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ABSTRACT: Decomposition of the Coulomb electron–electron interaction into a
long-range and a short-range part is described within the framework of density
functional theory, deriving some scaling relations and the corresponding virial theorem.
We study the behavior of the local density approximation in the high-density limit for
the long-range and the short-range functionals by carrying out a detailed analysis of the
correlation energy of a uniform electron gas interacting via a long-range-only electron–
electron repulsion. Possible definitions of exchange and correlation energy densities are
discussed and clarified with some examples. © 2005 Wiley Periodicals, Inc. Int J Quantum
Chem 106: 2026–2034, 2006
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1. Introduction

I n recent years, there has been a growing interest
in approaches of density functional theory

(DFT) [1] based on a long-range/short-range de-
composition of the Coulomb electron–electron in-
teraction (see, e.g., Refs. [2–6]). The idea is to use
different, appropriate approximations for the long-
range and the short-range contributions to the
usual density functionals of the Kohn–Sham (KS)
scheme [7].

In this study, we consider one possible long-
range/short-range decomposition of the Coulom-
bic density functionals. To gain insight into the
introduced long-range and short-range density
functionals, we examine some scaling relations, the
virial theorem, and energy densities. The local den-
sity approximation (LDA) appropriately defined
for these functionals is also analyzed.

The long-range and short-range density func-
tionals considered in this work are defined as fol-
lows (see also Refs. [5, 8–13]). The starting point is
the decomposition of the electron–electron Cou-
lomb interaction wee(r) � 1/r as

wee�r� � wee
lr,��r� � wee

sr,��r�, (1)Correspondence to: J. Toulouse; e-mail: toulouse@lct.jussieu.fr
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with the long-range interaction wee
lr,�(r) � erf(�r)/r

and the complement short-range part wee
sr,�(r) �

1/r � erf(�r)/r. The parameter � controls the range
of the decomposition. For � � 0, the long-range
interaction vanishes, wee

lr,��0(r) � 0, while for �3 �
it reduces to the Coulomb interaction, wee

lr,�3�(r) �
1/r. The Coulombic universal density functional
F[n] is consequently decomposed as

F�n� � Flr,��n� � F� sr,��n�, (2)

where Flr,�[n] is a long-range universal density
functional, and F� sr,�[n] is its short-range comple-
ment. The long-range functional is defined in the
constrained search formulation [14] by

Flr,��n� � min
�3n

	��T̂ � Ŵee
lr,���
, (3)

where T̂ is the kinetic energy operator and Ŵee
lr,� �

(1/2) �� n̂2(r1, r2)wee
lr,�(r12)dr1dr2 the long-range in-

teraction operator, expressed with the pair-density
operator n̂2(r1, r2). The minimizing (multi-determi-
nantal) wave function in Eq. (3) is denoted by
�lr,�[n]. Introducing the noninteracting kinetic en-
ergy functional, Ts[n] � 	�[n]�T̂��[n]
, where �[n] is
the KS determinant, Flr,�[n] is written as

Flr,��n� � Ts�n� � EHxc
lr,��n�, (4)

where the long-range Hartree–exchange-correla-
tion functional, EHxc

lr,� [n] � EH
lr,�[n] 
 Ex

lr,�[n] 

Ec

lr,�[n], is the sum of the long-range Hartree func-
tional

EH
lr,��n� �

1
2 �� n�r1�n�r2�wee

lr,��r12�dr1dr2, (5)

the long-range exchange functional

Ex
lr,��n� � 	��n��Ŵee

lr,����n�
 � EH
lr,��n�, (6)

and the long-range correlation functional

Ec
lr,��n� � 	�lr,��n��T̂ � Ŵee

lr,���lr,��n�


� 	��n��T̂ � Ŵee
lr,����n�
. (7)

The short-range functional, F� sr,�[n] � E� Hxc
sr,�[n] �

EH
sr,�[n] 
 Ex

sr,�[n] 
 E� c
sr,�[n], is the sum of the short-

range Hartree, exchange and correlation function-
als, defined by complementarity to the Coulombic

Hartree, exchange and correlation functionals,
EH[n], Ex[n], and Ec[n],

EH
sr,��n� � EH�n� � EH

lr,��n�, (8)

Ex
sr,��n� � Ex�n� � Ex

lr,��n�, (9)

E� c
sr,��n� � Ec�n� � Ec

lr,��n�. (10)

