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ABSTRACT
We consider the calculations of photoionization spectra and core resonances of open-shell systems using range-separated time-dependent
density-functional theory. Specifically, we use the time-dependent range-separated hybrid (TDRSH) scheme, combining a long-range
Hartree–Fock exchange potential and kernel with a short-range potential and kernel from a local density-functional approximation, and
the time-dependent locally range-separated hybrid (TDLRSH) scheme, which uses a local range-separation parameter. To efficiently perform
the calculations, we formulate a spin-unrestricted linear-response Sternheimer approach in a non-orthogonal B-spline basis set using appro-
priate frequency-dependent boundary conditions. We illustrate this approach on the Li atom, which suggests that TDRSH and TDLRSH are
adequate simple methods for estimating the single-electron photoionization spectra of open-shell systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0134645

I. INTRODUCTION

Adiabatic linear-response time-dependent density-functional
theory (TDDFT),1–4 using range-separated approximations,5–12 is
recognized as a practical and reasonably accurate approach for
calculating bound-state electronic excitations in many molecular
systems (see, e.g., Refs. 13 and 14). A natural question is, then,
whether these range-separated TDDFT methods can also be suc-
cessfully extended from bound to continuum excitations in order to
calculate, for example, the photoionization spectra and resonances
in atomic and molecular systems.

In Ref. 15, some of the authors of the present study
started to explore the merits of range-separated TDDFT for the

calculation of photoionization spectra and showed that the so-called
linear-response time-dependent range-separated hybrid (TDRSH)
scheme,12,16 combining a long-range Hartree–Fock (HF) exchange
potential and kernel with a short-range potential and kernel from
a local density-functional approximation, provides an adequate
(single-electron) photoionization spectrum of the He atom. Tech-
nically, in Ref. 15, the continuum was described by the use of a
B-spline basis set within a computational box and the photoioniza-
tion spectrum was straightforwardly calculated by diagonalization
of the linear-response Casida equations (in the orthogonal occu-
pied/virtual orbital basis) using zero boundary conditions at the edge
of the box. In Ref. 17, we extended this study to the Be atom and
showed that the TDRSH scheme and a close variant, namely, the
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time-dependent locally range-separated hybrid (TDLRSH) scheme,
also give overall reasonable (single-electron) photoionization spec-
tra for this system, with core resonances at approximately correct
resonance energies, albeit with much too small resonance widths.
To be able to efficiently apply TDRSH and TDLRSH to the Be atom,
in Ref. 17, we used a linear-response Sternheimer approach18–26 (in
the non-orthogonal B-spline basis) using appropriate frequency-
dependent boundary conditions at the edge of the computational
box.

The work of Ref. 17 was restricted to systems with closed-shell
ground-state states. In the present work, we extend the theory of
Ref. 17 to systems with open-shell ground-state states. For this, we
provide equations for a general linear-response Sternheimer scheme
(in a non-orthogonal basis set) within a spin-unrestricted formal-
ism and again with frequency-dependent boundary conditions at
the edge of the computational box. As an illustration, we use this
scheme to calculate the photoionization spectra of the Li atom at
the TDRSH and TDLRSH levels, extract Fano parameters of some
of the core resonances, and make a comparison with the stan-
dard time-dependent local-density approximation (TDLDA) and
time-dependent Hartree–Fock (TDHF) methods.

This paper is organized as follows: in Sec. II, we review the
range-separated hybrid (RSH) and locally range-separated hybrid
(LRSH) schemes in a spin-unrestricted formalism and give, in some
detail, the linear-response spin-unrestricted Sternheimer equations,
including a nonlocal HF exchange kernel both in real space and in a
general non-orthogonal basis set, which, to the best of our knowl-
edge, have never been given in the literature. We also give some
computational details for our specific implementation for the Li
atom using a B-spline basis set. In Sec. III, we give and discuss the
results obtained on the Li atom. We explain how to select an optimal
range-separation parameter, discuss the calculated photoionization
spectra, and analyze the core resonances. Section IV contains our
conclusions.

II. THEORY AND COMPUTATIONAL METHOD
We work on the one-electron Hilbert space L2(R3

Σ,C), where
R3
Σ = R3 × Σ and Σ = {↑, ↓} is the set of spin coordinates. We denote

a space-spin electron coordinate as x = (r, s) ∈ R3
Σ. We use through-

out a spin-unrestricted formalism. Unless otherwise indicated,
Hartree atomic units are used in this work.

