
CHAPTER FIFTEEN

Introduction to the Variational
and Diffusion Monte Carlo
Methods
Julien Toulouse*,†,1, Roland Assaraf*,†, Cyrus J. Umrigar{
*Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, Laboratoire de Chimie Théorique, Paris, France
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Abstract

We provide a pedagogical introduction to the two main variants of real-space quantum
Monte Carlo methods for electronic structure calculations: variational Monte Carlo
(VMC) and diffusion Monte Carlo (DMC). Assuming no prior knowledge on the subject,
we review in depth the Metropolis–Hastings algorithm used in VMC for sampling the
square of an approximate wave function, discussing details important for applications to
electronic systems. We also review in detail the more sophisticated DMC algorithm
within the fixed-node approximation, introduced to avoid the infamous Fermionic sign
problem, which allows one to sample a more accurate approximation to the ground-
state wave function. Throughout this review, we discuss the statistical methods used for
evaluating expectation values and statistical uncertainties. In particular, we show how to
estimate nonlinear functions of expectation values and their statistical uncertainties.
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This chapter provides a pedagogical introduction to the twomain variants of

real-space quantum Monte Carlo (QMC) methods for electronic structure

calculations: variational Monte Carlo (VMC) and diffusion Monte Carlo

(DMC). For more details of these methods, see, e.g., Refs. 1–6. For reviews
on applications of QMCmethods in chemistry and condensed-matter phys-

ics, see, e.g., Refs. 7–8.

1. VARIATIONAL MONTE CARLO

1.1 Basic Idea
The idea of the VMCmethod9,10 is simply to calculate the multidimensional

integrals appearing in quantum mechanics using a Monte Carlo numerical

integration technique.a The quantity of greatest interest is the variational

energy associated with a Hamiltonian Ĥ and a wave function Ψ, which
can be written as

Ev ¼hΨjĤjΨi
hΨjΨi ¼

Z
dRΨðRÞ2ELðRÞZ

dRΨðRÞ2
¼
Z

dR ρðRÞELðRÞ, (1)

where EL(R)¼ (HΨ(R))/Ψ(R) is the local energy depending on the 3N coor-

dinatesR of theN electrons, and ρðRÞ¼ΨðRÞ2=R dRΨðRÞ2 is the normal-

ized probability density. For simplicity of notation, we have assumed that

Ψ(R) is real valued; the extension to complex Ψ(R) is straightforward.

The variational energy can be estimated as the average value of EL(R) on

a sample of M points Rk sampled from the probability density ρ(R),

Ev � �EL ¼ 1

M

XM
k¼1

ELðRkÞ: (2)

In practice, the points Rk are sampled using the Metropolis–Hastings

algorithm.12,13

The advantage of this approach is that it does not use an analytical

integration involving the wave function, and thus does not impose severe

constraints on the form of the wave function. The wave functions usually

used in QMC are of the Jastrow–Slater form,

a To the best of our knowledge, the first calculation of multidimensional integrals appearing in quantum

mechanics by using Monte Carlo methods was done by Conroy. 11
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ΨðRÞ¼ JðRÞΦðRÞ, (3)

where J(R) is a Jastrow factor and Φ(R) is a Slater determinant or a linear

combination of Slater determinants.b The Jastrow factor is generally of

the form J(R) ¼e f(R). It depends explicitly on the interparticle distances rij,

allowing for an efficient description of the so-called electron “dynamic”

correlation.

In practice, the VMC method has two types of errors:

• a systematic error, due to the use of an approximate wave function (as in

other wave-function methods) and

• a statistical uncertainty, due to the sampling of finite size M (which is spe-

cific to Monte Carlo methods).

Of course, the variational energy is an upper bound of the exact ground-state

energy, but the systematic error is generally unknown, since its determina-

tion requires knowing the exact solution. By contrast, the statistical uncer-

tainty can be easily estimated by the usual statistical techniques. For this, let

us examine more closely the meaning of Eq. (2). The average of the local

energy �EL on a finite sample is itself a random variable, taking different

values on different samples. The central limit theorem establishes that, if

EL(Rk) are random variables that are independent (i.e., not correlated) and

identically distributed, with finite expected value E[EL] and finite variance,

V[EL] ¼ E[(EL�Ev)
2], then in the largeM limit the probability distribution

of the random variable �EL converges (in the mathematical sense of conver-

gence in distribution) to a Gaussian (or normal) distribution of expected

value E[EL] and variance V[EL]/M,

E �EL½ � ¼E½EL� ¼Ev, (4a)

V �EL½ � ¼V½EL�
M

: (4b)

This means that �EL is an estimator of Ev with a statistical uncertainty

which can be defined by the standard deviation of its Gaussian distribution

σ �EL½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
V �EL½ �

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
V½EL�
M

r
: (5)

The meaning of this standard deviation is that the desired expected value

Ev has a probability of 68.3% of being in the interval �EL�σ, �EL + σ½ �,
b In QMC, it is convenient to use wave functions in which the values of the spin coordinates have been

fixed, so Ψ is a function of the spatial coordinates R only.
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a probability of 95.5% of being in the interval �EL�2σ, �EL + 2σ½ �, and a

probability of 99.7% of being in the interval �EL�3σ, �EL + 3σ½ �. Note that,

if the variance V[EL] is infinite but the expected value E[EL] is finite, then

the law of large numbers guarantees the convergence of �EL to E[EL] when

M !1 but with a statistical uncertainty which is more difficult to estimate

and which decreases more slowly than 1=
ffiffiffiffiffi
M

p
.

It is important to note that the statistical uncertainty decreases as 1=
ffiffiffiffiffi
M

p
independently of the dimension of the problem. This is in contrast to deterministic

numerical integration methods for which the convergence of the integration

error deteriorates with the spatial dimension d. For example, Simpson’s inte-

gration rule converges as 1/M(4/d) (provided the integrand has up to fourth-

order derivatives) so that for d> 8, Monte Carlo methods are more efficient

for large M.

The statistical uncertainty is reduced if the variance of the local energy

V[EL] is small. In the limit that Ψ is an exact eigenfunction of Ĥ , the local

energy EL becomes exact, independent of R, and thus, its variance V[EL]

and the statistical uncertainty of �EL vanish. This is known as the zero-variance

property. Since the systematic error (or bias) of the variational energy ΔE¼
Ev � E0 (where E0 is the exact energy) also vanishes in this limit, there is a

zero-bias property as well. For these reasons, a great deal of effort has been

expended on developing robust and efficient wave-function optimization

methods.

