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We assess a variant of linear-response range-separated time-dependent density-functional theory
(TDDFT), combining a long-range Hartree-Fock (HF) exchange kernel with a short-range adia-
batic exchange-correlation kernel in the local-density approximation (LDA) for calculating isotropic
C6 dispersion coefficients of homodimers of a number of closed-shell atoms and small molecules.
This range-separated TDDFT tends to give underestimated C6 coefficients of small molecules with
a mean absolute percentage error of about 5%, a slight improvement over standard TDDFT in the
adiabatic LDA which tends to overestimate them with a mean absolute percentage error of 8%, but
close to time-dependent Hartree-Fock which has a mean absolute percentage error of about 6%.
These results thus show that introduction of long-range HF exchange in TDDFT has a small but
beneficial impact on the values of C6 coefficients. It also confirms that the present variant of range-
separated TDDFT is a reasonably accurate method even using only a LDA-type density functional
and without adding an explicit treatment of long-range correlation. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4804981]

I. INTRODUCTION

It is well known that the leading term in the expansion
of the London dispersion attractive interaction energy be-
tween a pair of atoms or molecules at long distance R takes
the form −C6/R6.1 The C6 dispersion coefficients are conve-
niently expressed by the Casimir-Polder formula2, 3 involving
imaginary-frequency dynamic dipole polarizabilities, and can
be efficiently calculated from linear-response time-dependent
density-functional theory (TDDFT).4 In such TDDFT calcu-
lations of C6 coefficients, a number of approximations have
been used for the Kohn-Sham exchange-correlation potential
vxc and the corresponding response kernel fxc, including the
local-density approximation (LDA),4–7 generalized-gradient
approximations (GGA),8, 9 hybrid approximations,10–14 and
optimized effective potential (OEP) approaches.15–20 Using
the generalized Casimir-Polder formula,3 non-expanded dis-
persion energies can also be calculated from TDDFT.21, 22 The
best results are obtained with LDA or GGA density function-
als with asymptotically corrected potentials, hybrid approx-
imations, and OEP approaches, with a typical accuracy on
the C6 coefficients of atoms and small molecules of the order
of 5%.

In the last decade, hybrid TDDFT approaches based on
a range separation of electron-electron interactions have been
increasingly used. The range-separated TDDFT approach that
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was first developed is based on the long-range correction
(LC) scheme,23 which combines long-range Hartree-Fock
(HF) exchange with a short-range exchange density func-
tional and a standard full-range correlation density func-
tional. It has been demonstrated that the LC scheme corrects
the underestimation of Rydberg excitation energies of small
molecules23 and the overestimation of (hyper)polarizabilities
of long conjugated molecules24–31 usually obtained with stan-
dard (semi)local density-functional approximations. A variety
of other similar range-separated TDDFT schemes have also
been employed, which for example use an empirically mod-
ified correlation density functional depending on the range-
separation parameter,32 or introduce a fraction of HF ex-
change at shorter range as well,33–45 such as in the CAM-
B3LYP approximation.33

Recently, some of us have studied a new variant of
range-separated TDDFT46 based on the range-separated hy-
brid (RSH) scheme,47 which differs from the LC scheme
in that it uses a short-range correlation density functional
instead of a full-range one. This range-separated TDDFT
approach, referred to as TDRSH, is motivated by the fact
that, as for exchange, the long-range part of standard cor-
relation density-functional approximations such as the LDA
is usually inaccurate,48–50 so one may as well remove it.
The TDRSH method can then be viewed as a first-level ap-
proximation before adding more accurate long-range cor-
relation, e.g., by linear-response density-matrix functional
theory (DMFT)51 or linear-response multiconfiguration self-
consistent field (MCSCF) theory.52 Applied with a short-
range adiabatic LDA exchange-correlation kernel, it was
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found that this TDRSH method gives in fact electronic excita-
tion energies and oscillator strengths of small molecules very
similar to the ones obtained by the range-separated TDDFT
method based on the LC scheme, suggesting that the TDRSH
method is already a reasonably accurate method even before
adding explicit long-range correlations.46

In this work, we further assess the TDRSH method by
calculating isotropic C6 dispersion coefficients of a set of
closed-shell atoms and molecules. In particular, we investi-
gate the impact of long-range HF exchange on these C6 coeffi-
cients. To the best of our knowledge, the only range-separated
TDDFT method that had been applied so far to the calculation
of van der Waals dispersion coefficients was the one based on
CAM-B3LYP,13, 14, 53, 54 but the different results were incon-
clusive on whether or not long-range HF exchange brings any
improvement. Hartree atomic units (a.u.) are used throughout
the paper.

