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Abstract We introduce a short-range correlation density
functional defined with respect to a multi-determinantal ref-
erence which is meant to be used in a multi-determinantal
extension of the Kohn–Sham scheme of density functional
theory based on a long-range/short-range decomposition of
the Coulomb electron–electron interaction. We construct the
local density approximation for this functional and discuss
its performance on the He atom.

Keywords Density functional theory · Long-range/short-
range decomposition · Correlation functional · Local density
approximation

1 Introduction

One of the main difficulties in the Kohn–Sham (KS) [1]
scheme of density functional theory (DFT) [2] is to find
approximations for the exchange–correlation energy func-
tional that correctly describes (near-)degeneracy or long-range
(e.g., van der Waals) correlation effects. To circumvent this
difficulty, a multi-determinantal extension of the KS scheme
based on a long-range/short-range decomposition of the
Coulomb electron–electron interaction has been proposed [3–
12]. The idea behind this separation is that correlation ef-
fects due to the short-range part, involving the correlation
cusp, could well be described by the local density approxi-
mation (appropriately modified); correlation connected with
the long-range part could well be dealt with using standard
wave-function methods of quantum chemistry.

In this approach, the ground-state energy of a N -electron
system in a nuclei–electron potential vne(r) is obtained in
principle exactly by minimization over multi-determinantal
wave functions �
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CNRS et Université Pierre et Marie Curie,
4 place Jussieu, 75252 Paris, France
E-mail: savin@lct.jussieu.fr

E = min
�

{
〈�|T̂ + V̂ne + Ŵ lr,µ

ee |�〉

+E
sr,µ
H [n�] + Esr,µ

x [n�] + Ēsr,µ
c [n�]

}
, (1)

where T̂ is the kinetic energy operator, V̂ne = ∑
i vne(ri ) is

the nuclei–electron interaction operator, Ŵ lr,µ
ee = ∑

i<j w
lr,µ
ee

(rij ) is a long-range electron–electron interaction operator
with w

lr,µ
ee (r) = erf(µr)/r , E

sr,µ
H [n] = (1/2)

∫∫
n(r1)n(r2)

w
sr,µ
ee (r12)dr1dr2 is a short-range Hartree functional withw

sr,µ
ee

(r) = erfc(µr)/r , Esr,µ
x [n] = 〈�[n]|Ŵ sr,µ

ee |�[n]〉−E
sr,µ
H [n]

is a short-range exchange functional where Ŵ
sr,µ
ee = ∑

i<j

w
sr,µ
ee (rij ) and �[n] is the KS determinant, Ēsr,µ

c [n] is a short-
range correlation functional defined so that Eq. (1) is exact,
and n� is the density coming from �. The minimizing wave
function in Eq. (1) will be denoted by� lr,µ. In these equations,
µ is a parameter controlling the range of the decomposi-
tion of the Coulomb interaction. In practice, approximations
must be used for the wave function � lr,µ and the short-range
functionals E

sr,µ
x [n] and Ē

sr,µ
c [n]. In particular, the local den-

sity approximations have been constructed for E
sr,µ
x [n] and

Ē
sr,µ
c [n] [5,13]. For µ = 0, Eq. (1) reduces to the KS scheme.

In fact, in this case, the long-range interaction vanishes,
Ŵ

lr,µ=0
ee = 0, and the short-range functionals E

sr,µ=0
H [n],

E
sr,µ=0
x [n] and Ē

sr,µ=0
c [n] reduce to the Hartree, exchange

and correlation functionals of the KS theory.
Former experience with Eq. (1) has shown that in gen-

eral the quality of the wave-function � lr,µ obtained with a
given approximate functional is much better than that of the
functional itself. To extract the maximum information from
� lr,µ, we propose in this work to compute the ground-state
energy as

E = 〈� lr,µ|T̂ + V̂ne + Ŵee|� lr,µ〉 + Ē
sr,µ
c,md[n� lr,µ], (2)

where Ŵee = ∑
i<j 1/rij is the full Coulomb interaction

operator and Ē
sr,µ
c,md[n] is a new short-range correlation

functional defined such as Eq. (2) used with the exact wave
function � lr,µ is exact.
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We note that Eq. (2) can formally be made self-consistent
by generalizing the “optimized effective potential” (OEP)
approach (see, e.g., Refs. [14,15]) to the multi-determinan-
tal extension of the KS scheme