1.2 Estimation of the Statistical Uncertainty
In practice, the probability density ρ(R) is sampled with the Metropolis–
Hastings algorithm which provides a sequence of points Rk correctly

distributed according to ρ(R) but sequentially (or serially) correlated (i.e., non-

independent). This is a consequence of each point being sampled from a

probability distribution conditional on the previous point. One can define

an autocorrelation time (defined more precisely later) that is, roughly speaking,

the average time for points to decorrelate. This sequential correlation must

be taken into account when using the central limit theorem for evaluating

the statistical uncertainty. This is done using the blocking technique, which is

described next.

Let us consider a sequence of M realizations Xk (sequentially correlated)

of a random variable X of expected value E[X] and of variance V[X]. For

example, X could be the local energy EL. We divide this sequence into

Mb successive blocks of Ms steps each. The block average �X b is

288 Julien Toulouse et al.

Author's personal copy



�X b ¼ 1

Ms

XMs

k¼1

Xk: (6)

The expected value of �X b is also the expected value ofX, i.e.,E �X b½ � ¼E½X �,
but its variance is not simply V [X]/Ms since the variables Xk are not inde-

pendent. We can now define the global average �X of the whole sample as the

average over all the blocks of the block averages

�X ¼ 1

Mb

XMb

b¼1

�Xb, (7)

where �Xb with a math subscript “b” indicates the block average for the bth

block (whereas �X b with a Roman subscript “b” indicates the generic ran-

dom variable). The global average �X is another random variable with the

same expected value as X, i.e., E �X½ � ¼E �X b½ � ¼E½X �. If the length of the

blocks is large compared to the autocorrelation time, then the block averages
�Xb can be considered as being independent, and the variance of the global

average is simply

V �X½ � ¼V �X b½ �
Mb

, (8)

which leads to the statistical uncertainty of �X

σ �X½ � ¼
ffiffiffiffiffiffiffiffiffiffi
V �X½ �

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
V �X b½ �
Mb

s
: (9)

In practice, the statistical uncertainty on a finite sample is calculated as

σ �X½ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mb�1

1

Mb

XMb

b¼1

�Xb
2� 1

Mb

XMb

b¼1

�Xb

 !2 !vuut , (10)

where theMb� 1 term appearing instead ofMb is necessary to have an unbi-

ased estimator of the standard deviation on the sample (see the Appendix).

It takes into account the fact that the computed variance is relative to the

sample average rather than the true expected value.

Finally, let us examine the variance V �X b½ �. Since the variables Xk are not

independent, the expansion of V �X b½ � involves the covariances between the

variables
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V �X b½ � ¼ 1

M2
s

X
k, l

Cov½Xk,Xl� ¼V½X�
Ms

+
2

M2
s

X
k<l

Cov½Xk,Xl� ¼Tc

V½X �
Ms

,

(11)

defining the autocorrelation time of X

Tc ¼ 1+
2

V½X �Ms

X
k<l

Cov½Xk,Xl�: (12)

The autocorrelation time is equal to 1 in the absence of correlation between

the variables, i.e., Cov[Xk,Xl]¼ 0 for k6¼l, but can be large in the presence of

sequential correlation. It is instructive to express the statistical uncertainty as

a function of Tc

σ �X½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc

V½X �
MsMb

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc

V½X �
M

r
, (13)

whereM ¼MsMb is the total size of the sample. The expression (13) allows

one to interpret Tc as a factor giving the number of effectively independent

points in the sample, Meff ¼ M/Tc. In practice, it is useful to calculate the

autocorrelation time as Tc ¼MsV �X b½ �=V½X � and check whether the length

of the blocks is large enough for a correct estimation of the statistical

uncertainty, e.g., Ms > 100 Tc. If Ms is not much greater than Tc, then

the statistical uncertainty σ �X½ � and the autocorrelation time Tc will be

underestimated.

In the Appendix, we further explain how to estimate the statistical uncer-

tainty of nonlinear functions of expectation values, which often occur in

practice.

1.3 Calculation Cost
The calculation cost required to reach a given statistical uncertainty σ �X½ � is

t¼ tsM ¼ ts
TcV½X �
σ �X½ �2 (14)

where ts is the calculation time per iteration. The 1=σ �X½ �2 dependence

implies that decreasing the statistical uncertainty by a factor of 10 requires

to increase the computational time by a factor of 100. This quadratic
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dependence directly stems from the central limit theorem and seems

unavoidable.c However, one can play with the three other parameters:

• Tc depends on the sampling algorithm and on the random variable X.

For efficient algorithms such as Umrigar’s one,3,15 the autocorrelation

time of the local energy is close to 1 and little further improvement seems

possible;

• ts is usually dominated by the cost of evaluating X. For the local energy,

the evaluation cost depends on the form of the wave function;

• V[X] depends on the choice of the random variable X with its associated

probability distribution, the only constraint being that the expected

value E[X] must equal the expectation value of the observable (other-

wise, this is a biased estimator). The choice of a good probability distri-

bution is usually called importance sampling. Even for a fixed probability

distribution, it is possible to use various estimators for X, some of which

have smaller variance than others, since one has the freedom to add any

quantity with zero expectation value. This has been exploited to con-

struct improved estimators for diverse observables.16–20 There is often

a compromise to be found between a low computation time per iteration

ts and a low variance V[X].

1.4 Sampling Technique

The probability density, ρðRÞ¼ΨðRÞ2=R dRΨðRÞ2, is generally compli-

cated and cannot be sampled by direct methods such as the transformation

method or the rejection method. Instead, the Metropolis–Hastings (or gen-

eralized Metropolis) algorithm, which can be used to sample any known

probability density, is used. It employs a stochastic process, more specifically,

a Markov chain.

1.4.1 Stochastic Process
A stochastic process represents the evolution—say in “time”—of a random var-

iable. It is described by a trajectory of successive points R1, R2,…,RM with

an associated probability distribution P(RM,…,R2,R1). The idea of evolu-

tion in time can be made more explicit by decomposing the probability of

the whole trajectory into products of the conditional probability of having

c Quasi Monte Carlo methods 14 can in some cases achieve a convergence rate of Oð lnðMÞ=MÞ rather
than Oð1= ffiffiffiffiffi

M
p Þ. However, they have not been used for QMC applications, in part because in QMC

the sampled distributions, for systems with more than a few electrons, are very highly peaked.
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a particular point knowing that all the previous points have already been

realized. For example, for M ¼ 3, the probability of the trajectory is

PðR3,R2,R1Þ¼PðR3jR2,R1ÞPðR2jR1ÞPðR1Þ: (15)

1.4.2 Markov Chain
A Markov chain is a stochastic process for which the conditional probability

for the transition to a new pointRk depends only on the previous pointRk�1

PðRkjRk�1,…,R1Þ¼PðRkjRk�1Þ, (16)

i.e., the process “forgets” the way it arrived at pointRk�1. The probability of

a trajectory can thus be simply written as, e.g., for M ¼ 3,

PðR3,R2,R1Þ¼PðR3jR2ÞPðR2jR1ÞPðR1Þ, (17)

and P(RfjRi) is called the transition probability from point Ri to point Rf.

