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An adiabatic-connection fluctuation-dissipation theorem approach based on a range separation of

electron-electron interactions is proposed. It involves a rigorous combination of short-range density-

functional and long-range random phase approximations. This method corrects several shortcomings of

the standard random phase approximation and it is particularly well suited for describing weakly bound

van der Waals systems, as demonstrated on the challenging cases of the dimers Be2 and Ne2.
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Density-functional theory (DFT) is a powerful approach
for electronic-structure calculations of molecular and
condensed-matter systems [1]. However, one difficulty in
its Kohn-Sham (KS) formulation using local density or
generalized-gradient approximations (LDA and GGA) is
the description of nonlocal correlation effects, such as
those involved in weak van der Waals complexes, bound
by London dispersion forces [2]. The adiabatic-connection
fluctuation-dissipation theorem (ACFDT) approach is one
of the most promising ways of constructing highly non-
local correlation functionals. This approach, introduced in
wave function theory [3] and in DFT [4,5], consists in
extracting nonlocal ground-state correlations from the lin-
ear charge density response function.

Recently, the ACFDT approach has received renewed
interest for implementing the random phase approximation
(RPA) or other related approximations for atoms, mole-
cules, and solids [6–11]. The RPA correlation energy is
consistent with the use of the exact, self-interaction-free
exchange energy. In spite of a number of encouraging
results, such as the correct description of dispersion forces
at large separation [12], the proper reproduction of cohe-
sive energies and lattice constants of solids [10,13,14] and
an improved description of bond dissociation [6,7,15],
several aspects of the RPA are still unsatisfactory.

First, the RPA is a poor approximation to short-range
correlations, leading to correlation energies that are far too
negative [16]. Second, in a Gaussian localized basis, RPA
calculations have a slow convergence with respect to the
basis size [6]. Third, the presence of an unphysical maxi-
mum (bump) at medium distances in dissociation curves of
simple diatomic molecules [6,15] indicates an inherent
problem, which has not yet a fully clarified origin.
Fourth, although in principle the orbitals should be calcu-
lated self-consistently [17], most RPA implementations
consist of a post-KS single-iteration calculation, making
the choice of the input orbitals sometimes critical. Last but

not least, although the main advantage of the RPA is
supposed to be the description of dispersion forces, rare
gas dimer potential curves calculated from LDA or GGA
orbitals are often qualitatively wrong, as shown later.
The poor short-range behavior can be corrected by add-

ing a GGA functional constructed from the difference of
the exact and RPA correlation energies of the uniform
electron gas [16], but this so-called RPA+ technique does
not lead to consistent improvement [6]. One can go beyond
RPA by including exchange-correlation (xc) kernels
[8,9,18], but so far it remains imperfect; e.g., local xc
kernels produce pair densities that diverge at small inter-
particle distances [9,18].
In a similar spirit as in the work of Kohn et al. [19], we

propose an ACFDT approach based on a range separation
of electron-electron interactions. It involves a rigorous
combination of a short-range density functional with one
of the possible long-range generalizations of the RPA. The
method offers a solution for several of the aforementioned
difficulties and is particularly well suited for the descrip-
tion of weakly bound van der Waals systems.
Theory.—In the range-separated multideterminant ex-

tension of the KS scheme, an alternative approach to
DFT (see, e.g., Ref. [20]), the exact ground-state energy
of an electronic system is expressed as

E ¼ min
�

fh�jT̂ þ V̂ne þ Ŵ lr
eej�i þ Esr

Hxc½n��g; (1)

where T̂ is the kinetic energy operator, V̂ne is the

nuclei-electron interaction operator, Ŵ lr
ee ¼ ð1=2Þ�RR

dr1dr2w
lr
eeðr12Þn̂2ðr1;r2Þ is a long-range electron-

electron interaction written with wlr
eeðrÞ ¼ erfð�rÞ=r and

the pair-density operator n̂2ðr1; r2Þ ¼ n̂ðr1Þn̂ðr2Þ �
n̂ðr1Þ�ðr1 � r2Þ, and Esr

Hxc½n� is the corresponding
�-dependent short-range Hartree-exchange-correlation
(Hxc) density functional that Eq. (1) defines. The minimiz-
ing multideterminant wave function, denoted by �lr, cor-
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responds to a long-range interacting effective Hamiltonian
and yields the exact density. The parameter � in the error
function controls the range of the separation. For � ¼ 0,
the standard KS scheme is recovered: wlr