The LDA to the long-range exchange-correlation
functional Exc,LDA

lr,� [n] is constructed from the ex-
change-correlation energy per electron �xc,unif

lr,� of a
uniform electron gas interacting with potential wee

lr,�

Exc,LDA
lr,� �n� � � n�r��xc,unif

lr,� �n�r��dr. (11)

Similarly, the short-range LDA exchange-correla-
tion functional E� xc,LDA

sr,� [n] is defined with the com-
plementary quantity ��xc,unif

sr,� � �xc,unif � �xc,unif
lr,� (see

Refs. [8, 15]).
The present work is organized as follows. In

Section 2, we examine some scaling properties of
the long-range and short-range functionals, and we
discuss the high-density limit of the correlation
functionals in LDA. In Section 3, we derive the
virial theorem satisfied by the long-range and
short-range functionals. In Section 4, we examine
long-range and short-range energy densities. Sec-
tion 5 contains our conclusions.

All the relations derived in this work are more
generally true for an interaction of the form
wee

lr,�(r) � �(�r)/r where � is a continuous and
differentiable function satisfying �(x 3 �) � 1.
Atomic units (a.u.) are used throughout this work.

2. Scaling Relations

In this section, we generalize some usual scaling
relations of the Coulombic density functionals [16,
17] (see also Ref. [18]) to the case of the long-range
and short-range density functionals. The scaled
wave function of a N-electron system correspond-
ing to a uniform scaling of the electron coordinates
by the scale factor � � 0 is defined by (see, e.g., Refs.
[16, 19–21]):

���r1, . . . , rN� � �3N/ 2���r1, . . . , �rN�. (12)

The wave function �� yields the scaled density n�
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n��r� � �3n��r�. (13)

2.1. SCALING RELATION FOR THE
HARTREE AND EXCHANGE FUNCTIONALS

It can easily be verified from Eq. (5) that the
long-range Hartree functional satisfies the follow-
ing scaling relation:

EH
lr,���n�� � �EH

lr,��n�. (14)

The KS determinant associated to the scaled density
n� is identical to the KS determinant associated to
the density n after uniform scaling of the coordi-
nates

��n�� � ���n�, (15)

and thus 	�[n�]�Ŵee
lr,����[n�]
 � 	�[n]�Ŵee

lr,���[n]
,
leading to the same scaling relation for the long-
range exchange functional

Ex
lr,���n�� � �Ex

lr,��n�. (16)

The short-range Hartree and exchange functionals
satisfy the same scaling relations

EH
sr,���n�� � �EH

sr,��n�, (17)

Ex
sr,���n�� � �Ex

sr,��n�. (18)

2.2. SCALING RELATION FOR THE
CORRELATION FUNCTIONALS

Let’s introduce the universal functional

Flr,�,��n� � min
�3n

	��T̂ � �Ŵee
lr,���
, (19)

and the minimizing wave function is denoted by
�lr,�,�[n]. The scaled wave function ��

lr,�,�[n] gives
the density n� and minimizes 	��(1/�2)T̂ 

(�/�)Ŵee

lr,����
 since 	��
lr,���(1/�2)T̂ 
 (�/

�)Ŵee
lr,�����

lr,�,�
 � 	�lr,�,��T̂ 
 �Ŵee
lr,���lr,�,�
. Conse-

quently, doing the substitution � 3 �/�, the wave
function ��

lr,�,�/�[n] gives the density n� and mini-
mizes (1/�2)	��T̂ 
 �Ŵee

lr,����
. Therefore, we con-
clude that

�lr,��,��n�� � ��
lr,�,�/��n�. (20)

Applying this relation with � � 1, we find the
following scaling relation for the long-range uni-
versal functional

Flr,���n�� � �2Flr,�,1/��n�, (21)

and consequently for the long-range correlation
functional

Ec
lr,���n�� � �2Ec

lr,�,1/��n�, (22)

where Ec
lr,�,�[n] � 	�lr,�,�[n]�T̂ 
 �Ŵee

lr,���lr,�,�[n]
 �
	�[n]�T̂ 
 �Ŵee

lr,���[n]
. The short-range correlation
functional satisfies the same scaling relation

E� c
sr,���n�� � �2E� c

sr,�,1/��n�, (23)

where E� c
sr,�,�[n] � Ec

�[n] � Ec
lr,�,�[n], and Ec

�[n] is the
Coulombic correlation functional along the linear
adiabatic connection. To our knowledge, Eq. (20) is
new, while Eq. (21) has already been mentioned by
Yang [22].