Note that, in general, the transition probability can depend on time (mea-

sured by the index k). We will consider here only the case of a stationary

Markov chain for which the transition probability is time independent.

In the following, we will use notation corresponding to the case of states

Rk in a continuous space (“integrals” instead of “sums”), but we will ignore

the possibly subtle mathematical differences between the continuous and

discrete cases, and we will often use the vocabulary of the discrete case

(e.g., “matrix”). The transition probability matrix, P, is a stochastic matrix,

i.e., it has the following two properties:

PðRf jRiÞ� 0 ðnonnegativityÞ, (18a)Z
dRf PðRf jRiÞ¼ 1 ðcolumn normalizationÞ: (18b)

The second property expresses the fact that the probability that a pointRi

is somewhere at the next step must be 1. The eigenvalues of a stochastic

matrix are between 0 and 1, and there is at least one eigenvalue equal

to 1. The latter property is a consequence of the fact that, for a column-

normalized matrix, the vector with all components equal to one is a left

eigenvector with eigenvalue 1. The target probability distribution ρ(R) is

sampled by constructing a Markov chain converging to ρ(R). A necessary

condition is that the distribution ρ(R) is a (right) eigenvector of P(RfjRi)

with the eigenvalue 1
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Z
dRi PðRf jRiÞρðRiÞ¼ ρðRf Þ¼

Z
dRi PðRijRf ÞρðRf Þ 8Rf , (19)

where the second equality simply comes from the normalization condition

(18b). Equation (19) is a stationarity condition for ρ(R). It means that if we start

from the target distribution ρ(R), then we will continue to sample the same

distribution by applying the Markov chain. However, we need more than

that. We want that any initial distribution ρini(R), e.g., a delta function at

some initial point, evolves to the target stationary distribution ρ(R) by

repeated applications of the transition matrix

lim
M!1

Z
dR1 P

MðRjR1ÞρiniðR1Þ¼

lim
M!1

Z
dR1dR2…dRM PðRjRMÞPðRM jRM�1Þ…PðR2jR1ÞρiniðR1Þ
¼ ρðRÞ,

(20)

i.e., ρ(R) must be the dominant eigenvector of P (the unique eigenvector of

largest eigenvalue). If the stationarity condition (19) is satisfied, then this will

always be the case except if P has several eigenvectors with eigenvalue 1.

One can show that the matrix P has only one eigenvector of eigenvalue

1 if P is a primitive matrix, i.e., if there is an integer n � 1 such that

all the elements of the matrix Pn are strictly positive, Pn(RkjRl)> 0, 8Rk,Rl.

This means that it must be possible to move between any pair of states Rk

andRl in n steps. This ensures that all states can be visited, and that the Mar-

kov chain converges to the unique stationary distribution ρ(R). TheMarkov

chain is then said to be ergodic.

In practice, instead of imposing the stationarity condition (19), the

Markov matrix is constructed by imposing the more stringent detailed balance

condition,

PðRf jRiÞρðRiÞ¼PðRijRf ÞρðRf Þ, (21)

which forces the probability flux between the two statesRi andRf to be the

same in both directions. This is a sufficient (but not necessary) condition for

ρ(R) to be the stationary distribution. A Markov chain satisfying condition

(21) is said to be reversible.

In practice, a Markov chain is realized by a random walk. Starting from an

initial point R1 (or walker)—i.e., a delta-function distribution δ(R �R1)—

sample the second point R2 by drawing from the probability distribution
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P(R2jR1), then a third pointR3 by drawing from P(R3jR2), and so on. After

disregarding a certain number of iterationsMeq corresponding to a transient

phase called equilibration, the randomwalk samples the stationary distribution

ρ(R) in the sense that ρðRÞ¼E½δðR�RkÞ� � ð1=MÞPM
k¼1δðR�RkÞ and

the averages of the estimators of the observables of interest are calculated.

The rate of convergence to the stationary distribution ρ(R) and the autocor-

relation times of the observables are determined by the second largest eigen-

value of the matrix P (see, e.g., Ref. 21). The random walk must be

sufficiently long so as to obtain a representative sample of the states, making

a nonnegligible contribution to the expected values. If the transitions

between states belonging to two contributing regions of the space of states

are too improbable, as may happen for example for dissociated atoms, then

there is a risk that the random walk remains stuck in a region of space and

seems converged, even though the true stationary distribution is not yet

reached. To avoid this problem, smart choices for the transition matrix

can be crucial in various applications of Monte Carlo methods.22,23

1.4.3 Metropolis–Hastings Algorithm
In theMetropolis–Hastings algorithm,12,13 one realizes aMarkov chain with

the following random walk. Starting from a point Ri, a new point Rf is

determined in two steps:

1. a temporary point R0
f is proposed with the probability PpropðR0

f jRiÞ,
2. the point R0

f is accepted (i.e., Rf ¼R0
f ) with probability PaccðR0

f jRiÞ or
rejected (i.e., Rf ¼Ri) with probability PrejðR0

f jRiÞ¼ 1�PaccðR0
f jRiÞ.

The corresponding transition probability can be written as

PðRf jRiÞ¼
PaccðRf jRiÞPpropðRf jRiÞ if Rf 6¼Ri

1�
Z

dR0
f PaccðR0

f jRiÞPpropðR0
f jRiÞ if Rf ¼Ri

8<
: (22)

or, in a single expression,

PðRf jRiÞ¼PaccðRf jRiÞPpropðRf jRiÞ
+ 1�

Z
dR0

f PaccðR0
f jRiÞPpropðR0

f jRiÞ
� �

�δðRi�Rf Þ:
(23)

The proposal probability Pprop(RfjRi) is a stochastic matrix, i.e., Pprop(RfjRi)

� 0 and
R
dRfPpropðRf jRiÞ¼ 1, ensuring that P(RfjRi) fulfills the non-

negativity condition (18a). The second term in Eq. (23) with the delta
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function ensures that P(RfjRi) fulfills the normalization condition (18b).

