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We study nonlinear adiabatic connection paths in density-functional theory using modified
electron–electron interactions that perform a long-range/short-range separation of the
Coulomb interaction. These adiabatic connections allow us to define short-range
exchange–correlation potentials and short-range local exchange–correlation energies per
particle which we have calculated accurately for the He and Be atoms and compared to the
corresponding quantities in the local density approximation (LDA). The results confirm that
the LDA better describes exchange–correlation potentials and local exchange–correlation
energies per particle when the range of the interaction is reduced.

1. Introduction

The adiabatic connection procedure of density func-
tional theory (DFT) [1] connects the fictitious non-
interacting Kohn–Sham (KS) [2] system to the physical
one by continuously switching on the electron–electron
interaction. The connection is carried out at constant
density and is controlled by an interaction parameter �.
The partially interacting N-electron system for a given
value of � along this connection is described by the
Hamiltonian

ĤH� ¼ T̂Tþ V̂V�ee þ V̂V�, ð1Þ

where T̂T is the kinetic energy operator, V̂V�ee ¼
P

i<j v
�
eeðrijÞ

is the modified electron–electron interaction operator
and V̂V� ¼

P
i v
�ðriÞ is the corresponding local external

potential which ensures that this fictitious system has the
same ground-state density n as that of the physical
system. The ground-state wave function of this partially
interacting system is denoted by ��.
In the more common adiabatic connection (see,

e.g. [3]), the electron–electron interaction is switched
on linearly. However, other nonlinear paths are possible
[4]. In particular, in view of constructing a multi-
determinantal extension of the KS scheme of DFT, it has
been proposed [5–11] to choose a modified interaction
v�eeðrÞ representing the long-range part of the Coulomb

interaction. In previous works [7–10], this long-range
interaction has been defined by

v�ee, erfðrÞ ¼
erf ð�rÞ

r
, ð2Þ

referred to as the erf interaction. More recently [12], a
sharper long-range/short-range separation has been
achieved by taking for the long-range interaction

v�ee, erfgauðrÞ ¼
erf ðc�rÞ

r
�

2c�

p1=2
exp �

1

3
c2�2r2

� �
, ð3Þ

referred to as the erfgau interaction. This modified
interaction was first introduced by Gill and Adamson
[13] in another context. In equation (3), c ¼
ð1þ 6ð31=2ÞÞ1=2 � 3:375 is a constant chosen so that
1=� roughly represents the range of the modified
interaction as for the erf interaction [12]. For both the
erf and erfgau interactions, the modified interaction
v�ee vanishes at �¼ 0 and reduces to the full Coulomb
interaction 1/r as �!1. Consequently, the
Hamiltonian ĤH� of equation (1) is the KS non-
interacting Hamiltonian at �¼ 0 and the physical
Hamiltonian as �!1.

With these modified interactions, equation (1) defines
a fictitious system with long-range interactions from
which one can define a universal long-range density
functional

F� ¼ h��jT̂Tþ V̂V�eej�
�i, ð4Þ
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and its short-range complement �FF� ¼ F� F�, where F is
the usual Coulombic universal functional. This short-
range universal functional �FF� can be decomposed as

�FF� ¼ �UU� þ �EE�xc, ð5Þ

where �UU� ¼ 1=2
RR

nðr1Þnðr1Þ �vv
�
eeðr12Þ dr1 dr2 is the com-

plement short-range Hartree energy functional and �EE�xc
is the unknown complement short-range exchange–
correlation energy functional. Finally, the ground-state
energy of the physical system is given by

E ¼ h��jT̂Tþ V̂V�eej�
�i þ

Z
vneðrÞnðrÞ drþ �UU� þ �EE�xc,

ð6Þ

where vneðrÞ is the nuclei–electron potential.
Accordingly, the potential v� appearing in equation (1)
can be decomposed as

v�ðrÞ ¼ vneðrÞ þ v�h ðrÞ þ v�xcðrÞ, ð7Þ

where v�h ðrÞ ¼ �
�UU�=�nðrÞ is the complement short-range

Hartree potential and v�xcðrÞ ¼ �
�EE�xc=�nðrÞ is the comple-

ment short-range exchange–correlation potential. As in
the usual Kohn–Sham case, the short-range exchange–
correlation energy can be decomposed into exchange
and correlation contributions, �EE�xc ¼

�EE�x þ
�EE�c .