2.3. HIGH-DENSITY LIMIT OF THE
CORRELATION FUNCTIONALS

We now study the long-range and short-range
correlation functionals under uniform scaling to the
high-density limit (� 3 �). If the ground-state of
the KS system is nondegenerate, Ec

lr,��[n�] goes to a
constant when � 3 �

lim
�3�

Ec
lr,���n�� � E� c

lr,�,�2��n�, (24)

where Ec
lr,�,(2)[n] � (1/2)(	2Ec

lr,�,�[n]/	�2)��0 is the
second-order correlation energy in the Görling–
Levy perturbation theory [23], just as in the Cou-
lombic case [17, 24]. We have a similar behavior for
E� c

sr,��[n�]

lim
�3�

E� c
sr,���n�� � E� c

sr,�,�2��n�, (25)

with E� c
sr,�,(2)[n] � (1/2)(	2E� c

sr,�,�[n]/	�2)��0.
It is interesting to study how the long-range and

short-range LDA functionals behave in the high-
density limit, and to understand whether they can
overcome some of the well-known problems of
standard LDA in this regime (see, e.g., Ref. [25]).
For the uniform electron gas of density n, the scal-
ing transformation of Eq. (13) is simply written as rs

3 rs/�, where rs � (4
n/3)�1/3 is the Wigner–Seitz
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radius. The correlation energy per particle of the
Coulombic electron gas diverges in the high-den-
sity limit logarithmically [26]

�c,unif�rs/�� �
�3�

�A ln � � · · · , (26)

where A � (1 � ln 2)/
2. The Coulombic LDA
functional thus cannot recover the correct high-
density scaling for systems with a nondegenerate
ground state [25]. The origin of the divergence of
Eq. (26) has been widely analyzed in terms of the
electron-gas pair density, in both real and recipro-
cal space (see, e.g., Refs. [27–29]), and, more re-
cently, in terms of the momentum distribution [30].

The investigation of the � 3 � performances of
the long- and short-range LDA functionals implies
the study of the high-density behavior of the corre-
lation energy of an electron gas interacting with
wee

lr,�. Following Refs. [27, 28], we consider for this
“long-range” electron gas the Fourier transform of
the pair density, the static structure factor Slr,�(k, rs).
The correlation energy per particle, �c,unif

lr,� , is given
in terms of this function as

�c,unif
lr,� �rs� �

1
2 �

0

1

d� � dk
�2
�3 w̃ee

lr,��k�Sc
lr,�,��k, rs�, (27)

where Sc
lr,�,�(k, rs) � Slr,�,�(k, rs) � SKS(k, rs) is the

correlation part of the static structure factor for the
system of density parameter rs interacting with
�wee

lr,�, and

w̃ee
lr,��k� �

4


k2 e�k2/�4�2� �
4


k2 ��k/�� (28)

is the Fourier transform of the long-range interac-
tion wee

lr,�(r) � erf(�r)/r. The results derived below
hold more generally for any long-range interaction
whose Fourier transform is of the form (28), (4
/
k2)�(k/�), with �(x 3 0) � 1, i.e., for any long-
range interaction whose real space form is �(�r)/r
with �(x 3 �) � 1, as stated at the end of the
Introduction.

For the Coulomb gas, the random-phase approx-
imation (RPA) provides an expression for Sc

� which
is exact for small (��1) values of the scaled variable
q � k/2kF � �rsk/2 (with �3 � 4/9
), and which
gives the exact correlation energy when rs3 0 (see,
e.g., Refs. [28, 31]). The arguments for the validity
of RPA in the high-density limit [31] can be ex-

tended to an interaction of the kind (28) as long as,
when rs 3 0, w̃ee

lr,�(k) diverges for small k as k�2: in
this case, in fact, the perturbation series expansion
for the correlation energy contains as leading term
an infinite number of divergent direct diagrams
whose resummation yields the RPA expression for
the correlation energy, as in the Coulomb gas. The
RPA Sc

lr,�,� reads

Sc,RPA
lr,�,� �q, rs�

� �
6q
kF

�� 2q
�rs�

� �
0

� �
̃0�q, iu�2du

q2 � ��rs
̃0�q, iu��� 2q
�rs�

� , (29)

where 
̃0(q, iu) � (
/kF)
0(q, iu, rs) is a reduced
noninteracting response function, expressed in
terms of the reduced imaginary frequency u �
�i�/(2qkF