The acceptance probability is chosen so as to fulfill the detailed balance con-

dition (21), for Rf 6¼Ri,

PaccðRf jRiÞ
PaccðRijRf Þ¼

PpropðRijRf ÞρðRf Þ
PpropðRf jRiÞρðRiÞ : (24)

Several choices are possible. The choice of Metropolis et al.12 maximizes the

acceptance probability

PaccðRf jRiÞ¼ min 1,
PpropðRijRf ÞρðRf Þ
PpropðRf jRiÞρðRiÞ

� �
: (25)

The acceptance probability is not a stochastic matrix, even though both the

proposal and the total Markov matrices are stochastic. Since only the ratio

ρ(Rf)/ρ(Ri) is involved in Eq. (25), it is not necessary to calculate the nor-

malization constant of the probability density ρ(R). It is clear that the accep-

tance probability of Eq. (25) is optimal, but there is considerable scope for

ingenuity in choosing a proposal probability Pprop(RfjRi) that leads to a small

autocorrelation time.

1.4.4 Choice of the Proposal Probability
The original paper of Metropolis et al.12 employed a symmetric proposal

matrix, in which case the proposal matrix drops out of the formula for

the acceptance. The advantage of having a nonsymmetric proposal matrix

was pointed out by Hastings.13 One has a lot of freedom in the choice of

the proposal probability Pprop(RfjRi). The only constraints are that

Pprop(RfjRi) must be a stochastic matrix leading to an ergodic Markov chain

and that it must be possible to efficiently sample Pprop(RfjRi) with a direct

sampling method. The proposal probability determines the average size of

the proposedmovesRi!Rf and the average acceptance rate of these moves.

In order to reduce sequential correlation, one has to make moves as large as

possible but with a high acceptance rate. In practice, for a given form of the

proposal matrix, there is a compromise to be found between the average size

of the proposed moves and the average acceptance rate.

The simplest choice for Pprop(RfjRi) is a distribution that is uniform

inside a small cube Ω(Ri) centered in Ri and of side length Δ and zero

outside
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PpropðRf jRiÞ¼
1

Δ3N
if Rf 2ΩðRiÞ

0 elsewhere:

8<
: (26)

In practice, a move according to Eq. (26) is proposed,

Rf ¼Ri +
Δ
2
χ, (27)

where χ is a vector of 3N random numbers drawn from the uniform distri-

bution between � 1 and 1. The size of the cube Δ can be adjusted so as to

minimize the autocorrelation time of the local energy, but the latter remains

large and the sampling is inefficient.

Clever choices use information from the distribution ρ(R), in particular

its local gradient, to guide the sampling. A choice for Pprop(RfjRi) which

would lead to large moves with an acceptance probability equal to 1 would

be Pprop(RfjRi)¼ ρ(Rf), independently fromRi, but we would then be back

to the initial problem of sampling a complicated distribution ρ(R). A good

choice for Pprop(RfjRi) is the Green function of the Fokker–Planck equation
in the short-time approximation

PpropðRf jRiÞ¼ 1

2πτð Þ3N=2
e�

Rf�Ri�vðRiÞτð Þ2
2τ , (28)

where v(R) ¼ rΨ(R)/Ψ(R) is called the drift velocity of the wave function

and τ is the time step which can be adjusted so as to minimize the autocor-

relation time of the local energy. In practice, a move according to Eq. (28) is

proposed

Rf ¼Ri + vðRiÞτ+ η, (29)

where η is a vector of 3N random numbers drawn from the Gaussian distri-

bution of average 0 and standard deviation
ffiffiffi
τ

p
. The term η describes an iso-

tropic Gaussian diffusion process (or Wiener process). The term v(Ri)τ is a
drift term which moves the random walk in the direction of increasing

jΨ(R)j.
The optimal size of the move is smaller in regions where v(R) is changing

rapidly. For example, v(R) has a discontinuity at the nuclear positions.

Hence, it is more efficient to make smaller moves for electrons in the core

than for electrons in the valence regions. In doing this, care must be taken to

ensure the detailed balance condition. An elegant solution is provided in the

296 Julien Toulouse et al.

Author's personal copy



VMC algorithm of Refs. 3,15 where the electron moves are made in spher-

ical coordinates centered on the nearest nucleus and the size of radial moves

is proportional to the distance to the nearest nucleus. In addition, the size of

the angular moves gets larger as one approaches a nucleus. This algorithm

allows one to achieve, in many cases, an autocorrelation time of the local

energy close to 1.

1.4.5 Expectation Values
The expectation value of an operator Ô can be computed by averaging the

corresponding local value OðRf Þ¼ hRf jÔjΨi=ΨðRf Þ at the Monte Carlo

points Rf after the accept/reject step. A somewhat smaller statistical error

can be achieved by instead averaging

PaccðRf jRiÞ OðRf Þ+ ð1�PaccðRf jRiÞÞ OðRiÞ, (30)

regardless of whether the proposed move is accepted or rejected.

1.4.6 Moving the Electrons All At Once or One by One?
So far we have assumed that, for a many-electron system, all the electrons are

moved and then this move is accepted or rejected in a single step. In fact, it is

also possible to move the electrons one by one, i.e., move the first electron,

accept or reject this move, then move the second electron, accept or reject

this move, and so on. In this case, the transition probability for N electrons

can be formally decomposed as

PðRf jRiÞ¼ Pðr1, f r2, f…rN, f jr1, f r2, f…rN, iÞ
�⋯�Pðr1, f r2, f…rN, ijr1, f r2,i…rN, iÞ
�Pðr1, f r2,i…rN, ijr1,ir2,i…rN, iÞ,

(31)

where each one-electron transition probability (knowing that the other

electrons are fixed) is made of a proposal probability and an acceptance prob-

ability just as before. If each one-electron transition probability satisfies the

stationary condition (19), then the global transition probability satisfies it

as well.

Moving theN electrons one by one requires more calculation time than

moving the electrons all at once, since the wave function must be

recalculated after each move to calculate the acceptance probability. The

calculation time does not increase by a factor of N as one may naively think

but typically by a factor of 2 if the value of the wave function is recalculated

in a clever way after an one-electron move. For example, for Slater
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determinants, one can use the matrix determinant lemma in conjunction

with the Sherman–Morrison formula (see, e.g., Ref. 24) to efficiently

recalculate the values of the determinants when only one row or column

has been changed. In spite of the increase in the calculation time, it has been

repeatedly shown in the literature (see, e.g., Refs. 10,15,25,26) that, for sys-

tems with many electrons, moving the electrons one by one leads to a more

efficient algorithm: larger moves can be made for the same average accep-

tance, so the points Rk are less sequentially correlated and the autocorrela-

tion time of the local energy is smaller (by a factor larger than the one

necessary for compensating the increase of the calculation time per

iteration).