eeðrÞ vanishes, �lr

reduces to the noninteracting KS wave function, and
Esr
Hxc½n� becomes the usual Hxc functional. For � ! 1,

the usual wave function formulation of the electronic
problem is retrieved: wlr

eeðrÞ becomes the full Coulomb
interaction, Esr

Hxc½n� vanishes, and �lr becomes the exact
ground-state wave function. For intermediate values of �,
the interaction effects are divided between the long-range
interacting wave function �lr and the short-range density
functional Esr

Hxc½n�, and one expects to find better approx-
imations for each piece. Short-range LDA [21,22] and
several beyond-LDA approximations [20,23–25] have
been proposed for Esr

Hxc. Here, we use an ACFDTapproach
for the long-range part of the calculation.

In a first step, the minimization in Eq. (1) is restricted to
single-determinant wave functions �, leading to a range-
separated hybrid (RSH) scheme [26]

ERSH ¼ min
�

fh�jT̂ þ V̂ne þ Ŵ lr
eej�i þ Esr

Hxc½n��g; (2)

which, in contrast to some range-separated KS schemes
[27,28], does not include long-range correlation. The min-
imizing determinant �0 is given by the self-consistent
Euler-Lagrange equation

ðT̂ þ V̂ne þ V̂ lr
Hx;HF þ V̂sr

HxcÞj�0i ¼ E0j�0i; (3)

where V̂ lr
Hx;HF is a Hartree-Fock (HF) type long-range

Hartree-exchange (Hx) potential, V̂sr
Hxc¼

R
dr�Esr

Hxc½n�0
�=

�nðrÞn̂ðrÞ is the short-range local Hxc potential and E0 is
the Lagrange multiplier for the normalization constraint.

As usual, V̂ lr
Hx;HF is the sum of a local Hartree part V̂

lr;�
H and

a nonlocal exchange part V̂lr
x;HF.

The RSH scheme does not yield the exact energy and
density, even with the exact short-range functional Esr

Hxc.
Nevertheless, the RSH approximation can be used as a
reference to express the exact energy as

E ¼ ERSH þ Elr
c ; (4)

defining the long-range correlation energy Elr
c , for which

we will now give an adiabatic-connection formula. For
that, we introduce the following energy expression with a
formal coupling constant �

E� ¼ min
�

fh�jT̂ þ V̂ne þ V̂ lr
Hx;HF þ �Ŵ lrj�i

þ Esr
Hxc½n��g; (5)

where � is a multideterminant wave function, Ŵ lr is the
long-range fluctuation potential operator

Ŵ lr ¼ Ŵ lr
ee � V̂ lr

Hx;HF; (6)

and Esr
Hxc is the previously-defined �-independent short-

range Hxc functional. The minimizing wave function is
denoted by �lr

�. For � ¼ 1, the physical energy E ¼ E�¼1

and density are recovered, as Eq. (5) reduces to Eq. (1). For
� ¼ 0, the minimizing wave function is the RSH determi-
nant �lr

�¼0 ¼ �0. Note that, because the density at � ¼ 0
is not exact, the density is supposed to vary along this
adiabatic connection. Taking the derivative of E� with
respect to �, noting that E� is stationary with respect to
�lr