Correspondingly, the short-range exchange–correlation
potential is decomposed as v�xcðrÞ ¼ v�x ðrÞ þ v�c ðrÞ.
In this approach, the central quantity to approximate

is the short-range exchange–correlation energy func-
tional �EE�xc. Once an approximation has been chosen for
�EE�xc, the potential v� appearing in equation (1) is
deduced by equation (7), the multi-determinantal wave
function �� is calculated and the ground-state energy E
is deduced by equation (6). Previous applications of the
method to small atomic and molecular systems [8, 9, 14]
show that, for a reasonable value of �, h��jT̂Tþ V̂V�eej�

�i

can be efficiently approximated by standard wave
function methods using a few-determinantal wave
function ��.
In practice, the short-range exchange–correlation

energy is conveniently expressed as

�EE�xc ¼

Z
nðrÞ �""�xcðrÞ dr, ð8Þ

where �""�xcðrÞ is a short-range local exchange–correlation
energy per particle that is not uniquely defined. The
local density approximation (LDA) for �""�xc is

�""�, LDA
xc ðrÞ ¼ �""�, unifxc ðnðrÞÞ, ð9Þ

where �""�, unifxc ðnÞ is the short-range exchange–correlation
energy per particle of a uniform electron gas with
modified interaction [7, 15]. The LDA short-range
exchange–correlation potential is

v�, LDA
xc ðrÞ ¼

d n �""�, unifxc ðnÞ
� �

dn

� �
n¼nðrÞ

: ð10Þ

The performance of LDA for �EE�xc has previously been
investigated [8, 9, 12, 14]. It has been found in particular
on atomic systems that the LDA is very accurate for
sufficiently large � [12]. For example, for the He atom
with �G2, the LDA error on both �EE�x and �EE�c is less
than 1mH. However, good accuracy on integrated
quantities does not always ensure a similar accuracy
on local quantities. In this work, we analyse further the
LDA for short-range exchange–correlation effects by
performing a detailed local analysis. Indeed, for both the
erf and erfgau interactions, we have computed for the
He and Be atoms accurate exchange–correlation poten-
tials v�xc and accurate local exchange–correlation ener-
gies per particle �""�xc for two possible definitions and
compared to the corresponding LDA quantities.

The paper is organized as follows. In section 2, the
calculation of accurate potentials v� is explained and the
corresponding exchange–correlation potentials are com-
pared to the LDA ones. In section 3, accurate local
exchange–correlation energies per particle are calculated
for two possible definitions and compared to the LDA
local energy per particle. Finally, section 4 contains
concluding remarks.

Atomic units will be used throughout this work.

2. Short-range exchange–correlation potentials

The method we use for calculating accurate external
potentials by optimization is explained in [16] and [10].
We rapidly recall here the principal aspects.

The potentials v�ðrÞ are determined by using the
Legendre transform formulation of the universal func-
tional [17, 18]

F�½n� ¼ sup
~vv�

E�½ ~vv�� �

Z
~vv�ðrÞnðrÞ dr

� �
, ð11Þ

where E�½ ~vv�� is the ground-state energy of the
Hamiltonian T̂Tþ V̂V�ee þ

P
i ~vv�ðriÞ. If n is chosen to be

the physical density of the system, and if n is assumed to
be v-representable in the presence of the interaction V̂V�ee,
then the supremum in equation (11) is a maximum
reached for the desired v� and F�. In practice, an
accurate density n is computed by a multi-reference
configuration-interaction calculation with single and
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double excitations (MRCISD) [19, 20] and the potential
to optimize ~vv�ðrÞ for atomic systems is expanded as

~vv�ðrÞ ¼
Xn
i¼1

cir
pi exp ð��ir

2Þ þ
C

r
, ð12Þ

where ci are the optimized coefficients, pi are some fixed
integers (�1 or 2), � i are fixed exponents chosen so as to
form an even-tempered basis set (typically,
�i 2 ½10

�3, 5:104�) and C is a constant which enforces
the correct asymptotic behaviour for r!1. For the
Kohn–Sham case (�¼ 0), this asymptotic behaviour is
determined by the nuclei–electron, Hartree and
exchange contribution to the potential, giving
C ¼ �ZþN� 1 (N and Z are the electron number
and nuclear charge, respectively). For finite �, the short-
range Hartree and exchange potentials are exponentially
decreasing at infinity, so that it remains only the nuclei–
electron contribution, giving C ¼ �Z. Actually, the
maximizing potential v�ðrÞ in equation (11) is defined
only up to an additive constant. The potential of
equation (12) is the one which goes to 0 as r!1.
The maximization of equation (11) is carried out with

the Simplex method [21]. For a given potential, E�½ ~vv�� is
computed at the MRCISD level using the Molpro
program [22] with modified two-electron integrals (see
Appendix A of [12]). Beside the asymptotic behaviour
for r!1, v�ðrÞ � C=r, the behaviour of the potential
at the nucleus r¼ 0, v�ðrÞ � �Z=r, is also imposed
during the optimization. Large one-electron even-
tempered Gaussian basis sets are used for all systems
(see [16] and [10] for more details). The quality of the
obtained potential is assessed using the Zhao–Parr
criterion [23]