2. DIFFUSION MONTE CARLO

2.1 Basic Idea
While the VMCmethod is limited by the use of an approximate wave func-

tionΨ, the idea of the DMCmethod 5,27–30 is to sample from the exact wave

function Ψ0 of the ground state of the system. If we have this exact wave

function Ψ0, then the associated exact energy E0 can be obtained from

the mixed expectation value using the trial wave function Ψ,

E0¼hΨ0jĤjΨi
hΨ0jΨi ¼

Z
dRΨ0ðRÞΨðRÞELðRÞZ

dRΨ0ðRÞΨðRÞ
, (32)

since Ψ0 is an eigenfunction of the Hamiltonian Ĥ . The advantage of the

mixed expectation value (32) is that it does not require calculating the action

of Ĥ on Ψ0. The integral in Eq. (32) involves the local energy of the trial

wave function, EL(R) ¼ (HΨ(R))/Ψ(R), and can be estimated in a similar

way as in VMC by calculating the average of EL(R) on a sample of pointsRk

representing the mixed distribution Ψ0ðRÞΨðRÞ=R dRΨ0ðRÞΨðRÞ.
But how to access to the exact wave function Ψ0? Let us consider the

action of the imaginary-time evolution operator (t !�it) on an arbitrary wave

function such as the trial wave function Ψ

jΨðtÞi¼ e�ðĤ�ETÞtjΨi, (33)

where ET is for now an undetermined trial energy. Using the spectral

decomposition of the evolution operator (written with the eigenstates Ψi
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and the eigenenergies Ei of Ĥ), we see that the limit of an infinite propaga-

tion time is dominated by the stateΨ0 with the lowest energy having a non-

zero overlap with Ψ

lim
t!1jΨðtÞi¼ lim

t!1

X
i

e�ðEi�ETÞtjΨiihΨijΨi¼ lim
t!1e�ðE0�ETÞtjΨ0ihΨ0jΨi,

(34)

since all the other states of energies Ei > E0 decay exponentially faster. The

exponential e�ðE0�ETÞt can be eliminated by adjusting ET to E0, and we then

obtain that Ψ(t) becomes proportional to Ψ0

lim
t!1jΨðtÞi∝jΨ0i: (35)

In position representation, Eq. (33) is written as

ΨðRf , tÞ¼
Z

dRi GðRf jRi;tÞΨðRiÞ, (36)

where GðRf jRi;tÞ¼ hRf je�ðĤ�ETÞtjRii is called the Green function (or the

imaginary-time propagator from Ri to Rf). Multiplying and dividing by

Ψ(Rf) and Ψ(Ri), we obtain the evolution equation of the mixed distribu-

tion f(R,t) ¼ Ψ(R,t)Ψ(R)

f ðRf , tÞ¼
Z

dRi G
� ðRf jRi;tÞΨðRiÞ2, (37)

where G
� ðRf jRi;tÞ is the importance-sampling Green function,

G
� ðRf jRi;tÞ¼ΨðRf ÞGðRf jRi;tÞ 1

ΨðRiÞ , (38)

i.e.,G
� ðRf jRi;tÞ isG(RfjRi;t) similarity-transformed by the diagonal matrix

that has the values of Ψ along the diagonal. In the limit of infinite time, the

mixed distribution becomes proportional to the target stationary distribu-

tion: f ðRÞ¼ lim t!1f ðR, tÞ∝Ψ0ðRÞΨðRÞ.
In practice, an analytical expression of the Green function is known only

in the limit of a short propagation time,G
� ðRf jRi;τÞ, where τ is a small time

step, and one must thus iterate to obtain the stationary distribution
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f ðRÞ¼ lim
M!1

Z
dR1dR2…dRM G

� ðRjRM ;τÞG
� ðRM jRM�1;τÞ

…G
� ðR2jR1;τÞΨðR1Þ2:

(39)

A short-time approximation to the Green function is obtained by applying

the Trotter–Suzuki formula, e� T̂ + V̂ð Þτ ¼ e�V̂ τ=2e�T̂ τe�V̂ τ=2 +Oðτ3Þ,
where T̂ and V̂ are the kinetic and potential energy operators. In position

representation, this approximation leads to the following expression

GðRf jRi;τÞ� 1

2πτð Þ3N=2
e�

Rf�Rið Þ2
2τ e�

V ðRf Þ+V ðRiÞ
2

�ET

� �
τ, (40)

whereV (R) is the potential energy. Similarly, assuming for now that the trial

wave function is of the same sign inRi andRf, i.e.,Ψ(Rf)/Ψ(Ri)> 0, a short-

time approximation to the importance-sampling Green function is 5,31

G
� ðRf jRi;τÞ� 1

2πτð Þ3N=2
e�

Rf�Ri�vðRiÞτð Þ2
2τ e�

ELðRf Þ+ELðRiÞ
2

�ET

� �
τ, (41)

where the drift velocity v(R) ¼ rΨ(R)/Ψ(R) and the local energy EL(R)

were assumed constant between Ri and Rf. This short-time approximation

implies a finite time-step error in the calculation of all observables, which should

in principle be eliminated by extrapolating the results to τ ¼ 0 (see Refs.

32–34 for proofs that the time-step error vanishes in the τ ! 0 limit).

2.2 Stochastic Realization
The stochastic realization of Eq. (39) is less trivial than for VMC. The Green

functionG
� ðRf jRi;τÞ is generally not a stochastic matrix, since it does not con-

serve the normalization of the probability density:
R
dRf G

� ðRf jRi;τÞ 6¼ 1.

We can nevertheless write the elements of G
�

as the product of the

corresponding elements of a stochastic matrix P and a weight matrix W,

G
� ðRf jRi;τÞ¼PðRf jRiÞW ðRf jRiÞ, (42)

where, in the short-time approximation, PðRf jRiÞ¼ 2πτð Þ�3N=2

e� Rf�Ri�vðRiÞτð Þ2=2τ and W ðRf jRiÞ¼ e� ðELðRf Þ+ELðRiÞÞ=2�ETð Þτ. Note that

G
�
reduces to a stochastic matrix in the limit Ψ !Ψ0. The stochastic reali-

zation is then a weighted random walk. Start from a walker at an initial
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position R1 with a weight w1 ¼ 1, i.e., a distribution w1δ(R �R1). Sample

the position R2 of the walker at the next iteration from the probability

distribution P(R2jR1) [according to Eq. (29)] and give it weight w2 ¼
W(R2jR1)� w1, sample the third positionR3 from the probability distribu-

tion P(R3jR2) and give it weight w3 ¼W(R3jR2) � w2, and so on. After an

equilibration phase, the random walk should sample the stationary distribu-

tion f ðRÞ∝E½wkδðR�RkÞ� � ð1=MÞPM
k¼1wkδðR�RkÞ. In reality, this

procedure is terribly inefficient. Because the weights wk are products of a

large number of random variables, they can become very large at some iter-

ations and very small at other iterations. Consequently, the averages are

dominated by a few points with large weights, even though the calculation

of any point of the Markov chain takes the same computational time regard-

less of its weight. This problem can be alleviated by keeping the product of

the weights for only a finite number n of consecutive iterations 35

wk¼
Yk

l¼k�n+1

W ðRljRl�1Þ: (43)

However, using a finite n introduces a bias in the sampled stationary distri-

bution. In practice, for an n large enough to have a reasonably small bias, this

procedure still remains inefficient.