II. THEORY

The isotropic C6 dispersion coefficient between two sub-
systems A and B is given by the Casimir-Polder formula2, 3

(see Appendix A),

C6 = 3

π

∫ ∞

0
du ᾱA(iu)ᾱB(iu), (1)

where ᾱS(iu) = (αS,xx(iu) + αS,yy(iu) + αS,zz(iu))/3 is the
average imaginary-frequency dynamic dipole polarizability
of subsytem S, which has the general expression

ᾱ(iu) =
∑

n

fn

ω2
n + u2

, (2)

where the sum is over all excited states n, and fn and ωn are
the dipole oscillator strength and the excitation energy for the
transition to the excited state n.

In spin-restricted closed-shell TDDFT calculations, only
singlet → singlet excitations contribute to Eq. (2), since the
singlet → triplet excitations have zero oscillator strength. In
the TDRSH method,46 the singlet excitation energies 1ωn are
calculated in the basis of real-valued spatial RSH orbitals
{φk(r)} from the familiar symmetric eigenvalue equation,55

1M 1Zn = 1ω2
n

1Zn, (3)

where 1Zn are normalized eigenvectors and
1M = (1A − 1B)1/2(1A + 1B)(1A − 1B)1/2. The elements of
the symmetric matrices 1A and 1B are

1Aia,jb = (εa − εi)δij δab + 2〈aj |ŵee|ib〉 − 〈aj |ŵlr
ee|bi〉

+ 2〈aj | 1f̂ sr
xc|ib〉, (4)

1Bia,jb = 2〈ab|ŵee|ij 〉 − 〈ab|ŵlr
ee|ji〉 + 2〈ab| 1f̂ sr

xc|ij 〉, (5)

where i, j and a, b refer to occupied and virtual RSH spa-
tial orbitals, respectively, εk is the orbital eigenvalue of orbital
k, 〈aj |ŵee|ib〉 and 〈aj |ŵlr

ee|bi〉 are two-electron integrals as-
sociated with the Coulomb interaction wee(r) = 1/r and the
long-range interaction wlr

ee(r) = erf(μr)/r , respectively, and
〈aj |1f̂ sr

xc|ib〉 are the matrix elements of the singlet short-range

adiabatic exchange-correlation kernel

〈aj |1f̂ sr
xc|ib〉 =

∫
φa(r1)φj (r2) 1f sr

xc(r1, r2)

×φi(r1)φb(r2)dr1dr2, (6)

where 1f sr
xc(r1, r2) = δ2Esr

xc[n]/δn(r1)δn(r2) is the second-
order functional derivative of the short-range exchange-
correlation density functional. The singlet dipole length os-
cillator strengths 1fn are obtained from the eigenvectors 1Zn

with the following formula:55

1fn = 4

3

∑
α=x,y,z

(
dT

α · (1A − 1B)1/2 · 1Zn

)2
, (7)

where the components of the vector dα are
dα,ia = ∫

φi(r)rαφa(r)dr, i.e., the α Cartesian compo-
nent of the transition dipole moment between the orbitals i
and a.

The range-separation parameter μ acts as the inverse of a
smooth “cut-off radius” delimiting the long-range and short-
range parts of the electron-electron interaction. For μ = 0,
the method reduces to standard TDDFT (with a pure density
functional and in the adiabatic approximation). For μ → ∞,
the method reduces to standard time-dependent Hartree-Fock
(TDHF).

To investigate the effect of range separation due to modi-
fication of the ground-state exchange-correlation potential vxc

alone, without involving the exchange-correlation kernel fxc,
we also compute C6 coefficients using bare (uncoupled) po-
larizabilities

ᾱ0(iu) =
∑
ia

f 0
ia(

ω0
ia

)2 + u2
, (8)

where the bare excitation energies are simply given by orbital
energy differences, ω0

ia = εa − εi , and the bare dipole length
oscillator strengths by

f 0
ia = 4

3
ω0

ia

∑
α=x,y,z

d2
α,ia. (9)

The exact (non-relativistic) oscillator strengths obey the
well-known Thomas-Reiche-Kuhn (TRK) sum rule (or f-sum
rule),57–59

∑
n

fn = N, (10)

where the sum is over all transitions and N is the number
of electrons. Physically, the TRK sum rule is related to the
equivalence of the dipole length and dipole velocity forms of
oscillator strengths, which stems from electromagnetic gauge
invariance (see Ref. 60). The TRK sum rule determines the
asymptotic behavior of the dynamic polarizability at large
imaginary frequency, u → ∞,

ᾱ(iu) ∼ N

u2
. (11)

It has been shown that, in the limit of a complete one-electron
basis set, the TRK sum rule is satisfied in TDHF61–63 and in
TDDFT with pure density functionals (without nonlocal HF
exchange)55, 64 or with the OEP exact-exchange approach.18
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In Appendix B, we show that the TRK sum rule is also satis-
fied in TDRSH, and in fact with any usual hybrid approxima-
tion, as long as the same amount of non-local HF exchange
is consistently used in the ground-state potential generating
the orbitals and in the response kernel. By contrast, the bare
oscillator strengths in the dipole length form satisfy the TRK
sum rule only if the orbitals have been generated with a local
potential.63 As the HF and RSH orbitals are generated with a
non-local HF exchange potential, the bare HF and RSH dipole
length oscillator strengths do not sum to the number of elec-
trons.