A. Range-separated hybrid scheme
In the range-separated hybrid (RSH) scheme,27 the spin-

orbitals {φi} and their associated energies {εi} of an N-electron
system are found from the self-consistent Schrödinger-type equa-
tion,

∫
R3
Σ

h[γ0](x, x′)φi(x′) dx′ = εiφi(x), (1)

where h[γ0](x, x′) is the nonlocal RSH Hamiltonian depend-
ing on the density matrix γ0(x, x′) = ∑N

i=1 φi(x)φ∗i (x′). The RSH
Hamiltonian has the form, for a generic density matrix γ,

h[γ](x, x′) = T(x, x′) + δ(x − x′)vne(r) + vHxc[γ](x, x′), (2)

where T(x, x′) is the kinetic integral kernel such that
∫R3

Σ
T(x, x′)φi(x′) dx′ = −(1/2)∇2

rφi(x), vne(r) is the nuclei-
electron potential, and vHxc[γ](x, x′) is the Hartree-exchange-
correlation potential. The expression of vHxc[γ](x, x′) is given by

vHxc[γ](x, x′) = δ(x − x′)vH[ργ](r) + v lr, HF
x [γ](x, x′)

+ δ(x − x′)v sr
xc[ργ](x), (3)

containing the local Hartree potential

vH[ργ](r) = ∫
R3
Σ

ργ(x′)wee(r, r′) dx′, (4)

written with the spin-resolved density ργ(x) = γ(x, x) and the
Coulomb electron–electron interaction wee(r, r′) = 1/∣r − r′∣, the
nonlocal long-range (lr) HF exchange potential

v lr, HF
x [γ](x, x′) = −γ(x, x′)w lr

ee(r, r′), (5)

written with the long-range electron–electron interaction28

w lr
ee(r, r′) = erf(μ∣r − r′∣)

∣r − r′∣ , (6)

with μ = μ̃/a0, where a0 = 1 a.u. is the Bohr radius and μ̃ ∈ [0,+∞) is
the adimensional range-separation parameter, and the local comple-
mentary short-range (sr) exchange-correlation potential v sr

xc[ργ](x).
For the latter term, we use in this work the LDA

v sr
xc[ργ](r, s) = ∂ē sr

xc, UEG(ρ↑, ρ↓,μ)
∂ρs

∣
ρ↑=ργ(r,↑)
ρ↓=ργ(r,↓)

, (7)

where ē sr
xc, UEG(ρ↑, ρ↓,μ) is the spin-dependent complementary

short-range exchange-correlation energy density of the uniform-
electron gas (UEG), as parameterized in Ref. 29.

In the locally range-separated hybrid (LRSH) scheme,17,30–34

the range-separation parameter μ in Eqs. (6) and (7) is replaced by
a function of position r↦ μ(r). The long-range electron–electron
interaction in Eq. (6) now becomes32

w lr
ee(r, r′) = 1

2
[ erf(μ(r)∣r − r′∣)

∣r − r′∣ + erf(μ(r′)∣r − r′∣)
∣r − r′∣ ]. (8)

Following Ref. 30, we choose μ(r) as

μ(r) = μ̃
2
∣∇ρ(r)∣
ρ(r) , (9)

where again μ̃ ∈ [0,+∞) is the adimensional range-separation para-
meter and we take ρ(r) as the fixed spin-unrestricted Hartree–Fock
(UHF) ground-state density.

B. Linear-response Sternheimer equations
in real space

We consider a time-dependent perturbation potential of the
form
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vext(r, t) = [vext(r)e− iωt + vext(r)e+ iωt]eηt , (10)

where vext(r) = r ⋅ E e is the electric–dipole interaction, (E is the
amplitude of the electric field, and e is its unit polarization vector),
ω ≥ 0 is the frequency, and eηt is an adiabatic switching factor with a
small parameter η > 0. Following the same steps as in Ref. 17, it can
be shown that the Fourier components at frequencies ±ω + iη of the
first-order change of the occupied spin-orbital φi, namely, ψ(+)i and
ψ(−)i , are given by the following TDRSH or TDLRSH Sternheimer
equations:

(±ω + iη + εi)ψ(±)i (x1,ω) = ∫
R3
Σ

h[γ0](x1, x′1)ψ(±)i (x′1,ω) dx′1

+∫
R9
Σ

fHxc[γ0](x1, x′1; x2, x′2)

γ(±)(x2, x′2,ω)φi(x′1) dx′1 dx2 dx′2

+ v(1)ext (r1)φi(x1), (11)

with the first-order perturbation potential v(1)ext (r) = r ⋅ e, the first-
order changes of the density matrix

γ(±)(x, x′,ω) =
N

∑
i=1
[ψ(±)i (x,ω)φ∗i (x′) + φi(x)ψ(∓)∗i (x′,ω)], (12)

and the Hartree-exchange-correlation kernel

fHxc[γ0](x1, x′1; x2, x′2) = δ(x1 − x′1)δ(x2 − x′2)fH(r1, r2)
+ f lr, HF

H (x1, x′1; x2, x′2) + δ(x1 − x′1)
× δ(x2 − x′2)f sr

xc[ργ0](x1, x2), (13)

where fH(r1, r2) = wee(r1, r2) is the Hartree kernel, f lr, HF
H

(x1, x′1; x2, x′2) = −δ(x1 − x2)δ(x′1 − x′2)w lr
ee(r1, r′1) is the nonlocal

HF exchange kernel, and f sr
xc[ργ0](x1, x2) is the short-range

exchange-correlation kernel, which for the LDA [Eq. (7)] takes the
local form

f sr
xc[ργ0](r1, s1, r2, s2) = δ(r1 − r2)

∂2ēsr
xc,UEG(ρ↑, ρ↓,μ)
∂ρs1∂ρs2

∣
ρ↑=ργ0 (r1 ,↑)
ρ↓=ργ0 (r1 ,↓)

.

(14)

The photoexcitation/photoionization cross section can then be
calculated as24

σ(ω) = lim
η→0+

4πω
c

Im[α(ω + iη)], (15)

where c = 137.036 a.u. is the speed of light and α(ω) is the spherically
averaged dipole polarizability given by

α(ω + iη) = −1
3 ∑

a∈{x,y,z}
∫

R3
Σ

(r ⋅ ua) ρ(+)(x,ω) dx, (16)

where ua is the unit vector along the direction a and ρ(+)(x,ω)
= γ(+)(x, x,ω).

C. Linear-response Sternheimer equations
in a basis set

Let us introduce now a finite (non-orthogonal) spatial basis set
on a domain Ω ⊂ R3, i.e., {χν}ν=1,...,M ⊂ H1(Ω,C) (where H1 is the
first-order Sobolev space) made of M basis functions to expand the
occupied spin-orbitals

φj(r, s) = δsj ,s

M

∑
ν=1

cjνχν(r), (17)

where sj ∈ Σ is the spin of the spin-orbital j, and their first-order
changes

ψ(±)j (r, s,ω) = δsj ,s

M

∑
ν=1

c(±)jν (ω)χν(r), (18)

where cjν and c(±)jν (ω) are (generally complex-valued) coefficients
labeled with the composite index jν ≡ ( j, ν) ∈ [[1, N]] × [[1, M]]. Inte-
grating Eq. (11) against a basis function χ∗μ , and using the expansions
of Eqs. (17) and (18), leads to the basis-set Sternheimer equations in
the following block matrix form:

⎛
⎜
⎝
Λ(ω) B

B∗ Λ(−ω)∗
⎞
⎟
⎠

⎛
⎜
⎝

c(+)(ω)
c(−)(ω)∗

⎞
⎟
⎠
= −
⎛
⎜
⎝

V

V∗
⎞
⎟
⎠

, (19)

which must be solved at each given frequency ω for c(+)(ω) and
c(−)(ω)∗, which are the column vectors of components c(+)jν (ω) and

c(−)jν (ω)
∗, respectively. In Eq. (19), V is the column vector of com-

ponents Viμ = e ⋅∑M
ν=1 dμ,νciν, where dμ,ν = ∫Ωχ

∗
μ (r)rχν(r) dr are the

dipole-moment integrals, andΛ(±ω) and B are square matrices with
elements as given below:

Λiμ,jν(±ω) = δi,j(hi,μ,ν(±ω) − (εi ± ω + iη)Sμ,ν) +
M

∑
λ=1

M

∑
σ=1

ciσc∗jλFsi ,sj

μ,λ,σ,ν

(20)
and

Biμ,jν =
M

∑
λ=1

M

∑
σ=1

ciσcjλFsi ,sj

μ,ν,σ,λ. (21)

In Eq. (20), Sμ,ν = ∫Ωχ
∗
μ (r)χν(r) dr are the overlap integrals over the

basis functions and hi,μ,ν(±ω) are the matrix elements of the RSH or
LRSH Hamiltonian

hi,μ,ν(±ω) = ti,μ,ν(±ω) + vμ,ν +
M

∑
λ=1

M

∑
σ=1

× (Pσ,λwμ,λ,ν,σ − Psi
σ,λw lr

μ,λ,σ,ν) + v sr,si
μ,ν , (22)

where ti,μ,ν(±ω) are the kinetic integrals

ti,μ,ν(±ω) =
1
2∫Ω
∇χ∗μ (r) ⋅ ∇χν(r) dr

− 1
2∫∂Ω2

χ∗μ (r)Ki(r, r′;±ω)χν(r′) dr dr′, (23)

where K i(r, r′;±ω) is the Dirichlet-to-Neumann kernel
imposing Robin boundary conditions on the surface ∂Ω,17
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vμ,ν = ∫Ωχ
∗
μ (r)vne(r)χν(r) dr are the nuclei-electron integrals,

Pσ,λ = ∑N
j=1 cjσc∗jλ are the elements of the total density matrix,

Psi
σ,λ = ∑

N
j=1 δsj ,si cjσc∗jλ are the elements of the density matrix of spin

si, wμ,λ,ν,σ = ∫Ω2χ∗μ (r1)χ∗λ (r2)wee(r1, r2)χν(r1)χσ(r2) dr1 dr2 and
w lr
μ,λ,σ,ν = ∫Ω2χ∗μ (r1)χ∗λ (r2)w lr

ee(r1, r2)χσ(r1)χν(r2) dr1 dr2 are the
Coulombic and long-range two-electron integrals, respectively, and
v sr,si
μ,ν = ∫Ωχ

∗
μ (r)v sr

xc[ργ0](r, si)χν(r) dr are the short-range exchange-
correlation potential integrals. In Eqs. (20) and (21), Fsi ,sj

μ,λ,σ,ν comes
from the matrix elements of the Hartree-exchange-correlation
kernel fHxc[γ0],

Fsi ,sj

μ,λ,σ,ν = wμ,λ,σ,ν − δsi ,sj w
lr
μ,λ,ν,σ + f sr,si ,sj

μ,λ,σ,ν , (24)

where f sr,si ,sj

μ,λ,σ,ν are the short-range exchange-correlation kernel inte-
grals

f sr,si ,sj

μ,λ,σ,ν = ∫Ω2
χ∗μ (r1)χ∗λ (r2)f sr

xc[ργ0](r1, si, r2, sj)χσ(r1)χν(r2) dr1 dr2.

(25)
Finally, in the basis set, the dipole polarizability takes the form

α(ω + iη) = −1
3 ∑

a∈{x,y,z}

M

∑
μ=1

M

∑
ν=1
(P(+)μ,ν (ω)dν,μ + P(−)μ,ν (ω)∗d∗ν,μ) ⋅ ua,

(26)

where P(±)μ,ν (ω) = ∑N
i=1 c(±)iμ (ω)c

∗
iν.

D. Computational details
We apply the present theory to the Li atom (N = 3) in the

ground-state configuration 1s22s. We use a dipole interaction with a
z-polarized electric field, i.e., v(1)ext = r ⋅ uz . The occupied spin-orbitals
are of symmetry s (ℓi = 0, mi = 0), and the perturbed spin-orbitals
are of symmetry pz (ℓ = 1, m = 0).

Just like in Ref. 17, we expand the radial parts of orbitals in a
basis set of Ms = 50 B-spline functions35,36 of order ks = 8, using a
constant spatial grid spacing and a maximal radius of rmax = 25 bohr.
The Robin boundary-condition term in Eq. (23) takes a simple radial
local form, identical to the one used for the Be atom in Ref. 17. We
use η = 0 to avoid artificial broadening of the resonances.