The solution is to use at each iteration k a population ofMkwalkers, with

positionsRk,α and weights wk,α (where α¼ 1,2,…,Mk), performing random

walks with a branching or birth–death process designed to make the weights wk,α

vary in only a small range from walker to walker in a given iteration, and

from iteration to iteration, while still sampling the correct distribution

f ðRÞ∝E½PMk

α¼1wk,αδðR�Rk,αÞ� � ð1=MÞPM

k¼1

PMk

α¼1wk,αδðR�Rk,αÞ.
Various unbiased variants are possible, characterized by a population sizeMk

that either varies or is constant from iteration to iteration, and by weights

wk,α that can either be equal or different for each walker.

The simplest variant uses a varying population size Mk and weights all

equal to one, wk,α ¼ 1. At each iteration k, each walker α is replaced by

mk,α unit-weight copies of itself, where mk,α is an integer equal on average

to what should be the current weightWk,α¼W(Rk,αjRk�1,α). For example,

if the walker α should have the weightWk,α¼ 2.7 at iteration k, this walker is

replaced bymk,α¼ 3 copies of itself with a probability 0.7 or replaced bymk,α

¼ 2 copies of itself with a probability 0.3. More generally, mk,α ¼ bWk,αc +
1with probabilityWk,α�bWk,αc andmk,α¼ bWk,αc otherwise, where bWk,αc
is the nearest integer smaller thanWk,α. Ifmk,α¼ 0, the walker is terminated.
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This procedure does not change the sampled stationary distribution.d This

variant has the disadvantage that the integerization of the weights results in

unnecessary duplications of walkers, leading to more correlated walkers and

thus to a smaller number of statistically independent points in the sample.

Another disadvantage is that it leads to unnecessary fluctuations in the sum

of theweights, a quantity that is relevant for computing the growth estimator

of the energy.

A better solution is the split–join algorithm 6 which limits the duplication

of walkers by keeping residual noninteger weights wk,α. At each iteration k,

after updating the weights according to wk,α ¼ W(Rk,αjRk�1,α) � wk�1,α,

each walker α with a weight wk,α > 2 is split into bwk,αc walkers, each being

attributed the weight wk,α/bwk,αc. If walkers α and β each have weight

< 1/2, keep walker α with probability wk,α/(wk,α + wk,β) and walker β
otherwise. In either case, the surviving walker gets weight, wk,α + wk,β. This

algorithm has the advantage that it conserves the total weight of the popu-

lation of walkers Wk¼
PMk

α¼1wk,α for a given iteration. Yet another possi-

bility is the stochastic reconfiguration algorithm,36,37 which uses a fixed

population size Mk, and walkers of equal noninteger weights within each

iteration, though the weights of the walkers fluctuate from one iteration

to the next.

To avoid the explosion or extinction of the population of walkers (or

their weights if Mk is kept fixed), the value of ET can be adjusted during

the iterations. For example, a choice for ET at iteration k + 1 is

ETðk+1Þ¼Eest
0 ðkÞ�C logðWk=W0Þ where Eest

0 ðkÞ is an estimate of E0 at

iteration k, C is a constant, Wk is the total weight of the population of

walkers, and W0 is the target total weight. Because of fluctuations, ET thus

slightly varies with respect to E0 during the iterations, which introduces a

systematic bias on the weights and thus on the stationary distribution

f(R). The adjustment of ET makes f(R) too small in regions where EL(R)

< E0 and too large in regions where EL(R) > E0. Both of these have the

effect of raising the energy. This is called population-control error. This error

is generally small and decreases with increasing number of walkers as

1/Mk.
6 Besides, it is possible to eliminate almost completely this error by

undoing the modification of weights introduced by the variation of ET

for the last several iterations.6,38

d One can write: E
XMk

α¼1
Wk,αδðR�Rk,αÞ

h i
¼E

XMk

α¼1
mk,αδðR�Rk,αÞ

h i
¼E

XMk+1

α¼1
δðR�Rk+1,αÞ

h i
,

whereRk+1,α are the positions of theMk+1 ¼
PMk

α¼1mk,α walkers used for the next iteration k+ 1 obtained

after making mk,α copies of the αth walker.
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In the limit of an infinitesimal time step, the transition matrix P(RfjRi)

has a stationary distribution Ψ(R)2, and the weight termW(RfjRi) converts

this distribution into the mixed distribution Ψ0(R)Ψ(R). One can get rid of

the finite time-step error in the transition matrix P(RfjRi) by introducing an

accept/reject step as in the Metropolis–Hastings algorithm.5 For this, the

transition matrix is redefined as P(RfjRi) ¼ Pacc(RfjRi)Pprop(RfjRi), for

Ri 6¼Rf, with the proposal probability

PpropðRf jRiÞ¼ 1

2πτð Þ3N=2
e
� Rf�Ri�vðRiÞτð Þ2

2τ , (44)

and the acceptance probability

PaccðRf jRiÞ¼ min 1,
PpropðRijRf ÞΨðRf Þ2
PpropðRf jRiÞΨðRiÞ2

( )
: (45)

With this modification, P(RfjRi) has the stationary distribution Ψ(R)2 even

for a finite time step. Of course, the finite time-step error persists in the term

W(RfjRi). Since certain moves are rejected, P(RfjRi) corresponds now to a

process of diffusion with drift with an effective time step τeff < τ. This effec-
tive time step can be estimated during the calculation from the average

acceptance rate, and it is consistent to use it in the term W(RfjRi) in place

of τ. In practice, just as in VMC, it is also more efficient in DMC tomove the

electrons one by one, i.e., to decompose P(RfjRi) according to Eq. (31). We

then arrive at a DMC algorithm very similar to the VMC algorithm, with

weights in addition. Note, however, that since a relatively small time step

must be used in DMC, the average moves are smaller than in VMC and

the autocorrelation time of the local energy is larger than in VMC.