III. COMPUTATIONAL DETAILS

The TDRSH method has been implemented for closed-
shell systems in a development version of the quantum chem-
istry program MOLPRO.65 In both the RSH ground-state po-
tential and the response kernel, we use the short-range spin-
independent (i.e., at zero spin magnetization) LDA exchange-
correlation density functional

Esr
xc,LDA[n] =

∫
n(r)εsr

xc,unif(n(r))dr, (12)

where εsr
xc,unif(n) = εxc,unif(n) − εlr

xc,unif(n) is the complement
short-range exchange-correlation energy per particle obtained
from the exchange-correlation energy per particle of the
standard uniform electron gas (UEG), εxc,unif(n),66, 67 and
the exchange-correlation energy per particle of a UEG with
the long-range electron-electron interaction, εlr

xc,unif(n), as
parametrized from quantum Monte Carlo calculations by
Paziani et al.68 (see Ref. 46 for a discussion about the cor-
responding kernel). For closed-shell systems, dependence
on the spin magnetization needs only to be considered for
triplet excitations but they do not contribute to the polar-
izability. The bare and response calculations are referred
to as RSHLDA and TDRSHLDA, respectively. We use the
value of μ = 0.5 bohr−1, which was previously used in
ground-state range-separated hybrid methods for applications
to weak intermolecular interactions,47, 69, 70 without trying to
re-optimize it.

For the rare-gas and alkaline-earth-metal atoms, we use
large Dunning-type uncontracted doubly augmented core-
valence quintuple-zeta quality basis sets, ensuring that the re-
sults are well converged with respect to the basis size. For He,
we use the uncontracted d-aug-cc-pV5Z basis set.71 For all
the other atoms, we have constructed uncontracted d-aug-cc-
pCV5Z basis sets by augmenting available basis sets with dif-
fuse functions using the standard even-tempered procedure.
For Ne, Ar, Kr, Be, and Mg, the basis sets are obtained from
the aug-cc-pCV5Z basis sets72–75 by adding one diffuse func-
tion for each angular momentum of the original basis. For Ca,
the basis set is obtained from the cc-pCV5Z basis set76 by
adding two diffuse functions for each angular momentum of
the original basis. For all atoms (except, of course, He), we
include all excitations from the core orbitals in the response
calculation. With this setup, the TRK sum rule is very nearly
satisfied, the sum of the TDLDA, TDHF, or TDRSH oscillator
strengths only slightly deviating from the number of electrons
by the order of 10−4 for Be; 10−3 for He, Ne, Ar, Mg, Ca; and

10−2 for Kr. While the fulfillment of the TRK sum rule to a
good accuracy requires including core excitations and using
very large basis sets, reasonably converged values of C6 co-
efficients can be obtained without including core excitations
and with much smaller basis sets. For example for Kr, ex-
cluding the core excitations and using the contracted d-aug-
cc-pVTZ basis set gives a TDRSHLDA C6 coefficient that is
smaller by only about 1.5% than the one obtained with inclu-
sion of core excitations and with the uncontracted d-aug-cc-
pCV5Z basis set. The reference values for the polarizabilities
and C6 coefficients of the rare-gas and alkaline-earth-metal
atoms considered here are taken from Derevianko et al.56 and
were obtained from accurate many-body calculations and/or
experimental data. The contributions from relativistic effects
on the value of the C6 coefficients can be neglected for the
atoms considered here, being at most 2% for Ca.13

For the molecules, we use a subset of 27 organic and in-
organic molecules (going from the less polarizable H2 to the
most polarizable CCl4) extracted from the database compiled
by Tkatchenko and Scheffler.77 The reference C6 coefficients
have been obtained from the experimental dipole oscillator
strength distribution data of Meath and co-workers (see, e.g.,
Refs. 78 and 79), which are believed to be accurate within
1%–2%. Our C6 coefficients are calculated with the d-aug-cc-
pVTZ basis set80–83 (obtained by even-tempered augmenting
the aug-cc-pVTZ basis set for Si, S, Cl, and Br) without in-
cluding core excitations. The geometries were optimized with
the B3LYP functional84–86 and the aug-cc-pVDZ basis set us-
ing the quantum chemistry program GAUSSIAN.87

Since we consider relatively small systems, we can solve
Eq. (3) for the full spectrum and we perform the integration
over the imaginary frequency in Eq. (1) analytically, giving

C6 = 3

2

∑
n,m

fA,n fB,m

ωA,nωB,m(ωA,n + ωB,m)
, (13)

where fS, n and ωS, n are the oscillator strengths and excitation
energies of subsystem S. For large systems, the imaginary-
frequency integration can be done more efficiently with a nu-
merical quadrature.

