationary,

�EAB
P

�cij
= 2

�iA�ĤA − EA�A�
�A�A�

�jB�B�
�B�B�

+ 2
�jB�ĤB − EB�B�

�B�B�
�iA�A�
�A�A�

= 0, �A9�

since both terms vanish according to Eq. �A6�. The product
wave function is, thus, a possible solution and, if this is the

actual solution given by the method, then the method is size
consistent.

We note that the energy of the product wave function
will converge exponentially to the sum of the constituent
energies as a function of the interfragment distance because
the overlap of the fragment wave functions decays exponen-
tially. On the other hand, the true wave function has an en-
ergy that converges only as an inverse power to the sum of
the constituent energies �van der Waals interaction�.

3. Lack of multiplicative separability of
variance-optimized linear wave functions

In the case of variance-optimized linear wave functions,
the coefficients ciA and cjB of the fragment wave functions of
Eq. �A5a� and �A5b� are determined by requiring the station-
arity of the energy variance,

�VA

�ciA
= 2

�iA��ĤA − EA�2 − VA�A�
�A�A�

= 0, �A10a�

�VB

�cjB
= 2

�jB��ĤB − EB�2 − VB�B�
�B�B�

= 0. �A10b�

Correspondingly, the coefficients cij of the composite wave
function of Eq. �A7� are also determined by imposing sta-
tionarity of the energy variance,

�VAB

�cij
= 2

�iAjB��ĤAB − EAB�2 − VAB�AB�
�AB�AB�

= 0. �A11�

In contrast to the case of energy-optimized wave functions,

the product wave function �AB�P= �̂A�̂B�vac� now does not
make the corresponding energy variance VAB

P stationary,

�VAB
P

�cij
= 2

�iA��ĤA − EA�2 − VA�A�
�A�A�

�jB�B�
�B�B�

+ 2
�jB��ĤB − EB�2 − VB�B�

�B�B�
�iA�A�
�A�A�

+ 4
�iA�ĤA − EA�A�

�A�A�
�jB�ĤB − EB�B�

�B�B�
� 0, �A12�

since the last term in Eq. �A12� is the product of the energy
gradients of the fragments which do not now generally van-
ish. Thus, the wave function minimizing the energy variance
of the composite system is not a product wave function. This
suggests that variance minimization does not generally yield
additively separable energies, EAB�EA+EB. Further, since
the variance is additive for the product wave function, if the
method minimizes over a space that includes the product
wave function, then VAB�VA+VB. This happens by having
anticorrelated energy fluctuations on the two fragments. Of
course, in the limit of exact wave functions, the gradients of
the energy and of the energy variance simultaneously vanish,
and size consistency is ensured. Consequently, the magnitude
of the violation of size consistency of variance-optimized
linear wave functions is expected to become smaller as the
wave function becomes more accurate.
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APPENDIX B: SPIN-SYMMETRY BREAKING IN DMC
FOR THE C2 MOLECULE AT DISSOCIATION

In this appendix, we show how the information on the
real-space location of the electrons in DMC calculations of
the C2 molecule at dissociation using a spin-restricted single-
determinant trial wave function reveals that the spin-singlet
symmetry of the exact ground state is broken in the FN wave
function.

For that, we need to determine the expectation value of

the total spin operator Ŝ2 over the FN wave function. As we
use in the QMC calculation a real-space spin-assigned wave
function, we first need to reconstitute the corresponding total
wave function. Reference 62 shows how to do so by using
straightforward first quantization. Here, we use the alterna-
tive formalism of real-space second quantization.

In this formalism, the total wave function ��� in abstract
Hilbert space corresponding to a N-electron real-space
spin-assigned wave function ��r1 ,r2 , . . . ,rN�
= �r1↑ ,r2↑ , . . . ,rN↓ ��� with N↑ spin-up followed by N↓
spin-down electrons is written as

��� =
1

	N↑!N↓!
� dr1dr2 ¯ drN��r1,r2, ¯ ,rN�

��̂↑
†�r1��̂↑

†�r2� ¯ �̂↓
†�rN��vac� , �B1�

where �̂�
†�r� is the fermionic field creation operator at point r

and spin �. In Eq. �B1�, ��r1 ,r2 , . . . ,rN� is taken as anti-
symmetric under the exchange of two same-spin electron
space coordinates and normalized to unity, i.e.,
�dr1dr2¯drN���r1 ,r2 , . . . ,rN��2=1, implying that ��� is
also normalized to unity, �� ���=1. Even if the wave func-
tion ��� is not antisymmetric under the exchange of two
opposite-spin electrons �product of spin-up and spin-down
determinants�, the total wave function ��� is always fully
antisymmetric.