� ¼
1

2

Z Z
~nnðr1Þ � nðr1Þð Þ ~nnðr2Þ � nðr2Þð Þ

jr1 � r2j
dr1 dr2, ð13Þ

where ~nn is the density given by the approximate
potential ~vv�. The largest values of � obtained with our
potentials are of order 10�8.
For two-electron systems, the exchange–correlation

potential can be easily decomposed into exchange
and correlation contributions. Indeed, the exchange
potential is known from the Hartree potential,
v�x ðrÞ ¼ �v

�
h ðrÞ=2, and the correlation potential is simply

obtained by the difference v�c ðrÞ ¼ v�xcðrÞ � v�x ðrÞ. Figure 1
shows the exchange potentials of the He atom with
the erf interaction for �¼ 0, 0.5 and 2, together with the
corresponding LDA potentials. To better visualize the
asymptotic behaviour as r!1, rv�x ðrÞ is plotted instead
of v�x ðrÞ. In the KS case (�¼ 0), the LDA exchange
potential largely differs from the accurate one.
In particular, the LDA potential does not have the

correct Coulombic asymptotic behaviour v�¼0x ðrÞ � �1=r
as r!1. When � increases, the range of the accurate
potentials decreases and rv�x ðrÞ goes to 0 as r!1.
When � increases, the asymptote is reached at smaller
and smaller values of r. The important observation is
that the accuracy of the LDA potentials increases with �.
At �¼ 2, at the scale of the plot, the LDA potential is
nearly identical to the accurate one.

The accurate correlation potential for the He atom
with the erf interaction for �¼ 0, 1 and 3 is reported in
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Figure 1. Exchange potentials rv�x ðrÞ for He with the erf
interaction with �¼ 0, 0.5 and 2: the potentials obtained in the
present work (full curves) are compared to the LDA potentials
(equation (10), dashed curves).
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figure 2, together with the LDA correlation potentials.
In the KS case (�¼ 0), the correlation potential
calculated by Umrigar and Gonze [24] by inversion of
the KS equation with a very accurate density is also
reported. This potential agrees well with our potential
except at very small r where the precision of our
calculations (using Gaussian basis sets) does not allow
us to extract the correlation potential. The LDA
correlation potential for �¼ 0 is a poor approximation
to the accurate, structured potential. As for the

exchange potential, the range of correlation potential
is reduced when � increases. At large �, the correlation
potential has less structure which enables the LDA to
perform better but on average only.

The potentials obtained for the Be atom with the erf
interaction are plotted in figure 3. At �¼ 0, the
exchange–correlation potential calculated by Umrigar
and Gonze [25] using quantum Monte Carlo methods is
also reported. In comparison to the He atom, the
accurate potentials for small � now exhibit a shell
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Figure 2. Correlation potentials v�c ðrÞ for He with the erf
interaction with �¼ 0, 1 and 3: the potentials obtained in the
present work (full curves) are compared to the LDA potentials
(equation (10), dashed curves). For �¼ 0, the correlation
potential calculated by Umrigar and Gonze [24] (dotted curve)
is also shown.
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Figure 3. Exchange–correlation potentials rv�xcðrÞ for Be with
the erf interaction with �¼ 0, 0.5 and 1.5: the potentials
obtained in the present work (full curves) are compared to the
LDA potentials (equation (10), dashed curves). For �¼ 0, the
exchange–correlation potential calculated by Umrigar and
Gonze [25] (dotted curve) is also shown.
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structure with a jump separating the core region (r91)
and the valence region (rG1). The LDA potentials do
not reproduce well this jump. When � is large enough
(�G1) so that the valence region is cut off, the shell
structure disappears in the potential and the quality of
the LDA potentials is improved.
The potentials with the erfgau interaction are

qualitatively similar to the potentials with the erf
interaction and will not be shown here. We just mention
that a careful comparison shows that the potentials
with the erfgau interaction are more short-ranged,
confirming than the erfgau interaction achieves a
better long-range/short-range separation than the erf
interaction [12].