IV. RESULTS AND DISCUSSION

A. Rare-gas and alkaline-earth-metal atoms

As an illustrative example, we show in Fig. 1, the dy-
namic dipole polarizability ᾱ(iu) as a function of the imag-
inary frequency u for the Ne atom obtained by bare LDA,
RSHLDA, and HF calculations and TDLDA, TDRSHLDA,
and TDHF response calculations. The different methods
mostly differ at small imaginary frequency. Compared to the
accurate reference, for u � 1, the bare LDA polarizability
is too large, while the bare HF polarizability is too small.
The bare RSHLDA polarizability is in between the bare LDA
and HF ones and closer to the reference for u � 1. At large
imaginary frequency, all the bare polarizabilities are close to
the reference curve, but it can be seen that the bare RSH
and HF polarizabilities are slightly too large. This behavior
can be understood from the fact that the bare RSH or HF
oscillator strengths sum to a larger value than the number
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TABLE I. Static dipole polarizability ᾱ(0) (in a.u.) for rare-gas and alkaline-earth-metal atoms obtained by bare
LDA, RSHLDA, and HF, and TDLDA, TDRSHLDA, and TDHF, with uncontracted d-aug-cc-pCV5Z basis sets.

Bare LDA Bare RSHLDA Bare HF TDLDA TDRSHLDA TDHF Referencea

He 1.81 1.24 1.00 1.66 1.57 1.32 1.383
Ne 3.48 2.42 1.98 3.05 2.80 2.38 2.669
Ar 18.0 10.8 10.1 12.0 11.0 10.8 11.08
Kr 27.8 16.3 15.9 18.0 16.4 16.5 16.79

Be 80.6 29.1 30.6 43.8 43.5 45.6 37.76
Mg 122 49.5 55.2 71.4 73.6 81.6 71.26
Ca 277 111 125 149 167 185 157.1

aFrom Ref. 56.

of electrons (11.8 and 12.9, respectively, instead of 10), con-
trary to the bare LDA oscillator strengths which satisfy the
TRK sum rule. The TDLDA, TDRSHLDA, and TDHF po-
larizabilities are more accurate than their bare counterparts.
At small imaginary frequency, TDLDA slightly overestimates
the polarizability, TDHF slightly underestimates it, and TDR-
SHLDA is very close to the reference for this system. At
larger imaginary frequency, u � 1, TDLDA, TDHF, and TDR-
SHLDA all give almost exact polarizabilities, which can be
understood from the fact that they all satisfy the TRK sum
rule.

Table I reports static dipole polarizabilities ᾱ(0) for
rare-gas and alkaline-earth-metal atoms obtained by bare
and response calculations. Bare LDA always greatly overes-
timates the static polarizabilities, while bare RSHLDA and
HF underestimate them. TDLDA, TDRSHLDA, and TDHF
give overall more accurate static polarizabilities than the bare
calculations. While TDLDA decreases static polarizabilities
in comparison to bare LDA, an effect that is often understood
as the screening of the perturbed potential due to the response
of the Hartree-exchange-correlation potential, we note that
TDHF increases static polarizabilities in comparison to bare
HF. Different trends are observed for the effect of HF ex-
change in the rare-gas atoms and in the alkaline-earth-metal
atoms. For He, Ne, Ar, and Kr, starting from TDLDA which
systematically overestimates the static polarizabilities, the
increase of the amount of HF exchange with TDRSHLDA de-
creases the polarizabilities, eventually leading to a systematic
underestimation in TDHF. This is consistent with the well-
known tendency of TDLDA to underestimate Rydberg excita-

tion energies and that of TDHF to overestimate them. For Be,
Mg, and Ca, increasing the amount of HF exchange leads to
the increase of the static polarizabilities, with TDHF system-
atically overestimating them. For these systems, TDHF can
indeed be expected to underestimate the low-lying singlet va-
lence excitation energy due to the fact that HF misses the im-
portant s-p near-degeneracy ground-state correlation effects.

Table II reports C6 coefficients for homodimers of rare-
gas and alkaline-earth-metal atoms. As for static polarizabili-
ties, bare LDA largely overestimates the C6 coefficients for all
atoms, often by more than a factor of 2, as already known.88

Bare RSHLDA and bare HF overestimate on average the C6

coefficients, whereas they underestimate static polarizabili-
ties, meaning that they must overestimate dynamic polariz-
abilities at larger imaginary frequencies (as shown in Fig. 1).
TDLDA, TDRSHLDA, and TDHF give on average more ac-
curate C6 coefficients than the bare calculations. For He, Ne,
Ar, and Kr, TDLDA systematically overestimates the C6 coef-
ficients, and TDRSHLDA and TDHF perform better. For Be,
Mg, and Ca, TDHF greatly overestimates the C6 coefficients,
and TDLDA and TDRSHLDA are more accurate.