E = inf
v

{
〈� lr,µ[v]|T̂ + V̂ne + Ŵee|� lr,µ[v]〉

+Ē
sr,µ
c,md[nv]

}
, (3)

where the infinimum is search over one-electron potentials
v(r), and � lr,µ[v] and nv are, respectively, the ground-state
multi-determinantal wave function and density of T̂ +Ŵ

lr,µ
ee +∑

i v(ri ). If it exists, the minimizing potential is v(r) =
vne(r)+δE

sr,µ
H [n]/δn(r)+δE

sr,µ
x [n]/δn(r)+δĒ

sr,µ
c [n]/δn(r),

establishing the link with Eq. (1). Equation (3) reduces to
the OEP formulation of the KS theory when µ = 0. In this
case, in fact, � lr,µ=0 is the KS determinant and the functional
Ē

sr,µ=0
c,md [n] reduces to the correlation functional of the KS the-

ory. In practice, because the potential corresponding to the
functional derivative of Ē

sr,µ
c,md[n] is small, we expect that the

corrections on � lr,µ brought by self-consistency are negligi-
ble with respect to the errors due to the approximations on
Ē

sr,µ
c,md[n] [16].

This work is devoted to the study of the functional Ē
sr,µ
c,md

[n]: we turn our attention entirely to the correlation energy,
without combining it with an approximate functional for
exchange. It is thus a pleasure to dedicate this paper to Pro-
fessor Hermann Stoll who has been a pioneer in the study and
application of correlation energy density functionals [18,17].

The paper is organized as follows. In Sect. 2, we dis-
cuss the short-range correlation functional Ē

sr,µ
c,md[n] and its

relation to the functional Ē
sr,µ
c [n]. In Sect. 3, we construct

a local density approximation for Ē
sr,µ
c,md[n]. In Sect. 4, we

assess the accuracy of this approximation for the He atom.
Section 5 contains our conclusions. Atomic units (a.u.) are
used throughout this work.

2 The short-range correlation functional Ē
sr,µ
c,md[n]

The short-range correlation functional Ē
sr,µ
c,md[n] in Eq. (2) is

defined with respect to the multi-determinantal wave func-
tion � lr,µ, in contrast to the short-range correlation functional
Ē

sr,µ
c [n] in Eq. (1) defined with respect to the one-determinant

wave function �. It is easy to see that these two functionals
are related to each other through

Ē
sr,µ
c,md[n] = Ēsr,µ

c [n] + �lr−sr,µ[n], (4)

where

�lr−sr,µ[n] = −
(
〈� lr,µ[n]|Ŵ sr,µ

ee |� lr,µ[n]〉

−〈�[n]|Ŵ sr,µ
ee |�[n]〉

)
. (5)

The quantity �lr−sr,µ vanishes for µ = 0 and µ → ∞.
It is interesting to study the behavior of Ē

sr,µ
c,md[n] in the

limit of a very short-range interaction, i.e., when µ → ∞.

In this limit, the short-range interaction behaves as [12]

wsr,µ
ee (r) = π

µ2
δ(r) + O

(
1

µ3

)
, (6)

leading to the following asymptotic expansion of Ē
sr,µ
c [8,

12,19]

Ēsr,µ→∞
c = π

2µ2

∫
n2,c(r, r)dr + O

(
1

µ3

)
, (7)

where n2,c(r, r) is the correlation on-top pair density. The
asymptotic expansion of �lr−sr,µ as µ → ∞ is obtained sim-
ilarly from its definition, Eq. (5), leading to

�lr−sr,µ→∞ = − π

2µ2

∫
n2,c(r, r)dr + O

(
1

µ3

)
. (8)

The first terms in Eqs. (7) and (8) cancel, and therefore Ē
sr,µ
c,md

decays at least as 1/µ3 when µ → ∞.