3. Short-range local exchange–correlation

energies per particle

The short-range local exchange–correlation energy per
particle �""�xcðrÞ associated with the exact �EE�xc is not
uniquely defined. However, one can define and calculate
some ‘physically realistic’ �""�xcðrÞ which can be compared
to approximations like the LDA. We discuss now two
such possible choices: local energies per particle
obtained from integration of pair densities along
adiabatic connections and local energies per particle
obtained directly from potentials.

3.1. Short-range local exchange–correlation energies
per particle from pair densities

It is natural to define a short-range local exchange
energy per particle by

�""�, pdx ðr1Þ ¼
1

2

Z
nxðr1, r2Þ �vv

�
eeðr12Þ dr2: ð14Þ

where nxðr1, r2Þ is the exchange hole calculated from
the one-particle KS density matrix: nxðr1, r2Þ ¼
�jnKS

1 ðr1, r2Þj
2=ð2nðr1ÞÞ. The superscript pd stands for

pair density. Similarly, the exact representation of �EE�c by
integration over the nonlinear adiabatic connection

�EE�c ¼
1

2

Z 1
�

d�

Z Z
nðr1Þn

�
cðr1, r2Þ

@v�eeðr12Þ

@�
dr1 dr2, ð15Þ

where n�cðr1, r2Þ is the correlation hole at interaction
parameter �, suggests a natural definition for the short-
range local correlation energy per particle (see also [26])

�""�, pdc ðr1Þ ¼
1

2

Z 1
�

d�

Z
dr2n

�
cðr1, r2Þ

@v�eeðr12Þ

@�
: ð16Þ

Note that even for the KS system (�¼ 0), the local
correlation energy per particle �""�¼0, pdc ðrÞ can depend on
the adiabatic connection path followed.

We have calculated these local energies per particle
from accurate exchange and correlation holes associated
with the system of equation (1) using the accurate
potentials of section 2 and the programs Molpro [22]
and CASDI [27].

3.2. Short-range local exchange–correlation
energies per particle from potentials

We now define another short-range local exchange–
correlation energy per particle �""�, localxc ðnÞ as a function
of n, by requiring that it yields of course the exact
short-range exchange–correlation energy

�EE�xc ¼

Z
nðrÞ �""�, localxc ðnðrÞÞ dr, ð17Þ

but also the exact short-range exchange–correlation
potential

d n �""�, localxc ðnÞ
� �

dn

� �
n¼nðrÞ

¼ v�xcðrÞ þ C: ð18Þ

The potential is defined only up to an additive constant
C and v�xcðrÞ is the exchange–correlation potential which
goes to 0 at infinity (calculated in section 2).

For a given system, �""�, localxc ðnÞ defines an exact local
short-range exchange–correlation functional in the sense
that it gives the exact exchange–correlation potential
and energy. This approach has already been applied for
the Kohn–Sham scheme [28]; we briefly recall here how
�""�, localxc ðnÞ is calculated.
The condition of equation (18) implies

r n �""�, localxc ðnÞ
� �

¼
d n �""�, localxc ðnÞ
� �

dn
rn ¼ ðv�xcðrÞ þ CÞrn,

ð19Þ

which becomes for spherically symmetric systems

d nðrÞ �""�, localxc ðrÞ
� �

dr
¼

dnðrÞ

dr
ðv�xcðrÞ þ CÞ: ð20Þ

Integration of equation (20) leads to

nðrÞ �""�, localxc ðrÞ � nðrÞ �""�, localxc ðrÞ
� �

r!1

¼ �

Z 1
r

dnðr0Þ

dr0
ðv�xcðr

0Þ þ CÞ dr0:
ð21Þ

To avoid divergence of the integral in equation (17), we
must have ðnðrÞ �""�, localxc ðrÞÞr!1 ¼ 0; �""�, localxc ðrÞ is then
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expressed as

�""�, localxc ðrÞ ¼
�1

nðrÞ

Z 1
r

dnðr0Þ

dr0
v�xcðr

0Þ dr0 þ C, ð22Þ

where the constant C is fixed by requiring that

�EE�xc ¼

Z 1
0

nðrÞ �""�, localxc ðrÞ4pr2 dr

¼ �
4p
3

Z 1
0

d nðrÞ �""�, localxc ðrÞ
� �

dr
r3 dr

¼ �
4p
3

Z 1
0

dnðrÞ

dr
v�xcðrÞr

3 drþ CN, ð23Þ

with the number of electrons N ¼
R
nðrÞ4pr2 dr.