B. Molecules

Table III reports isotropic C6 coefficients for homod-
imers of 27 organic and inorganic small molecules. Mean
percentage errors (M%E) and mean absolute percentage er-
rors (MA%E) over all molecules with respect to the reference
values are given. Overall, the same trends than those found

FIG. 1. Dynamic dipole polarizability ᾱ(iu) as a function of the imaginary frequency u for the Ne atom obtained by bare LDA, RSHLDA, and HF (left plot)
and TDLDA, TDRSHLDA, and TDHF (right plot), with an uncontracted d-aug-cc-pCV5Z basis set. The accurate reference is taken from Ref. 56.
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TABLE II. C6 coefficients (in a.u.) for homodimers of rare-gas and alkaline-earth-metal atoms obtained by bare
LDA, RSHLDA, and HF, and TDLDA, TDRSHLDA, and TDHF, with uncontracted d-aug-cc-pCV5Z basis sets.

Bare LDA Bare RSHLDA Bare HF TDLDA TDRSHLDA TDHF Referencea

He 2.17 1.50 1.12 1.86 1.74 1.37 1.461
Ne 9.53 6.79 5.32 7.40 6.72 5.52 6.38(6)
Ar 137 80.8 76.6 70.5 63.3 62.0 64.3(6)
Kr 289 166 165 141 125 127 130(1)

Be 642 232 255 264 258 283 214(3)
Mg 1417 579 692 623 654 767 627(12)
Ca 5274 2247 2693 1990 2374 2769 2121(35)

aFrom Ref. 56, including estimated uncertainties in parentheses.

for the rare-gas atoms are observed for these molecules. Bare
LDA largely overestimates the C6 coefficients, by as much
as 137%. Bare RSHLDA and HF overestimate them on av-
erage with a MA%E of about 20%. TDLDA, TDRSHLDA,
and TDHF give C6 coefficients with overall comparable accu-
racy, TDRSHLDA having a slightly smaller MA%E of 5.2%
in comparison to the MA%Es of TDLDA and TDHF, 8.0%
and 6.3%, respectively. As for the rare-gas atoms, TDLDA
overestimates the C6 coefficients (with the only exception of

H2CO), and TDRSHLDA and TDHF give smaller C6 coeffi-
cients which tend to be underestimated.

It is interesting to discuss the present results in rela-
tion with supermolecular methods which aim at describing
dispersion interactions at all intermolecular distances R in
a seamless manner. It is well-known that the long-distance
expansion of the second-order Møller-Plesset (MP2) correla-
tion energy (using HF orbitals) gives a leading term −C6/R6

with a bare HF C6 coefficient.89 Similarly, the long-distance

TABLE III. Isotropic C6 coefficients (in a.u.) for homodimers of a subset of 27 organic and inorganic molecules
extracted from the database compiled by Tkatchenko and Scheffler77 obtained by bare LDA, RSHLDA, and
HF, and TDLDA, TDRSHLDA, and TDHF, with d-aug-cc-VTZ basis sets. The geometry was optimized at the
B3LYP/aug-cc-pVDZ level. Mean percentage errors (M%E) and mean absolute percentage errors (MA%E) over
all molecules with respect to the reference values are given.

Bare LDA Bare RSHLDA Bare HF TDLDA TDRSHLDA TDHF Referencea

H2 19.9 11.1 10.1 14.2 12.7 12.1 12.1
HF 32.7 20.4 16.8 22.2 19.2 16.7 19.0
H2O 83.3 47.4 41.7 51.3 43.4 40.2 45.3
N2 178.9 104.9 98.5 77.8 72.7 73.7 73.3
CO 182.1 101.8 91.6 84.7 77.1 75.2 81.4
NH3 164.8 89.2 82.5 95.9 80.8 78.8 89.0
CH4 239.6 132.2 122.6 136.0 121.2 120.4 129.7
HCl 294.2 158.6 154.0 139.1 122.9 123.7 130.4
CO2 391.7 211.4 179.6 163.1 150.9 143.4 158.7
H2CO 312.6 167.8 150.6 155.7 138.4 136.3 165.2
N2O 580.5 295.7 255.3 189.9 179.8 177.0 184.9
C2H2 494.8 260.8 263.1 217.9 198.9 214.8 204.1
HBr 517.2 269.7 270.3 232.9 205.5 212.1 216.6
H2S 540.3 269.3 263.1 237.8 209.0 214.1 216.8
CH3OH 422.9 231.6 207.9 234.0 205.0 199.9 222.0
SO2 958.8 461.8 399.1 325.6 295.3 288.4 294.0
C2H4 645.9 342.3 333.5 313.8 287.3 303.8 300.2
CH3NH2 595.1 319.1 294.2 321.6 279.6 277.9 303.8
SiH4 767.1 344.5 310.3 382.4 329.6 319.3 343.9
C2H6 742.6 401.3 372.2 395.9 352.7 353.5 381.9
Cl2 1092.4 551.4 527.1 420.8 385.4 395.7 389.2
CH3CHO 916.6 470.0 423.3 444.5 386.6 381.3 401.7
COS 1410.9 671.6 617.5 453.6 425.4 429.7 402.2
CH3OCH3 1079.7 570.0 512.2 571.9 496.1 488.3 534.1
C3H6 1447.4 746.5 710.6 693.6 622.0 643.8 662.1
CS2 3745.6 1604.3 1538.1 967.0 923.0 962.7 871.1
CCl4 5893.6 2792.4 2642.9 2186.7 1924.9 1956.5 2024.1