To study the dissociation of the C2 molecule, it is suffi-
cient to consider only the four � electrons. The total FN
wave function ��FN� corresponding to the spin-assigned real-
space FN wave function �FN�r1 ,r2 ,r3 ,r4� is, thus, written as

��FN� =
1

2
� dr1dr2dr3dr4�FN�r1,r2,r3,r4�

��̂↑
†�r1��̂↑

†�r2��̂↓
†�r3��̂↓

†�r4��vac� , �B2�

with the antisymmetry constraints

�FN�r2,r1,r3,r4� = − �FN�r1,r2,r3,r4� , �B3a�

�FN�r1,r2,r4,r3� = − �FN�r1,r2,r3,r4� . �B3b�

Examination of the real-space location of the electrons dur-
ing DMC calculations using a spin-restricted SD trial wave
function shows that, in the dissociation limit, the mixed dis-
tribution ��r1 ,r2 ,r3 ,r4��FN�r1 ,r2 ,r3 ,r4� vanishes when-
ever two electrons of opposite spins are in the neighborhood
of the same C nucleus. In contrast, we know from VMC
calculations that the trial wave function ��r1 ,r2 ,r3 ,r4� does
not forbid dissociation with two opposite-spin electrons
around the same nucleus; thus, we conclude that it is the FN

wave function �FN�r1 ,r2 ,r3 ,r4� that vanishes for this type
of dissociation. In other words, it means that at dissociation,
�FN�r1 ,r2 ,r4 ,r3� can be written as �assuming that inversion
symmetry is preserved�,

�FN�r1,r2,r4,r3� = fA�r1,r2�gB�r3,r4�

+ gB�r1,r2�fA�r3,r4� , �B4�

where fA and gB are antisymmetric two-electron functions
localized around nuclei A and B, respectively.

We now investigate the spin symmetry of this FN wave
function. First, using the anticommutation rules of the field
operators, it is easy to show that the wave function ��FN� is

an eigenstate of the spin-projection operator Ŝz

= �1 /2��dr��̂↑
†�r��̂↑�r�− �̂↓

†�r��̂↓�r�� with eigenvalue zero,

Ŝz��FN� = 0, �B5�

for any function �FN�r1 ,r2 ,r4 ,r3�. The action of the total

spin operator Ŝ2= Ŝ+Ŝ−+ Ŝz�Ŝz−1� with Ŝ+=�dr�̂↑
†�r��̂↓�r�

and Ŝ−=�dr�̂↓
†�r��̂↑�r� on ��FN� gives

Ŝ2��FN� =
1

2
� dr1dr2dr3dr4�2�FN�r1,r2,r3,r4�

− 4�FN�r1,r3,r2,r4���̂↑
†�r1��̂↑

†�r2��̂↓
†�r3��̂↓

†�r4�

��vac� , �B6�

where the anticommutation rules of the field operators and
permutations of electron space coordinates have been used.
Equation �B6� shows that ��FN� is generally not an eigenstate

of Ŝ2. At dissociation, it is nevertheless possible to calculate

the expectation value of Ŝ2 over ��FN�,

��FN�Ŝ2��FN� = 2 −� dr1dr2dr3dr4�FN�r1,r2,r3,r4�

� �FN�r1,r3,r2,r4� = 2, �B7�

since the last integral vanishes due to the localized form of
�FN�r1 ,r3 ,r2 ,r4� given in Eq. �B4�.

In conclusion, we have shown that the singlet-spin sym-
metry of the ground state of the C2 molecule is broken in the
FN wave function at dissociation using the nodes of a spin-
restricted single-determinant wave function. The expectation

value of Ŝ2 over the FN wave function is 2, which is identical
to the value found for the lowest broken symmetry solution
of the unrestricted HF �Ref. 65� or unrestricted Kohn–Sham
equations with the usual approximate density functionals.66
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