III. RESULTS AND DISCUSSION
We now show and discuss the results on the Li atom.

A. Orbital energies
Figure 1 shows the RSH and LRSH 1s↑, 1s↓, and 2s↑ spin-orbital

energies as a function of the adimensional range-separation para-
meter μ̃. Also indicated are the opposite of the experimental IP
(−5.392 eV)37 and of the 1s↑ ionization edge (corresponding to the
two-electron state 1s2s 1S,−66.31 eV)38 and 1s↓ ionization edge (cor-
responding to the two-electron state 1s2s 3S, −64.41 eV),38 as well as
the Kohn–Sham (KS) exact exchange (EXX) 1s↑, 1s↓, and 2s↑ spin-
orbital energies (−55.94, −67.18, and −5.342 eV, respectively)39 and
the exact KS 1s↑ spin-orbital energy (−55.97 eV39). According to the
spin-unrestricted KS theory,40,41 the exact KS 2s↑ spin-orbital energy
must be equal to the opposite of the exact IP and the exact KS 1s↓
spin-orbital energy must be equal to the opposite of the exact 1s↓ ion-
ization edge. As for the He atom,15 the KS EXX spin-orbital energies
are rather close to the exact KS spin-orbital energies.

Let us first discuss the 2s↑ spin-orbital energy. At μ̃ = 0, both
RSH and LRSH reduce to the standard KS and give a far too high
2s↑ spin-orbital energy (by more than 2 eV) due to the well-known
self-interaction error of the LDA. For μ̃→∞, both RSH and LRSH
reduce to the standard HF, which gives a 2s↑ spin-orbital energy very
close to the opposite of the exact IP (error of only about 0.04 eV).
Starting from μ̃ = 0, increasing μ̃ reduces the self-interaction error
in the short-range LDA exchange-correlation functional, and the

FIG. 1. RSH and LRSH 1s↑, 1s↓, and 2s↑ spin-orbital energies of the Li atom as a function of the adimensional range-separation parameter μ̃. As references, the opposite
of the experimental IP (−5.392 eV)37 and of the 1s↑ ionization edge (corresponding to the state 1s2s 1S, −66.31 eV)38 and 1s↓ ionization edge (corresponding to the state
1s2s 3S, −64.41 eV)38 are indicated, as well as the KS EXX 1s↑, 1s↓, and 2s↑ spin-orbital energies (−55.94, −67.18, and −5.342 eV, respectively)39 and the exact KS 1s↑
orbital energy (−55.97 eV39).
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2s↑ spin-orbital energy essentially reaches its HF value at around
μ̃ ≈ 0.25 for RSH and μ̃ ≈ 1 for LRSH.

Let us now focus on the 1s↑ and 1s↓ spin-orbital energies. Both
RSH and LRSH give very small energy splittings between the 1s↑
and 1s↓ spin-orbitals (at most about 0.5 eV for large μ̃), in compar-
ison with the energy splitting obtained with the exact KS (8.4 eV)
and with the experimental ionization edges (1.9 eV). Again, at μ̃ = 0,
RSH and LRSH reduce to the standard KS and give way too high
1s↑ and 1s↓ spin-orbital energies due to the use of the LDA. For
μ̃→∞, when RSH and LRSH reduce to the standard HF, we obtain
1s↑ and 1s↓ spin-orbital energies that are too low compared to the
experimental ionization edges by about 1.6 and 3.0 eV, respectively.
With the present approximations for the short-range exchange-
correlation potential and kernel, the RSH and LRSH ionization
energies correspond to the opposite of the occupied spin-orbital
energies and are identical to the TDRSH and TDLRSH ionization
energies, respectively. In the philosophy of the so-called optimally
tuned range-separated hybrids,8,42,43 in order to obtain correct ion-
ization energies in TDRSH or TDLRSH, it is, thus, appropriate to
choose the optimal adimensional range-separation parameter μ̃ so
that the RSH or LRSH spin-orbital energies are as close as possible
to the opposite of the experimental ionization energies. Concretely,
since we focus in this work on core excitations, we choose the
optimal μ̃ so as to symmetrically minimize the error in the 1s↑ spin-
orbital energy and the error in the 1s↓ spin-orbital energy. This gives
optimal adimensional range-separation parameters of μ̃RSH = 1.431
for RSH and μ̃LRSH = 0.560 for LRSH.