�, and reintegrating between � ¼ 0 and � ¼ 1 gives

E ¼ E�¼0 þ
Z 1

0
d�h�lr

�jŴ lrj�lr
�i; (7)

with E�¼0 ¼ h�0jT̂ þ V̂ne þ V̂ lr
Hx;HFj�0i þ Esr

Hxc½n�0
� ¼

ERSH � h�0jŴ lrj�0i. Thus, the long-range correlation en-
ergy is

Elr
c ¼

Z 1

0
d�fh�lr

�jŴ lrj�lr
�i � h�0jŴ lrj�0ig; (8)

or, using a compact notation,

Elr
c ¼ 1

2

Z 1

0
d�Tr½wlr � Plr

c;��; (9)

where wlr and Plr
c;� are four-index representations of the

fluctuation potential and the correlation contribution of the
two-particle density matrix in a one-electron basis, � stands
for contraction of two indices and Tr is the trace over the
remaining two indices. The fluctuation-dissipation theo-
rem is then used to express Plr

c;� with the imaginary-

frequency four-point polarizability �lr
�ðiuÞ corresponding

to the wave function �lr
� (see, e.g., Ref. [3])

Plr
c;� ¼ � 1

2�

Z 1

�1
due�u0þ½�lr

�ðiuÞ � �0ðiuÞ� þ�lr
�;

(10)

where �0ðiuÞ is the four-point polarizability for the RSH
effective Hamiltonian of Eq. (3) and �lr

� is the contribution
coming from the variation of the one-particle density ma-
trix along the adiabatic connection. The expression of�lr

� is
straightforward but it is sufficient to write it as �lr

� ¼
F½Glr

�� � F½G0� where F is a known functional, Glr
� is the

two-point one-particle Green function corresponding to the
wave function �lr

�, and G0 is the two-point RSH Green
function. Along the adiabatic connection of Eq. (5), the
Green function Glr

� satisfies a self-consistent Dyson equa-
tion

ðGlr
�Þ�1 ¼ G�1

0 � �ð�lr
Hx½Glr

�� ��lr
Hx½G0�Þ � �lr

c;�½Glr
��;
(11)

where ��lr
Hx and �lr

c;� are the Hartree exchange and corre-

lation self-energies associated with the long-range interac-
tion wlr

ee. The long-range polarizability is given by the
solution of the Bethe-Salpeter-type equation (see Ref. [29])

ð�lr
�Þ�1 ¼ ð�lr

IP;�Þ�1 � �flrHx � flrc;�; (12)
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where �lr
IP;� is an independent-particle (IP) polarizability

whose expression is a frequency convolution of two Green
functions Glr

�, abbreviated as �lr
IP;� ¼ �iGlr

�G
lr
�, and

�flrHx ¼ i���lr
Hx=�G

lr
� and flrc;� ¼ i��lr

c;�=�G
lr
� are long-

range HF-type Hartree-exchange and correlation kernels.
So far, the theory is in principle exact. In the following,

we introduce the approximation

�lr
c;� ¼ 0; (13)

which corresponds to neglecting long-range correlation in
all one-electron properties. Indeed, from Eq. (11), this
approximation implies that the Green function remains
unchanged along the adiabatic connection, i.e., Glr

� ¼ G0

and thus �lr
� ¼ 0. It also follows that flrc;� ¼ 0 and �lr

IP;� ¼
�0, and Eq. (12) then has the structure of the RPAwith HF
exchange kernel (sometimes referred to as linear response
time-dependent Hartree-Fock theory or full RPA) that we
will designate here by RPAx, by opposition to standard
RPA, without exchange kernel (sometimes also called
direct RPA). In the basis of RSH spatial orbitals, for
spin-restricted closed-shell systems, the long-range corre-
lation energy then becomes

Elr
c ¼ 1

2

Z 1

0
d�

X
iajb

hijjŵlr
eejabiðPlr

c;�Þiajb; (14)

where ia and jb refer to excitations from occupied (i or j)
to virtual (a or b) orbitals, hijjŵlr

eejabi are the two-electron
integrals with long-range interaction, and ðPlr

c;�Þiajb are the
matrix elements of the spin-singlet-adapted Plr

c;�. The one-

electron term V̂ lr
Hx;HF in Eq. (6) does not contribute to Elr

c

because of the occupied-virtual structure of Plr
c;�. Only

singlet excitations contribute to Eq. (14), since the two-
electron integrals involved vanish for triplet excitations.
Note that alternative (but inequivalent) RPAx correlation
energy expressions, such as the plasmon formula of
Ref. [3] and the closely related ring CCD approximation
of Ref. [30], require contributions from both singlet and
triplet excitations, which may be problematic in systems
displaying triplet instabilities, such as Be2. Following the
technique proposed by Furche [6], Plr