3 Local density approximation

A local density approximation (LDA) can be constructed for
Ē

sr,µ
c,md[n]

Ē
sr,µ
c,md,LDA[n] =

∫
n(r)ε̄sr,µ

c,md,unif(n(r))dr, (9)

where the corresponding correlation energy per particle in
the uniform electron gas ε̄

sr,µ
c,md,unif(n) is given by

ε̄
sr,µ
c,md,unif(n) = ε̄

sr,µ
c,unif(n) + �

lr−sr,µ
unif (n). (10)

In Eq. (10), ε̄
sr,µ
c,unif(n) is the correlation energy per particle

defining the LDA approximation for Ē
sr,µ
c [n] (see Refs. [5,

13]), and �
lr−sr,µ
unif (n) is given by

�
lr−sr,µ
unif (n) = −n

2

∫ ∞

0
g

lr,µ
c,unif(r, n)wsr,µ

ee (r)4πr2dr, (11)

where g
lr,µ
c,unif(r, n) is the correlation pair-distribution function

of a uniform electron gas with long-range interaction w
lr,µ
ee (r)

and density n. The correlation hole of this “long-range” elec-
tron gas is then given by n g

lr,µ
c,unif(r, n).

Since an estimate of the energy ε̄
sr,µ
c,unif(n) from coupled-

cluster calculations is available [5,13], we only need to com-
pute the term �

lr−sr,µ
unif (n) to build the LDA functional of

Eq. (9). In order to estimate�
lr−sr,µ
unif (n)we proceed as follows.

We first notice that w
sr,µ
ee (r) = erfc(µr)/r in the integrand

of Eq. (11) only samples the part of g
lr,µ
c,unif(r, n) correspond-

ing to r � 1/µ. For the standard uniform electron gas (with
full interaction 1/r) the “extended Overhauser model” [20]
proved to be able to yield accurate results for gc,unif(r, n)
in the short-range region defined by r ≤ rs , where rs =
(4π n/3)−1/3. We can thus use this simple model to calculate
g

lr,µ
c,unif(r, n) and to produce an estimate for �

lr−sr,µ
unif (n) that

should be reliable for µ-values for which µrs � 1.
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Fig. 1 A sample of the pair-correlation functions g
lr,µ
c,unif(r, n) of a uni-

form electron gas of density 3/(4πr3
s ) (here rs = 2) with long-range-

only interaction erf(µr)/r obtained from the “extended Overhauser
model” [20] [see Eq. (12)]. The correlation hole is given by n g

lr,µ
c,unif(r, n)

The scattering equations of the “extended Overhauser
model” are widely explained in Refs. [20] and [21]. Here we
solved the same equations with the electron–electron inter-
action erf(µr)/r screened by a sphere of radius rs of uniform
positive charge density n and attracting the electrons with the
same modified interaction,

Veff(r, rs, µ) = erf(µr)

r
−

∫

|r′|≤rs

n
erf(µ|r′ − r|)

|r′ − r| dr′. (12)

This potential is reported in the Appendix of Ref. [22], where
it has been used for two-electron atoms with very accurate
results for the corresponding short-range correlation energy.
Veff(r, rs, µ) is a screened potential that tends to the “Over-
hauser potential” [23,20] when µ → ∞, and which goes
to zero when µ → 0. As in the original work of Overha-
user [23], the idea behind Eq. (12) is that the radius of the
screening “hole” is exactly equal to rs.

A sample of the pair-correlation functions g
lr,µ
c,unif(r, n) that

we have obtained is reported in Fig. 1. As long as µ is not
large we clearly see the absence of the cusp [g′

c,unif(r = 0)
is not zero for a system with interaction 1/r at small r , but
it is zero for the erf(µr)/r interaction]. As expected, as µ
increases the hole deepens, and for very large µ we see that
the cusp starts to appear.

Some of the values of �
lr−sr,µ
unif (n) for µrs � 1 are reported

in Table 1. An estimate of �
lr−sr,µ
unif (n) in the region not acces-

sible with the extended Overhauser model, µrs � 1, has
been obtained by a simple interpolation between our data and
zero, since, as explained in Sect. 2, �lr−sr,µ vanishes when
µ → 0. In the opposite limit, µ → ∞, �

lr−sr,µ
unif (n) behaves

as in Eq. (8), which for a system of uniform density reads

�
lr−sr,µ→∞
unif (n) = −3 gc,unif(0, n)

8 r3
s µ2

+ O

(
1

µ3

)
, (13)

where gc,unif(0, n) is the on-top value (r = 0) of the pair-
correlation function of the Coulombic uniform electron gas