B. Photoionization spectrum
Figure 2 shows the photoionization cross section calculated by

TDLDA, TDHF, TDRSH, and TDLRSH (using the optimal adimen-
sional range-separation parameters determined in Sec. III A).

The TDLDA photoionization spectrum starts at a too low
ionization threshold and the cross section is zero at the thresh-
old, in agreement with the Wigner-threshold law44,45 for potentials

lacking a long-range attractive −1/r Coulomb tail. At the scale of
the plot, the TDLDA 1s↑ and 1s↓ ionization edges are superimposed
and occur at a much too low energy. The TDLDA photoionization
spectrum contains only the two first 1s↑ → 2p↑ and 1s↓ → 2p↓ core
resonances, the other core single-excited resonances (involving the
orbitals 3p, 4p, etc.) having dissolved into the continuum beyond the
1s ionization edge.

The TDHF photoionization spectrum starts at an ionization
threshold very close to the exact value, and the cross section is not
zero at the threshold. Again, at the scale of the plot, the TDHF 1s↑
and 1s↓ ionization edges are almost superimposed and occur at a
too high energy. In contrast to TDLDA, the TDHF photoioniza-
tion spectrum contains not only the 1s↑ → 2p↑ and 1s↓ → 2p↓ core
resonances but also two intertwined series of single-excited core res-
onances to Rydberg states (1s↑ → 3p↑, 1s↑ → 4p↑, etc., and 1s↓ → 3p↓,
1s↓ → 4p↓, etc.) converging toward the 1s↑ and 1s↓ ionization edges,
respectively.

The TDRSH and TDLRSH photoionization spectra (using the
optimal adimensional range-separation parameters determined in
Sec. III A) display roughly the same features. They both start
very close to the exact ionization threshold. For both TDRSH
and TDLRSH, the 1s↑ and 1s↓ ionization edges (which are not
resolved at the scale of the plot) occur near the experimental ion-
ization edges, as expected, since the adimensional range-separation
parameter had been adjusted for this purpose. Similar to TDHF,
both the TDRSH and TDLRSH photoionization spectra display a
series of core resonances. In comparison with TDRSH, TDLRSH
gives smaller cross sections in the 2s continuum region (near
5 eV) and larger cross sections in the 1s continuum region (near
70 eV).

C. Core resonances
Figure 3 shows the TDLDA, TDHF, TDRSH, and TDLRSH

photoionization spectra in the energy region of the core (Feshbach-
type) resonances 1s↑ → np↑ and 1s↓ → np↓. In all cases, the cross

FIG. 2. Photoionization cross section of the Li atom calculated by (a) TDLDA and TDHF and (b) TDRSH and TDLRSH (using the optimal adimensional range-separation
parameters determined in Sec. III A, i.e., μ̃RSH = 1.431 for TDRSH and μ̃LRSH = 0.560 for TDLRSH). The vertical dashed lines correspond to the experimental IP (5.392 eV)37

and the 1s↓ and 1s↑ ionization edges (64.41 and 66.31 eV, respectively).38
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FIG. 3. Core resonance 1s↑ → np↑ and 1s↓ → np↓ of the Li atom calculated by (a) TDLDA, (b) TDHF, (c) TDRSH, and (d) TDLRSH (using the optimal adimensional
range-separation parameters determined in Sec. III A, i.e., μ̃RSH = 1.431 for TDRSH and μ̃LRSH = 0.560 for TDLRSH). The vertical dashed-dotted colored lines correspond
to the 1s↓ and 1s↑ ionization edges of the method considered, and the vertical dashed black lines correspond to the experimental 1s↓ and 1s↑ ionization edges (64.41 and
66.31 eV, respectively).38

section follows a characteristic asymmetric Fano line shape that can
be fitted to the analytical expression19,46