M%E 137% 22.9% 13.5% 7.6% − 3.8% − 4.4%
MA%E 137% 23.6% 19.6% 8.0% 5.2% 6.3%

aFrom Ref. 77, obtained from experimental dipole oscillator strength distribution data.
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expansion of the range-separated MP2 method of Ref. 47
gives a leading term −C6/R6 with a bare RSH C6 coeffi-
cient. Thus Table III shows that both standard MP2 and range-
separated MP2 (with the short-range LDA density functional)
overestimate dispersion interactions by about 20% at long
distances for the molecules considered here, which stresses
the need to go beyond second-order perturbation theory. We
note in passing that our results confirm that a supermolecu-
lar MP2 calculation using LDA orbitals (which corresponds
to bare LDA C6 coefficients) largely overestimates disper-
sion interactions at long distances.90, 91 Szabo and Ostlund89

have found a correlation energy expression based on a vari-
ant of the random-phase approximation (RPA) (with exchange
terms) which exactly gives TDHF C6 coefficients in the long-
distance expansion. A range-separated version of this RPA
variant was found to give quite accurate dispersion interaction
energies of molecular dimers around equilibrium distances70

but the corresponding C6 coefficients tend to be less accurate
than in TDHF. Since we have seen that TDRSHLDA gives
relatively good C6 coefficients, one could try to develop a
range-separated RPA-type method that still performs well at
equilibrium distances and gives TDRSHLDA C6 coefficients
in the long-distance limit.

V. CONCLUSION

We have tested a variant of linear-response range-
separated TDDFT, referred to as TDRSHLDA, combining a
long-range HF exchange kernel with a short-range adiabatic
LDA exchange-correlation kernel for calculating isotropic C6

dispersion coefficients of homodimers of a number of closed-
shell atoms and small molecules. TDRSHLDA gives C6 coef-
ficients of small molecules with a mean absolute percentage
error of 5.2%, a slight improvement over TDLDA which has
a mean absolute percentage error of 8.0%, but close to TDHF
which has a mean absolute percentage error of 6.3%. In com-
parison to standard TDLDA which almost always overesti-
mates the C6 coefficients, introduction of long-range HF ex-
change gives smaller C6 coefficients (with the exceptions of
the Mg and Ca atoms) which tend to be underestimated.

Our results thus show that introduction of long-range
HF exchange in TDDFT has a small but beneficial im-
pact on the values of C6 coefficients of closed-shell atoms
and small molecules. According to previous studies on
(hyper)polarizabilities,24–31 a bigger impact can be expected
for larger molecules. More importantly, this work confirms
the conclusion of a previous study on excitation energies and
oscillator strengths of a few small molecules46 in that the
TDRSH method is a reasonably accurate method even using
only a LDA-type density functional and without adding an
explicit treatment of long-range correlation.
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APPENDIX A: CASIMIR-POLDER FORMULA

The dispersion energy between two subsystems A and
B in their ground states is defined by the following second-
order energy correction in Rayleigh-Schrödinger intermolec-
ular perturbation theory

EAB
disp = −

∑
a �=0

∑
b �=0

∣∣〈	A
0 	B

0

∣∣ŴAB

∣∣	A
a 	B

b

〉∣∣2

EA
a + EB

b − EA
0 − EB

0

, (A1)

where 	A
0 and 	A

a are the ground and excited states of
A with associated energies EA

0 and EA
a , and similarly for

B, ŴAB = ∫∫
n̂A(r1)wee(|r2 − r1|)n̂B(r2)dr1dr2 is the inter-

molecular electron-electron interaction operator written in
terms of the density operators of A and B. In Eq. (A1), it has
been assumed that the two subsystems A and B are sufficiently
far apart (non-overlapping) so that exchange contributions be-
tween them can be neglected. Using the integral transform,
1/(x + y) = (2/π )