2), that does not contain any explicit de-
pendence on rs. In the case of the Coulombic gas
(which corresponds to � � �, that is, � � 1), if one
simply lets rs go to zero, the right-hand side of Eq.
(29) gives a static structure factor that behaves like
1/q for small q, yielding the logarithmic divergence
of the correlation energy. This divergence comes
from the combination of the two limits, rs 3 0 and
q 3 0, and requires an appropriate treatment, for
which it is convenient to divide the integral of Eq.
(27) in two parts, �0

q1 dq 
 �q1

� dq, with q1 �� 1. The
second part of this integral is finite when rs 3 0,
while the first part yields the logarithmic diver-
gence and it is better studied by switching to the
scaled variable y � q/�rs [27, 28, 30], which gives
an exact scaling for Sc

lr,�,� when q �� 1 and rs 3 0,

Sc
lr,�,��q��1, rs 3 0�

� �6�rs �y��2�rs y
��rs

� �
0

� �R�u�2du

y2 � ��R�u���2�rs y
��rs

� ,

(30)

where R(u) � (u arctan(1/u) � 1)/
. Equation (30)
shows that if we rescale �, � 3 �/rs, the factors
�(2�rs y/��rs) become equal to 1 when rs � 0, so
that the small-q part of Sc

lr,�/rs,� scales exactly to the
same limit of the Coulombic gas, i.e.,

Sc
lr,�/rs,��q��1, rs� �

rs30
�6�rs �f�y, ��, (31)
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where the function f(y, �) [27, 28] behaves as y for
small y and as 1/y for large y, and is reported in
Figure 1 in the case � � 1. Then everything goes as
in the Coulomb gas [28]: in the small-q part of the
integral in Eq. (27) we can replace Sc

lr,�/rs,� with Eq.
(31), obtaining an expression of the kind �0

q1/�rs

dyf(y, �). When rs3 0, even if q1 is small, the upper
limit of this integral is large, and the 1/y behavior
of f(y �� 1) causes the logarithmic divergence of the
correlation energy per particle as � 3 �:

�c,unif
lr,�� �rs/�� �

�3�

�A ln � � · · · , (32)

with exactly the same A of Eq. (26).
The short-range correlation energy per particle

of the uniform electron gas is just the difference
between the correlation energies of the Coulomb
gas and of the “long-range” gas, so that an exact
cancellation of the logarithmic term occurs if we
rescale �,

lim
�3�

�� c,unif
sr,�� �rs/�� � h��, rs�. (33)

The function h(�, rs) remains finite as long as �rs is
greater than zero. This means that one can improve
the LDA performances in the high-density limit by
rescaling � either locally, � � 1/rs(r), or globally by
choosing a � bigger than 1/rs

min, where rs
min is the

minimum value of rs(r) in the given system. In other
words, the rescaled short-range functional allows to
perform a cutoff of the correlation transferred from
an electron gas, i.e., we can eliminate the long-range
correlations that occur in an electron gas but that do
not occur in a confined system.

3. Virial Theorem

In this section, we generalize the virial theorem
of the Coulombic density functionals [16] (see also
Refs. [20, 32]) to the case of the long-range and
short-range density functionals.

The wave functions of the type ��
lr,�[n1/�] give

the density n, independent of �, and can therefore
be used as trial wave functions in the variational
definition of Flr,�[n] [Eq. (3)]. As ��

lr,�[n1/�] reduces
to the minimizing wave function �lr,�[n] at � � 1,
the stationarity condition implies that the deriva-
tive with respect to � vanishes at � � 1

� d
d�

	��
lr,��n1/���T̂ � Ŵee

lr,����
lr,��n1/��
�

��1

� 0. (34)

The kinetic and electron–electron interaction ener-
gies have simple uniform coordinate scalings

� d
d�

��2Tlr,��n1/�� � �Wee
lr,�/��n1/���	

��1

� 0, (35)

where Tlr,�[n] � 	�lr,�[n]�T̂��lr,�[n]
 and Wee
lr,�[n] �

	�lr,�[n]�Ŵee
lr,���lr,�[n]
. Performing the derivative

with respect to � leads to

2Tlr,��n� � Wee
lr,��n� � �

	Wee
lr,��n�

	�

� � d
d�

�Tlr,��n�� � Wee
lr,��n���	

��1

. (36)

Using the virial relation for noninteracting kinetic
functional [18]

2Ts�n� � � d
d�

Ts�n���
��1

, (37)

Eq. (36) simplifies to

Tc
lr,��n� � EHxc

lr,��n� � �
	EHxc

lr,��n�

	�
� � d

d�
EHxc

lr,��n���
��1

� �� n�r�r � �
�EHxc

lr,��n�

�n�r�
dr, (38)

where Tc
lr,�[n] � Tlr,�[n] � Ts[n] and the last equal-

ity has been obtained through a integration by
parts.