The energy is calculated as the average of the local energy over the dis-

tribution f ðRÞ=R dRf ðRÞ. For M iterations (after the equilibration phase)

and Mk walkers, we have

E0� �EL ¼
PM

k¼1

PMk

α¼1wk,αELðRk,αÞPM
k¼1

PMk

α¼1wk,α
: (46)

Just as in VMC, there is a zero-variance principle on the energy in DMC. In

the limit that the trial wave functionΨ is an exact eigenfunction of the Ham-

iltonian, EL is independent of R, the weights reduce to 1, and the variance

on �EL vanishes.
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Note that for an observable Ô that does not commute with the

Hamiltonian, the average �OL over the mixed DMC distribution is an esti-

mator of hΨ0jÔjΨi=hΨ0jΨi which is only an approximation to the exact

expectation value hΨ0jÔjΨ0i=hΨ0jΨ0i with an OðjjΨ�Ψ0jjÞ error. Since
the average �OL over the VMC distribution also has an error that is linear in

jjΨ�Ψ0jj but with a prefactor that is twice as large, an OðjjΨ�Ψ0jj2Þ
approximation is provided by twice the average of OL over the mixed

DMC distribution minus the average of OL over the VMC distribution.39

For a recent survey of exact methods for sampling the pure distribution

Ψ2
0, see Ref. 40, and for a discussion of the techniques used for calculating

pure expectation values of various classes of operators, see Ref. 2.

2.3 Fermionic Sign Problem
In Eq. (41), we have assumed that the trial wave function Ψ(R) is always of

the same sign, i.e., it does not have any nodes (pointsR such thatΨ(R)¼ 0).

This is the case for the ground-state wave function of a Bosonic system, and

for a few simple electronic systems (two electrons in a spin-singlet state, such

as the ground state of the He atom or of the H2 molecule). In this case, the

algorithm presented above allows one to obtain the exact energy of the sys-

tem, after elimination of the finite time-step error and the population-

control error. If the wave function of the Fermionic ground state has nodes,

then there is always at least one Bosonic state of lower energy, and the true

ground state of the Hamiltonian is a Bosonic state for which the wave func-

tionΨB(R) can be chosen strictly positive. If one applied the Green function

exactly, starting from the distribution Ψ(R)2 the distribution would cor-

rectly converge toΨ0(R)Ψ(R) since the trial wave function is antisymmetric

(with respect to the exchange of two electrons) and has a zero overlap with

all the Bosonic states which are symmetric. However, in reality one applies

the Green function using a finite sampling in position space which does not

allow one to impose the antisymmetry. Starting from an antisymmetric wave

function Ψ, a small component of ΨB can thus appear, and it grows and

eventually dominates. The distribution tends to ΨB(R)Ψ(R) and the energy

formula in Eq. (46) only gives 0/0 (the positive and negative weights cancel

out) with statistical noise. Even if one imposed antisymmetry and eliminated

the Bosonic states, e.g., by considering all electron permutations in each

walker, the problem persists because different paths between the same points

in this antisymmetrized space can contribute with opposite sign. Since

Ψ0 and �Ψ0 are equally good solutions of the Schr€odinger equation, the
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algorithm would sample each with approximately equal probability, leading

again to the cancellation of positive and negative weight contributions.

These are different manifestations of the infamous Fermionic sign problem.

2.4 Fixed-Node Approximation
To avoid the sign problem in DMC, the fixed-node approximation (FN) 28,29,41

is introduced. The idea is to force the convergence to a wave function approx-

imating the Fermionic ground state by fixing its nodes to be the same as those

of the trial wave function Ψ(R). Formally, one can define the FN Hamilto-

nian, ĤFN, by adding to the true Hamiltonian Ĥ infinite potential barriers at

the location of the nodes of Ψ(R).42 The ground-state wave function of this

Hamiltonian is called the FN wave function ΨFN and its energy is the FN

energy EFN,

ĤFNjΨFNi¼EFNjΨFNi: (47)

In the 3N-dimensional space of positions R, the nodes of Ψ(R) define

hypersurfaces of dimension 3N � 1. The position space is then partitioned

in nodal pockets of Ψ(R), delimited by nodal surfaces, in which the wave

function has a fixed sign. In each nodal pocket, the FN wave function is

the solution to the Schr€odinger equation satisfying vanishing boundary con-
ditions on the nodal surface. The FN Green function corresponding to the

Hamiltonian ĤFN is

GFNðRf jRi;tÞ¼ hRf je�ðĤFN�ETÞtjRii, (48)

and only permits moves Ri !Rf inside a nodal pocket. The importance-

sampling FN Green function,

G
�
FNðRf jRi;tÞ¼ΨðRf Þ GFNðRf jRi;tÞ 1

ΨðRiÞ , (49)

also confines the moves inside a nodal pocket, and it is thus always greater or

equal to zero. A short-time approximation to G
�
FNðRf jRi;tÞ is then again

given by Eq. (41). The stochastic algorithm previously described can thus

be applied directly. Thanks to the FN approximation, the weights always

remain positive, and the stationary mixed distribution f(R) is proportional

to ΨFN(R)Ψ(R).

The largest contributions to the finite time-step error come from singu-

larities of the drift velocity v(R) ¼ rΨ(R)/Ψ(R) and of the local energy

EL(R) in the Green function of Eq. (41). Since the gradient of the trial wave
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functionrΨ(R) (and of the exact wave function) does not generally vanish

at the location of the nodes, the drift velocity v(R) diverges at the nodes,

which leads to too large moves near the nodes for finite time steps. The drift

velocity has discontinuities also at particle coalescences (both electron–
nucleus and electron–electron). Similarly, for an approximate trial wave

function Ψ(R), the local energy EL(R) also diverges at the nodes and at par-

ticle coalescences (unless the Kato cusp conditions 43,44 are imposed). The

finite time-step error can be greatly reduced by replacing v(R) and EL(R) in

the Green function by approximate integrals of these quantities over the

time step τ.6

If importance sampling is not used, it is necessary to kill walkers that cross

the nodes of Ψ to impose the FN boundary condition. In practice, impor-

tance sampling is almost always used. In that case, it is better to reject the

moves of walkers crossing the nodes, which is consistent with the FN

approximation, but even this is not necessary since the number of walkers

that cross the node per unit time goes to zero as τ ! 0 (Ref. 6).e For a finite

time step, there are node crossing events, but these are just part of the finite

time-step error and in practice essentially the same time-step error is

obtained whether the walkers are allowed to cross nodes or not.