Similarly, using only the exchange or correlation parts
of v�xcðrÞ and

�EE�xc in equations (22) and (23) leads to the
local exchange energy per particle �""�, localx ðrÞ and local
correlation energy per particle �""�, localc ðrÞ, respectively.
We have calculated these local energies per particle

using the accurate potentials of section 2 and accurate
values of �EE�x and �EE�c obtained from F� of equation (11).

3.3. Results

For monotonically decaying spherical densities, the
map r! nðrÞ can be inverted and the local exchange–
correlation energy per particle can therefore be
expressed as a function of the density n or, equivalently,
as a function of 1=rs ¼ ð4pn=3Þ

1=3. The reason to use 1/rs
is that the exchange energy per particle of the
Coulombic uniform electron gas �""�¼0, unifx is proportional
to 1/rs.
For the He atom with the erf interaction, the two

accurate short-range local exchange energies per particle
�""�, pdx ð1=rsÞ and �""�, localx ð1=rsÞ are compared in figure 4,
together with the LDA local energy per particle. The
difference between the two accurate local energies per
particle, both giving the same correct short-range
exchange energy �EE�x , illustrates the arbitrariness in the
definition of local quantities from global ones. However,
the differences soften when � is increased, i.e. when
long-range interactions are removed. The LDA local
exchange energy per particle is significantly different
from both accurate local exchange energies per particle
at the KS end of the adiabatic connection (�¼ 0), but as
� increases the LDA local energy per particle better and
better agrees with the accurate local energies per
particle. At low densities (1=rs < 0:5), the LDA local
energy per particle is close to the accurate �""�, pdx ð1=rsÞ
while at high densities (for 1=rs > 1:5) the LDA local
energy per particle is closer to the accurate �""�, localx ð1=rsÞ.
In figure 5, again for the He atom with the erf

interaction, the accurate local correlation energies per

particle �""�, pdc ð1=rsÞ and �""�, localc ð1=rsÞ are represented and
compared to the LDA. The two accurate local energies
per particle give the same correct short-range correlation
energy �EE�c but have rather different shapes, although the
differences partly soften when � increases. The LDA
generally overestimates the accurate local correlation
energies per particle at �¼ 0, but again when � increases
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Figure 4. Short-range local exchange energies per particle
with respect to 1/rs for He with the erf interaction for �¼ 0,
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x (long-dashed curve) is compared to the accurate
�""�, pdx (equation (14), solid curve) and �""�, localx (subsection 3.2,
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the LDA is improved on average. The LDA local energy
per particle is much more comparable to �""�, pdc ð1=rsÞ than
�""�, localc ð1=rsÞ especially for large � and at low densities.
In general, similar behaviours are obtained with the

erfgau interaction. However, the attractive character of
this interaction for small values of � (see [15]) can lead
to some significant differences compared to the erf
interaction. Figure 6 shows these differences for the

accurate local correlation energy per particle �""�, pdc ð1=rsÞ
at �¼ 0. In comparison to the erf interaction, the local
energy per particle obtained with the erfgau interaction
exhibits in particular a positive contribution at very low
densities. This emphasizes now the arbitrariness of the
definition �""�, pdc ð1=rsÞ with respect to the choice of the
adiabatic connection along which the pair density is
integrated.

Figure 7 shows the evolution of the local exchange–
correlation energies per particle with the erf interaction
for the Be atom. In comparison to the He atom, both
�""�, pdc ð1=rsÞ and �""�, localc ð1=rsÞ exhibit a shell structure for
small values of �, the contributions from the valence
region (rs90:5) and the core region (rsG0:5) being
easily identifiable. The LDA local exchange–correlation
energy per particle differs significantly from the two
accurate ones, especially in the core region which
constitutes the major contribution to the exchange–
correlation energy. Also, in this representation in
terms of 1/rs, the LDA does not reproduce at all
the intershell jump. However, when � increases, the
contribution from the valence region is progressively
cut off and the shell pattern finally disappears. For large
�, when only the contribution from the core remains,
the LDA local energy is close to the accurate local
energies.