σ = σ0(1 + aϵ)[ρ2 (q + ϵ)2

1 + ϵ2 − ρ
2 + 1], (27)

where ϵ = 2(ω − ER)/Γ. Here, ER is the resonance energy, Γ is the
resonance width (or inverse lifetime), q is the asymmetry Fano para-
meter, σ0 is the total background cross section, a is a coefficient for
the total background linear drift, and ρ2 is the ratio between the
background cross section for transitions to continuum states that
interact with the discrete resonant state and the total background
cross section. The fitted parameters for the 1s↑ → 2p↑, 1s↓ → 2p↓,
1s↑ → 3p↑, 1s↑ → 3p↑, and 1s↑ → 3p↑ resonances are given in Table I.
For the fitting procedure, the cross section at the resonance energy
σ(ER)was included in the data as the asymmetry parameter q is very
sensitive to the value of the cross section at the peak. To attribute
the correct spin to each resonance line, for each method, we have
just calculated the photoionization spectra with uncoupled spin-↑

and spin-↓ excitations (not shown), giving resonances with a definite
spin that are very close to the original ones.

As references, we have included in Table I the experimental
resonance energies,47 as well as the accurate results obtained with
the R-matrix method48,49 and the saddle-point complex-rotation
(SPCR) method.50,51 The first core resonance cross section profiles
obtained with the R-matrix are shown in Fig. 1(a) of Ref. 49.

The TDLDA 1s↑ → 2p↑ and 1s↓ → 2p↓ resonances occur at
much too low energies (by 9.3 and 10.1 eV, respectively). With
TDHF, the 1s↑ → 2p↑ and 1s↓ → 2p↓ resonances have slightly
too high energies (by 0.7 and 0.5 eV, respectively) and the errors
increase for the 1s↓ → 3p↓ and 1s↑ → 3p↑ resonances (with ener-
gies overestimated by 2.7 and 1.4 eV, respectively). TDRSH does
not systematically improve over TDHF: although TDRSH gives
1s↓→ 3p↓ and 1s↑→ 3p↑ resonance energies with much smaller abso-
lute errors (0.7 eV for both resonances) compared to TDHF, it gives
1s↑ → 2p↑ and 1s↓ → 2p↓ resonance energies with larger absolute
errors (1.2 and 1.4 eV, respectively). By contrast, TDLRSH pro-
vides a systematic improvement over TDHF: it gives 1s↑ → 2p↑ and
1s↓ → 2p↓ resonance energies with absolute errors of 0.15 and
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TABLE I. Resonance energy ER, resonance width Γ, Fano asymmetric parameter q, total background cross section σ0,
background ratio parameter ρ2, background linear drift a, and the maximum value of the cross section at the resonance energy
σ(ER) for the 1s↑ → 2p↑, 1s↓ → 2p↓, 1s↑ → 3p↑, 1s↑ → 3p↑, and 1s↑ → 3p↑ core resonances of the Li atom calculated by
TDLDA, TDHF, TDRSH, and TDLRSH (using the optimal adimensional range-separation parameters determined in Sec. III A,
i.e., μ̃ = 1.431 for TDRSH and μ̃ = 0.560 for TDLRSH). As references, we also report the experimental values and accurate
results from the R-matrix and SPCR calculations.

ER (eV) Γ (meV) q σ0 (Mb) ρ2 a σ(ER) (Mb)

Resonance 1s↑ → 2p↑ [configuration 1s(2s2p)3P]

TDLDA 49.648 0.279 403.52 0.061 1.0072 −4.88 × 10−5 10 047.3
TDHF 59.595 5.618 −93.67 0.051 1.0448 −4.96 × 10−4 469.2
TDRSH 57.672 2.874 −170.78 0.045 1.0074 −3.66 × 10−4 1 326.5
TDLRSH 58.756 5.439 −136.31 0.055 1.0288 −3.33 × 10−4 1 060.5
R-matrixa 58.916 3.48
R-matrixb 58.898 3.99
SPCRc 58.910 3.33 5 164
Expt.d 58.909

Resonance 1s↓ → 2p↓ [configuration 1s(2s2p)1P]

TDLDA 50.273 0.142 488.14 0.076 1 −2.76 × 10−5 18 162.4
TDHF 60.915 0.174 1692.39 0.042 1.0054 1.86 × 10−5 121 319.2
TDRSH 58.974 0.566 891.62 0.042 1.0443 5.83 × 10−5 34 676.3
TDLRSH 60.370 0.273 1132.04 0.039 1.0160 4.12 × 10−5 50 323.1
R-matrixa 60.409 9.54
R-matrixb 60.357 10.52
SPCRc 60.398 9.56 84.3
Expt.d 60.392