c;� can be obtained as

Plr
c;� ¼ 2½ðA� � B�Þ1=2M�1=2

� ðA� � B�Þ1=2 � 1�; (15)

with M� ¼ ðA� � B�Þ1=2ðA� þ B�ÞðA� � B�Þ1=2 and the
singlet orbital rotation Hessians

ðA�Þiajb ¼ ð�a � �iÞ�ij�ab þ 2�hajjŵlr
eejibi

� �hajjŵlr
eejbii; (16)

ðB�Þiajb ¼ 2�habjŵlr
eejiji � �habjŵlr

eejjii; (17)

where �i are the RSH orbital eigenvalues.
This method will be referred to as RSHþ RPAx. In the

limit of� ¼ 0, it reduces to the standard KS scheme, while

for � ! 1 it becomes a full-range ACFDT RPAx ap-
proach (with HF orbitals). We note that at second order
in the interaction wlr

ee the RSHþ RPAx reduces to the
RSHþMP2 method [26,31].
Computational details.—Equations (14)–(17) have been

implemented in the time-dependent DFT development
module [32] of MOLPRO 2008 [33]. We perform a self-
consistent RSH calculation with the short-range PBE xc
functional of Ref. [24] and add the long-range RPAx
correlation energy calculated with RSH orbitals. The range
separation parameter is taken at � ¼ 0:5, in agreement
with previous studies [28], without trying to fit it. The �
integration in Eq. (14) is done by a 7-point Gauss-Legendre
quadrature [6]. We use large Dunning basis sets [34] and
remove the basis set superposition error by the counter-
poise method. The full-range RPA and RPAx calculations
have been done with PBE [35] and HF orbitals, respec-
tively. The computational cost of RSHþ RPAx is essen-
tially identical to that of full-range ACFDT RPA.
Results and discussion.—Figure 1 shows RPA, RPAx,

and RSHþ RPAx total energies with respect to the
basis size for Ne2. In contrast with full-range RPA and
RPAx, a fast convergence is observed for RSHþ RPAx,
similar to that of standard KS calculations. This improve-
ment is explained by the fact that short-range correlations
are compactly described by the short-range density func-
tional. The reduced basis dependence of RSHþ RPAx
also means a smaller basis set superposition error [36].
Another important point illustrated by Fig. 1 is that the
large RPA overestimation of the total energy, apparent for a
large enough basis, is remedied by the RSHþ RPAx
method thanks to a more accurate description of short-
range correlations.
Figure 2 shows the interaction energy curves of Be2 and

Ne2. The RPA (with PBE orbitals) fails badly: a large bump
for Be2 and an almost completely repulsive curve for Ne2
are observed. A spectacular improvement is obtained with
the RSHþ RPAx method, which gives physically correct
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FIG. 1 (color online). RPA, RPAx, and RSHþ RPAx total
energies of Ne2 at equilibrium distance (5.84 Bohr) with respect
to the basis size.
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curves, especially accurate at medium and large distances.
It also improves over both MP2 and RPAx. It has been
verified that the short-range LDA xc functional of Ref. [21]
provides very similar RSHþ RPAx interaction curves,
indicating a low sensitivity of the method with respect to
the short-range functional.

The proposed RSHþ RPAx method overcomes many
limitations of the RPA or related approaches. The results
show that it has the potential to describe successfully
weakly bound van der Waals systems at all distances. It
is expected to supersede the RSHþMP2 method [26],
especially for systems with small electronic gap.
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FIG. 2 (color online). Interaction energy curves of Be2 and Ne2 calculated in RPA, MP2, RPAx, and RSHþ RPAx. The basis is
cc-pV5Z for Be2 and aug-cc-pV5Z for Ne2. The accurate curves are from Refs. [37,38].
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