FIGURE 1. Function f(y, �) of Eq. (31) at � � 1.
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It can be verified that the long-range Hartree,
exchange and correlation functionals obey separate
virial relations, just as for the Coulombic case,

EH
lr,��n� � �

	EH
lr,��n�

	�
� �� n�r�r � �

�EH
lr,��n�

�n�r�
dr, (39)

Ex
lr,��n� � �

	Ex
lr,��n�

	�
� �� n�r�r � �

�Ex
lr,��n�

�n�r�
dr, (40)

Tc
lr,��n� � Ec

lr,��n� � �
	Ec

lr,��n�

	�

� �� n�r�r � �
�Ec

lr,��n�

�n�r�
dr. (41)

The same relations are also valid for the short-
range Hartree, exchange and correlation function-
als

EH
sr,��n� � �

	EH
sr,��n�

	�
� �� n�r�r � �

�EH
sr,��n�

�n�r�
dr, (42)

Ex
sr,��n� � �

	Ex
sr,��n�

	�
� �� n�r�r � �

�Ex
sr,��n�

�n�r�
dr,

(43)

T� c
sr,��n� � E� c

sr,��n� � �
	E� c

sr,��n�

	�

� �� n�r�r � �
�E� c

sr,��n�

�n�r�
dr, (44)

where T� c
sr,�[n] � Tc[n] � Tc

lr,�[n] and Tc[n] is the
usual Coulombic correlation kinetic functional.

For the corresponding virial relations in the uni-
form electron gas, see Ref. [33].

4. Energy Densities

In this section, we examine long-range and short-
range energy densities defined from pair densities
or from the virial theorem. Energy densities are
always useful to analyze approximations or derive
new approximations (see, e.g., Refs. [34–40]).

4.1. ENERGY DENSITIES FROM PAIR
DENSITIES

In Ref. [41], energy densities for modified inter-
actions defined from pair densities have been dis-
cussed. We recall that an energy density associated
to the long-range exchange energy Ex

lr,� can be de-
fined by

ex,pd
lr,� �r� �

1
2 � n2, x�r, r12�wee

lr,��r12�dr12, (45)

where n2,x(r, r12) is the KS exchange pair density.
Likewise, the corresponding short-range energy
density is written as

ex,pd
sr,� �r� �

1
2 � n2, x�r, r12�wee

sr,��r12�dr12. (46)

The definition of correlation energy densities
from pair densities requires an integration over an
adiabatic connection. For instance, an energy den-
sity associated with the long-range correlation func-
tional Ec

lr,� can be written as

ec,pd
lr,� �r� �

1
2 �

0

�

d� � n2,c
lr,��r, r12�

	wee
lr,��r12�

	�
dr12, (47)

where n2,c
lr,�(r, r12) is the correlation pair density for

the long-range interaction wee
lr,�(r12). The corre-

sponding short-range correlation energy density is

e� c,pd
sr,� �r� �

1
2 �

�

�

d� � n2,c
lr,��r, r12�

	wee
lr,��r12�

	�
dr12. (48)

These energy densities involve two-electron quan-
tities that can complicate their evaluation.

4.2. ENERGY DENSITIES FROM THE VIRIAL
THEOREM

Long-range and short-range energy densities can
be defined from the virial theorem, just as for the
Coulombic case (see, e.g., Refs. [34, 38]). The virial
relation of Eq. (40) leads indeed to the following
long-range exchange energy density
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ex,vir
lr,� �r� � �� �

�

� d�

�2 n�r�r � �vx
lr,��r�, (49)

where vx
lr,�(r) � �Ex

lr,�[n]/�n(r). Likewise, Eq. (43)
leads to the following short-range exchange energy
density

ex,vir
sr,� �r� � �� �

�

� d�

�2 n�r�r � �vx
sr,��r�, (50)

where vx
sr,�(r) � �Ex

sr,�[n]/�n(r).
The virial relation of Eq. (41) generalized to the

linear adiabatic connection, Tc
lr,�[n] 
 Ec

lr,�[n] �
�	Ec

lr,�[n]/	� � �� n(r)r � ��Ec
lr,�[n]/�n(r)dr where

Tc
lr,�[n] is given by Tc

lr,�,�[n] � Ec
lr,�,�[n] �

�	Ec
lr,�,�[n]/	� (see Refs. [38, 42]) enables us to de-

fine a long-range correlation energy density

ec,vir
lr,� �r� � ��

1

� d�

�3 n�r�r � �vc
lr,��,��r�, (51)

where vc
lr,��,�(r) � �Ec

lr,��,�[n]/�n(r). Likewise, the
virial relation of Eq. (44) leads to the short-range
correlation energy density

e� c,vir
sr,� �r� � ��

1

� d�

�3 n�r�r � �vc
sr,��,��r�, (52)

where vc
sr,��,�(r) � �E� c

sr,��,�[n]/�n(r).
These energy densities have the advantage of

involving only one-electron quantities.

4.3. RESULTS ON THE HE ATOM

As a simple illustration, we have calculated for
the He atom the long-range and short-range energy
densities ex,pd

lr,� (r), ex,pd
sr,� (r), ex,vir

lr,� (r), and ex,vir
sr,� (r) for � �

1 a.u., as well as the Coulombic energies densities
ex,pd(r) � ex,pd

lr,� (r) 
 ex,pd
sr,� (r) and ex,vir(r) � ex,vir

lr,� (r) 

ex,vir

sr,� (r). For a two-electron system, the exchange
pair density and exchange potentials are directly
deducible from the density. Using an accurate den-
sity, accurate exchange energy densities are thus
easily obtained.

Figure 2 compares the accurate and LDA radial
exchange energy densities as a function of the dis-

tance to the nucleus r. It can be seen that the energy
densities defined from the exchange pair density
and from the virial theorem are qualitatively simi-
lar. At small r (r � 0.5 a.u.), the LDA slightly
overestimates the accurate Coulombic energy den-
sities. At large r (r � 0.5 a.u.), the LDA importantly
underestimates the accurate Coulombic energy
densities. The contribution at large r remains im-
portant in the long-range energy densities, while it
is significantly reduced in the short-range energy
densities. Consequently, the LDA better performs
for the short-range energy densities.

In the case of the energy density defined from
the exchange pair density, the better performance

FIGURE 2. Accurate (solid curves) and LDA (dashed
curves) radial exchange energy densities defined from
pair densities (thick curves) and from the virial theorem
(thin curves) for the He atom. (a) Coulombic radial en-
ergy densities 4
r2ex,pd(r) and 4
r2ex,vir(r). (b) Long-
range radial energy densities 4
r2ex,pd

lr,� (r) [Eq. (45)] and
4
r2ex,vir

lr,� (r) [Eq. (49)]. (c) Short-range radial energy den-
sities 4
r2ex,pd

sr,� (r) [Eq. (46)] and 4
r2ex,vir
sr,�(r) [Eq. (50)],

with � � 1 a.u.
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of the LDA at small distance r can be easily ex-
plained in terms of the spherical average of the
exchange hole nx(r, r12) � n2,x(r, r12)/n(r)

nx
sph. avr.�r, r12� �

1
4
 � nx�r, r12�d�r12, (53)

which is represented for the He atom in Figure 3
with respect to the interelectronic distance r12 for
two positions of the reference electron r � 0 and r �
1 a.u. For r � 0, both the accurate and LDA ex-
change holes are centered at r12 � 0, making the
LDA a reasonable approximation. For r � 1 a.u., the
accurate hole is centered near r12 � 1 a.u., while the
LDA hole is still centered at r12 � 0, leading to an
important underestimation of the hole.

5. Conclusions

We have analyzed a short-range and long-range
decomposition of the Coulomb electron–electron
interaction and have derived some exact scaling
relations for the corresponding density functionals.
Study of the LDA has shown that in the high-

density limit the short-range functional scales to a
constant, thus opening the possibility of ameliorat-
ing the performance of the Coulomb LDA func-
tional in this regime. Possible definitions of energy
densities obtained from pair densities and from the
virial theorem have been presented. Results with
the He atom suggest that the LDA can give accurate
short-range exchange energy densities.
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