Resonance 1s↓ → 3p↓ [configuration (1s2s)3S 3p]

TDHF 65.109 0.454 149.05 0.083 1 1.52 × 10−4 1 824.0
TDRSH 63.155 0.410 128.83 0.077 1 4.15 × 10−4 1 268.7
TDLRSH 63.272 0.675 79.74 0.106 1 1.33 × 10−3 671.8
R-matrixa 62.423 0.196
R-matrixb 62.415 0.214
SPCRc 62.417 0.203 14 630
Expt.d 62.417

Resonance 1s↑ → 3p↑ [configuration (1s2s)1S 3p]

TDHF 65.495 0.580 −276.35 0.062 1 −2.54 × 10−4 4 741.2
TDRSH 63.391 0.156 −546.66 0.066 1 −1.23 × 10−4 19 821.8
TDLRSH 63.476 0.488 −683.20 0.016 1 −3.58 × 10−3 7 372.2
R-matrixa 64.051 0.352
SPCRc 64.050 0.391 173
Expt.d 64.052
aFrom Ref. 48.
bFrom Ref. 49.
cFrom Ref. 50 (see also Ref. 51).
dFrom Ref. 47.

0.02 eV, respectively, and 1s↓ → 3p↓ and 1s↑ → 3p↑ resonance
energies with absolute errors of 0.9 and 0.6 eV, respectively.

The resonance widths Γ and Fano asymmetric parameters q,
which determined the shape of the resonances, are very sensitive to
the method employed. The resonance widths Γ should correspond
to the decay rate of the core resonances through the Auger process

1s2snp → 1s2 + e (for n = 2 or 3). Since the last configuration is a
single excitation with respect to the ground-state configuration, one
can a priori hope to obtain reasonable resonance widths with the
present adiabatic TDDFT/TDHF-type methods (in contrast to the
situation of the core resonances of the Be atom with Auger decays
involving a double excitation17). While TDLDA turns out to give
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much too small widths Γ (by one or two orders of magnitude) for the
first two core resonances, TDHF gives, indeed, reasonable widths Γ
(of the correct order of magnitude) for the 1s↑ → 2p↑, 1s↓ → 3p↓, and
1s↑ → 3p↑ resonances. TDHF only largely underestimates (by about
a factor 50) the width of the 1s↓ → 2p↓ resonance. According to the
reference methods, this last resonance has a much larger decay rate
than the other resonances considered here, which could be explained
by a larger proximity of the two electrons involved in the Auger
process in the 1s(2s2p)1P resonance state.52 This particular feature
of the 1s(2s2p)1P resonance state is not reproduced by TDHF. As
regards TDRSH and TDLRSH, they give resonance widths of the
same order of magnitude as the TDHF ones, sometimes smaller and
sometimes larger, without any clear pattern emerging.

IV. CONCLUSION
In this work, we have considered the calculation of the

photoionization spectra of open-shell systems using two vari-
ants of range-separated TDDFT, namely, TDRSH, which uses a
global range-separation parameter, and TDLRSH, which uses a
local range-separation parameter, and made a comparison with
the standard TDLDA and TDHF. For this, we have formulated
a spin-unrestricted linear-response Sternheimer approach in a
non-orthogonal B-spline basis set using appropriate frequency-
dependent boundary conditions. We have illustrated this approach
on the photoionization spectrum of the Li atom, focusing, in
particular, on the core resonances.

TDRSH and TDLRSH provide a big improvement over
TDLDA and a small improvement over TDHF. Moreover, TDLRSH
tends to provide slightly more accurate resonance energies than
TDRSH. This suggests that TDRSH and TDLRSH are adequate sim-
ple methods for estimating the single-electron photoionization spec-
tra of open-shell systems, even though neither TDRSH nor TDLRSH
can compete with more accurate methods such as the R-matrix and
SPCR methods, especially for the calculation of resonance widths.

To extend this work to general molecular systems, the present
linear-response Sternheimer approach could be implemented with
Gaussian basis sets and should be extended from spherical bound-
ary conditions to general nonlocal Robin boundary conditions. To
improve the accuracy, the present approach could be extended to
range-separated multiconfiguration TDDFT.11
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