Finally, the accurate local correlation energy per
particle �""�, pdc ð1=rsÞ for the Be atom is reported in figure 8,
together with the LDA. The shell structure in this plot is
even clearer. At �¼ 0, the LDA overestimates the
accurate local correlation energy per particle at all
densities. When � increases, the LDA starts to better
reproduce the valence region but still overestimate the
accurate local energy in the core region. Keeping on
increasing �, the contribution from the valence region
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with respect to 1/rs for He with the erf interaction for �¼ 0,
1, 3. �""�, LDA

c (long-dashed curve) is compared to the accurate
�""�, pdc (equation (16), solid curve) and �""�, localc (subsection 3.2,
short-dashed curve).
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the erf (solid curve) and erfgau (dotted curve) interactions for
�¼ 0.
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vanishes, and the LDA starts to reproduce well the core
region.

4. Concluding remarks

Nonlinear adiabatic connections have been used to
decompose the energy of an electronic system into
a long-range wave function part and short-range

density functional part, the position of the frontier of
this decomposition being determined by a single
parameter �.

When the interaction range of the short-range energy
component is reduced, corresponding to a rise in �, the
short-range LDA becomes an increasingly accurate
approximation to the short-range exchange–correlation
density functional. Indeed, as has been verified in this
work for a few atomic systems, the short-range LDA
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Figure 7. Short-range local exchange–correlation energies
per particle with respect to 1/rs for Be with the erf interaction
for �¼ 0, 1, 3: �""�, LDA

xc (equation (9), long-dashed curve) is
compared to the accurate �""�, pdxc (subsection 3.1, solid curve)
and �""�, localxc (equation (22), short-dashed curve).
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Figure 8. Short-range local correlation energies per particle
with respect to 1/rs for Be with the erf interaction for �¼ 0, 1,
3: �""�, LDA

c (long-dashed curve) is compared to the accurate �""�, pdc
(equation (16), solid curve).
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gives, for a sufficiently large �, good short-range
exchange–correlation potentials and local exchange–
correlation energies per particle.
More formally, one can define an optimal local

interaction parameter, �optðrÞ, so that for � > �optðrÞ

the LDA reproduces, at a given precision, the exact
short-range potentials or local energies at the considered
point of space. Physically, 1=�optðrÞ represents the
maximum local interaction range over which the
exchange–correlation effects are easily transferable
from the uniform electron gas to the inhomogeneous
system of interest. In general, the larger the density at
point r is, the larger �optðrÞ is. However, it is not
conceivable in the method to use a r-dependent
interaction parameter � because of the wave function
part of the calculation.
In a simple system like the He atom, the improvement

of the LDA upon increasing � is quite uniform in space
and one can basically define a global average optimal
interaction parameter, ���opt, and use it to fix the frontier
of the decomposition, i.e. � ¼ ���opt.
More generally, in the strongest inhomogeneous

systems such as the Be atom, at least two regions of
space are identifiable, the core and valence shells, and
it is meaningful to define separate averages of �optðrÞ

over each region, ���core
opt and ���valence

opt . As the density is
higher for the core than for the valence, we have
���core
opt > ���valence

opt .
If one fixes the frontier of the long-range/short-range

decomposition at the optimal value for the core shell, i.e.
� ¼ ���core

opt , the short-range functional part of the
calculation can be treated well in LDA but of course
the complement part of the core region and the entire
valence region are assigned to the wave function part
which can result in the need for a long expansion into
Slater determinants.
Conversely, if one fixes the frontier of the decom-

position at the optimal value for the valence shell, i.e.
� ¼ ���valence

opt , the short-range LDA functional is not
enable to treat well the core region but can describe well
that part of the valence region assigned to it. Moreover,
the wave function part of the calculation has only to
handle the remaining part of the valence region, which
allows, in general, the use of a short expansion into
Slater determinants.
Obviously, one would like to reconcile these two

alternatives. For practical applications of the method to
molecular systems of chemical interest, it is desirable to
keep the wave function expansion minimal and thus
to chose the frontier of the decomposition inside the
valence region, i.e. � ¼ ���valence

opt . For properties essen-
tially depending on the valence shell only, such as
atomization energies, the error of the LDA in the core
shell can then be ignored, or the core electrons can be

replaced by a pseudo-potential. Otherwise, one must
then find better approximations to the short-range
exchange–correlation functional which extend the
domain of accuracy of the LDA toward larger interac-
tion ranges (small �). We hope that the presented results
will help the construction of such approximations.

Data for the atomic systems presented in this paper
(and other systems) are available from the authors upon
request.

Acknowledgments

We thank D. Maynau (Université Paul Sabatier,
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