∫ ∞
0 [x/(x2 + u2)] [y/(y2 + u2)] du for x,

y > 0, which permits to recast the energy denominator in
Eq. (A1) into a multiplicative separable form, and using the
definition of the imaginary-frequency linear density-density
response function of a subsystem in terms of its eigenstates
	k and excitation energies ωk = Ek − E0, for real-valued ma-
trix elements 〈	0|n̂(r)|	k〉,

χ (r, r′; iu) = −
∑
k �=0

2ωk〈	0|n̂(r)|	k〉〈	k|n̂(r′)|	0〉
ω2

k + u2
, (A2)

one easily arrives to the generalized Casimir-Polder
formula,3, 92–97

EAB
disp = − 1

2π

∫ ∞

0
du

∫
dr1dr′

1dr2dr′
2 χA(r1, r′

1; iu)

wee(|r2 − r1|)χB(r2, r′
2; iu)wee(|r′

2 − r′
1|), (A3)

where χS(r, r′; iu) is the linear response function of the sub-
system S = A or B. Assuming that the subsystems A and B
are separated by a large vector R, one can perform a mul-
tipolar expansion of the Coulomb interaction wee(|r2 − r1|)
= 1/|r2 − r1|, redefining the origins of r1 and r2 at either
ends of R,

wee(|r2 − r1|) = 1

R
+

∑
α

Tα(R)(r2 − r1)α

+1

2

∑
α,β

Tαβ(R)(r2 − r1)α(r2 − r1)β

+ · · · , (A4)

with the Cartesian interaction tensors Tα(R) = −RαR−3 and
Tαβ(R) = (3RαRβ − R2δαβ)R−5, the Greek indices referring
to x, y, or z components. Because the integration of χ (r, r′; iu)
over r and r′ is zero (normalization of the perturbed density
and zero-response to a uniform perturbative potential), only
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the terms containing products of components of the four co-
ordinates r1, r′

1, r2, r′
2 survive in the leading term of the dis-

persion energy,

EAB
disp = − 1

2π

∑
α,β,γ,δ

Tαβ(R)Tγ δ(R)

×
∫ ∞

0
du αA,δα(iu)αB,βγ (iu) + · · · , (A5)

where αS,αβ (iu) = − ∫
drdr′χS(r, r′; iu)rαr′

β is the α,
β Cartesian component of the imaginary-frequency
dynamic dipole polarizability tensor of the sub-
system S. If we consider the spherically averaged
dipole polarizability, αS,αβ (iu) = ᾱS(iu)δαβ , where
ᾱS(iu) = (αS,xx(iu) + αS,yy(iu) + αS,zz(iu))/3, then it is
easy to do the sum over α, β, γ , δ in Eq. (A5) to get the
familiar Casimir-Polder formula for the leading term of the
dispersion energy

EAB
disp = − 3

πR6

∫ ∞

0
du ᾱA(iu)ᾱB(iu) + · · · , (A6)

where we have used that
∑

αβ Tαβ(R)Tβα(R) = 6/R6.

APPENDIX B: THOMAS-REICHE-KUHN SUM
RULE IN TDRSH

In this appendix, we show that, in the limit of a com-
plete one-electron basis set, the TRK sum rule of oscillator
strengths,

∑
n fn = N where N is the number of electrons,

holds in TDRSH and in fact more generally in TDDFT with
any hybrid approximation including nonlocal HF exchange. It
is well known that the TRK sum rule holds in TDHF,61–63, 98, 99

and in TDDFT with pure density functionals55, 64 or with the
OEP exact-exchange approach,18 but we have not found the
explicit proof in the literature for TDDFT with hybrid approx-
imations. The TRK sum rule must hold in this case as well,
as it more generally holds for linear response on variational
ground-state many-body theories.100, 101 Nevertheless, an ex-
plicit proof is interesting since it reveals that the key to the
fulfillment of the TRK sum rule is to use the same amount of
HF exchange in the ground-state potential and in the response
kernel.

Throughout this appendix, we work with a real-valued
spin-orbital basis without spin adaptation. The oscillator
strengths are55

fn = 2

3

∑
α=x,y,z

(
dT

α · (A − B)1/2 · Zn

)2
, (B1)

where dα is the α-component transition moment
vector, Zn are the normalized eigenvectors of
M = (A − B)1/2 (A + B) (A − B)1/2, and in TDRSH,
the matrices A and B have elements

Aia,jb = (εa − εi)δij δab + 〈aj |ŵlr
ee|ib〉 − 〈aj |ŵlr

ee|bi〉
+〈aj |f̂ sr

Hxc|ib〉 (B2)

and

Bia,jb = 〈ab|ŵlr
ee|ij 〉 − 〈ab|ŵlr

ee|ji〉 + 〈ab|f̂ sr
Hxc|ij 〉, (B3)

where i, j and a, b refer to occupied and virtual RSH spin-
orbitals, respectively, εk is the orbital eigenvalue of spin-
orbital k, 〈aj |ŵlr

ee|ib〉 are two-electron integrals associated
with the long-range interaction, and 〈aj |f̂ sr