Table 1 A sample of the values of �
lr−sr,µ
unif [see Eqs. (10) and (11)]

computed from the extended Overhauser model [20]

µ rs �
lr−sr,µ
unif

2 0.5 0.0173
2 1 0.00979
2 2 0.00310
2 3 0.00125
2 4 0.000608
2 5 0.000335
2 6 0.000202
3 0.5 0.0136
3 1 0.00585
3 2 0.00153
3 3 0.000586
3 4 0.000278
3 5 0.000151
3 6 9.08 · 10−5

5 0.2 0.0175
5 0.5 0.00813
5 1 0.00265
5 2 0.000598
5 3 0.000219
5 4 0.000102
5 5 5.52 · 10−5

10 0.2 0.0109
10 0.5 0.00299
10 1 0.000776
10 2 0.000158
10 3 5.63 · 10−5

10 4 2.59 · 10−5

10 5 1.39 · 10−5

15 0.2 0.00683
15 0.5 0.00151
15 1 0.000363
15 2 7.16 · 10−5

15 3 2.52 · 10−5

15 4 1.16 · 10−5

15 5 6.19 · 10−6

of density n [20]. We found that the �
lr−sr,µ
unif (n) computed

with the extended Overhauser model accurately recover this
limiting behavior.

For future applications, a more accurate LDA functional
for �lr−sr,µ (especially for µrs � 1) will be available from
quantum Monte Carlo calculations [24].

4 Results for the He atom

For the He atom, the short-range correlation energies Ē
sr,µ
c

and Ē
sr,µ
c,md have been calculated with a precision of the order of

1 mH as follows. An accurate density is calculated at the full
configuration interaction level with a large Gaussian basis set
and the optimization of the potential in the Legendre trans-
form formulation [25,26] of density functionals enables to
compute accurately the correlation energy Ē

sr,µ
c associated

to that density (see Refs. [12,19,27] for details). The corre-
sponding accurate multi-determinantal wave function � lr,µ

and the KS wave function � are also obtained in this proce-
dure, which give access to an accurate evaluation of�lr−sr,µ

and consequently of Ē
sr,µ
c,md.
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Table 2 LDA errors �Ē
sr,µ
c = Ē

sr,µ
c,LDA − Ē

sr,µ
c and �Ē

sr,µ
c,md = Ē

sr,µ
c,md,LDA − Ē

sr,µ
c,md with respect to µ for the He atom

µ 0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 5.00

�Ē
sr,µ
c −0.071 −0.053 −0.035 −0.022 −0.014 −0.005 −0.001 0.000 0.000

�Ē
sr,µ
c,md −0.071 −0.048 −0.030 −0.019 −0.013 −0.006 −0.002 −0.002 0.000

Fig. 2 Short-range correlation energies Ē
sr,µ
c (thin curves) and Ē

sr,µ
c,md

(thick curves) with respect to µ for the He atom. Accurate calculations
(solid curves) are compared to the LDA approximation (dashed curves)

The accurate and LDA short-range correlation energies
Ē

sr,µ
c and Ē

sr,µ
c,md are compared in Fig. 2. For all values of µ, we

have |Ēsr,µ
c,md| < |Ēsr,µ

c |, meaning that in Eq. (5) 〈� lr,µ|Ŵ sr,µ
ee

|� lr,µ〉 < 〈�|Ŵ sr,µ
ee |�〉 which seems natural for a repulsive

interaction. Table 2 compares the LDA errors on Ē
sr,µ
c and

Ē
sr,µ
c,md. One sees that the LDA errors for this two short-range

correlation energies are of the same order of magnitude for
all values of µ.

5 Conclusions

In this work, we have re-examined the multi-determinantal
extension of the KS scheme based on a long-range/short-
range decomposition of the Coulomb electron–electron inter-
action. Contrary to previous works where the short-range
correlation functional was defined with respect to the KS
determinant, we have introduced a new short-range corre-
lation functional defined with respect to the multi-determi-
nantal wave function. We have constructed the local density
approximation for this new functional. The example of the He
atom suggests that the local density approximation is essen-
tially as accurate as for the short-range correlation functional

defined with respect to the KS determinant. We believe that
this work paves the way to a multi-determinantal extension
of the KS scheme using a correlation-only density functional.
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