Hxc|ib〉 are the
integrals associated with the short-range Hartree-exchange-
correlation (Hxc) kernel. Since in the adiabatic approxima-
tion, the eigenvectors Zn form a complete orthonormal basis
(for any selection of single excitations and one-electron basis
set), one can use the completeness relation,

∑
n ZnZT

n = 1, to
obtain55, 64

∑
n

fn = 2

3

∑
α=x,y,z

dT
α · (A − B) · dα,

= 2

3

∑
α=x,y,z

∑
ia,jb

dα,ia(Aia,jb − Bia,jb)dα,jb.

(B4)

In TDDFT with pure density functionals, the matrix A − B
is diagonal and contains the orbital energy differences, and
one recovers the sum of the bare KS oscillator strengths,∑

n fn = ∑
ia f 0

ia , which trivially satisfies the TRK sum rule
in a complete one-electron basis (and considering in the sum
over ia all single excitations including those from the core
orbitals) due to the locality of the KS potential. When includ-
ing nonlocal HF exchange, however, the matrix A − B is no
longer diagonal.

Using a second-quantized equations-of-motion formal-
ism (see Ref. 102), the elements of the TDRSH matrices A
and B can be conveniently written with expectation values
of double commutators over the RSH ground-state single-
determinant wave function 
0

Aia,jb = 〈
0|[[â†
i âa, Ĥ

lr], â†
bâj ]|
0〉 + 〈aj |f̂ sr

Hxc|ib〉
(B5)

and

Bia,jb = −〈
0|[[â†
i âa, Ĥ

lr], â†
j âb]|
0〉 + 〈ab|f̂ sr

Hxc|ij 〉,
(B6)

where the long-range effective Hamiltonian Ĥ lr = Ĥ0

+ Ŵ lr involves the RSH reference Hamiltonian Ĥ0 = T̂

+ V̂ne + V̂ lr
Hx,HF + V̂ sr

Hxc [generating the orbital energy differ-
ences in Eq. (B2)] and the long-range fluctuation potential
operator Ŵ lr = Ŵ lr

ee − V̂ lr
Hx,HF [generating the long-range two-

electron integrals in Eqs. (B2) and (B3)]. In these expressions,
T̂ is the kinetic energy operator, V̂ne is the nuclei-electron in-
teraction operator, V̂ lr

Hx,HF is the long-range HF potential op-
erator, V̂ sr

Hxc is the short-range Hxc potential operator, and Ŵ lr
ee

is the long-range two-electron interaction operator. The con-
tributions from the short-range Hxc kernel f sr

Hxc cancel out in
A − B, and using the (second-quantized) dipole moment op-
erator, d̂α = ∑

kl dα,kl â
†
kâl , where each sum is over all (occu-

pied and virtual) spin-orbitals, it can be shown that Eq. (B4)
simplifies to (considering in the sums over ia and jb all single
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excitations including those from the core orbitals)

∑
n

fn = 2

3

∑
α=x,y,z

∑
ia

dα,ia〈
0|[[â†
i âa, Ĥ

lr], d̂α]|
0〉

= 1

3

∑
α=x,y,z

〈
0|[[d̂α, Ĥ lr], d̂α]|
0〉, (B7)

where the last equality is found by taking the adjoint of the
double commutator, and noticing that the diagonal terms â

†
kâk

in d̂α do not contribute.
In the limit of a complete one-electron basis set, d̂α

and all the potentials in the effective Hamiltonian Ĥ lr

= T̂ + V̂ne + Ŵ lr
ee + V̂ sr

Hxc are multiplicative local operators in
the position representation and thus commute with each other,
and the double commutator with the kinetic energy opera-
tor can be evaluated using the position-momentum canon-
ical commutation relation, leading to (see, e.g., Ref. 103):
[[d̂α, Ĥ lr], d̂α] = [[d̂α, T̂ ], d̂α] = i[p̂α, d̂α] = N̂ where p̂α is
the (second-quantized) momentum operator and N̂ is the
particle-number operator. It follows that the TDRSH oscilla-
tor strengths satisfy the TRK sum rule

∑
n

fn = N. (B8)

The proof relies on the cancellation of the nonlocal HF poten-
tial V̂ lr

Hx,HF in the effective Hamiltonian Ĥ lr, which requires
that that the same amount of HF exchange is used in the
ground-state potential generating the orbitals and in the re-
sponse kernel. The proof can be trivially adapted to TDDFT
with hybrid approximations, replacing the long-range inter-
action by the full-range one: Ŵ lr → λŴ = λ(Ŵee − V̂Hx,HF)
where λ is the fraction of HF exchange.
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