We may wonder whether the walkers have to sample all the nodal

pockets. The tiling theorem 45 establishes that all the nodal pockets of the

ground-state wave function of a many-electron Hamiltonian with a reason-

able local potential are equivalent, i.e., the permutations of any nodal

pocket are sufficient to cover the entire space. This means that, for

ground-state calculations, the distribution of the walkers over the nodal

pockets is irrelevant.

By applying the variational principle, it is easy to show that the FN

energy is an upper bound to the exact energy

EFN ¼hΨFNjĤFNjΨFNi
hΨFNjΨFNi ¼ hΨFNjĤjΨFNi

hΨFNjΨFNi �E0, (50)

the second equality coming from the fact that the infinite potential barriers in

ĤFN do not contribute to the expectation value since ΨFN is zero on the

e The drift velocity moves electrons away from the nodal surface, but for small τ the diffusion term dom-

inates and can cause walkers to cross nodes. The density of walkers goes quadratically to zero near nodes

and walkers that are roughly within a distance
ffiffiffi
τ

p
can cross. Hence, the number that cross per Monte

Carlo step goes as
R ffiffi

τ
p
0

x2dx� τ3=2, and so the number that cross per unit time goes to zero as
ffiffiffi
τ

p
.
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nodal surface. Since the wave function ΨFN is an eigenfunction of ĤFN, the

FN energy can also be expressed using the mixed expectation value

EFN ¼hΨFNjĤFNjΨi
hΨFNjΨi ¼ hΨFNjĤ jΨi

hΨFNjΨi , (51)

where the Hamiltonian ĤFN has been replaced by Ĥ for essentially the same

reason as before, viz., both Ψ and ΨFN are zero where ĤFN is infinite. In

practice, the FN energy is thus obtained by the same energy formula (46).

The accuracy of the DMC results with the FN approximation thus

depends on the quality of the nodal surface of the trial wave function.

For a trial wave function with a single Slater determinant, the error due

to the FN approximation can often be large, even for energy differences.

For example, for the C2molecule, the FN error for a single-determinant trial

wave function is 1.6 eV for the total energy and 0.8 eV for the dissociation

energy.46 In order to reduce this error, one can use several Slater determi-

nants and optimize the parameters of the wave function ( Jastrow parameters,

coefficients of determinants, coefficients that express the orbitals in terms of

the basis functions, and exponents of the basis functions) in VMC (see Refs.

46–53). This allows one to reach near chemical accuracy (� 1 kcal/mol) in

DMC for calculations of energy differences such as molecular atomization

energies.54
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APPENDIX. STATISTICAL ESTIMATOR OF NONLINEAR
FUNCTIONS OF EXPECTATION VALUES

We often need to estimate nonlinear functions of expectation values.

The simplest example is the variance,

V½X � ¼E½X2��E½X �2, (A.1)

which is a quadratic function of the expectation values of two random vari-

ables X2 and X. Another example is the calculation of the energy in DMC

using weights [see Eq. (46)], with simplified notation,
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E0¼E½wEL�
E½w� , (A.2)

involving a ratio of two expectation values.

Consider a nonlinear function, f(E[X],E[Y ]), of two expectation values,

E[X] and E[Y ]. The usual simple estimator of f(E[X],E[Y ]) is f ð �X , �Y Þwhere

�X ¼ 1

Mb

XMb

b¼1

�Xb, (A.3)

and

�Y ¼ 1

Mb

XMb

b¼1

�Y b, (A.4)

are averages over a finite number of blocksMb, and �Xb and �Y b are the block

averages of X and Y, respectively [see Eq. (6)]. As discussed before, each

block average is itself an average over a sufficiently large number of steps,

Ms, so that the block averages can be assumed to be independent of each

other. The simple estimator can be justified as follows. (i) When the law

of large numbers holds, �X and �Y converge, with increasingMb, almost surely

to E[X] and E[Y ], respectively. (ii) Hence, f ð �X , �Y Þ converges to f(E[X],E[Y ])

provided that f is continuous at the point (E[X],E[Y ]). However, because f is

nonlinear, f ð �X , �Y Þ has a systematic error, i.e., E½f ð �X , �Y Þ� 6¼ f ðE½X �,E½Y �Þ,
that vanishes only in the limit of infinite sample size, Mb!1. Though

not necessary, in the following, for the sake of simplicity, we assume that

f ð �X , �Y Þ has a finite expectation value and a finite variance.f

A.1 Systematic Error
Let us first consider the case of a nonlinear function f(x) of a single variable.

By definition, the systematic error of the estimator f ð �X Þ is

E½ f ð �X Þ�� f ðE½X �Þ. The systematic error can be evaluated using a

second-order Taylor expansion of the function f ð �X Þ around E[X] (assuming

that f is at least a C2 function in the neighborhood of E[X])

f E½ f ð �X , �Y Þ� can be undefined when f has a point at which it diverges, e.g., f(x,y)¼ x/y. In this case, this

definition of the systematic error does not have a strict meaning. In practice, this is not a problem for this

f provided that the absolute value of the expectation value ofY over a block is larger than a few times the

square root of its variance, say, jE½Yb �j> 5
ffiffiffiffiffiffiffiffiffiffiffiffi
V ½Yb �

p
.
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f ð �X Þ¼ f ðE½X �Þ+ df

dx

	 

ð �X �E½X �Þ+ 1

2

d2f

dx2

	 

ð �X �E½X�Þ2 +⋯ ,

(A.5)

where the derivatives of f are evaluated at E[X]. If we take the expectation

value of this expression, the linear term vanishes

E½ f ð �X Þ� ¼ f ðE½X �Þ+ 1

2

d2f

dx2

	 

E ð �X �E½X �Þ2� �

+⋯ : (A.6)

Assuming the random variable X has a finite variance and that the higher-

order terms can be neglected, the systematic error is thus

E½ f ð �X Þ�� f ðE½X �Þ ¼ 1

2

d2f

dx2

	 

V½ �X �+⋯ ¼ 1

2

d2f

dx2

	 

V½ �X b�
Mb

+⋯ :

(A.7)

Hence, the estimator f ð �X Þ has a systematic error with a leading term pro-

portional to 1/Mb. Note that if the hypotheses (especially the finite variance)

are not satisfied, the systematic error can decrease more slowly than 1/Mb.

Equation (A.7) can easily be generalized to a function of several variables.

For example, for two variables, the systematic error is

E½ f ð �X , �Y Þ�� f ðE½X �,E½Y �Þ ¼ 1

2

@2f

@x2

	 

V½ �X b�
Mb

+
1

2

@2f

@y2

	 

V½ �Y b�
Mb

+
@2f

@x@y

	 

Cov½ �X b, �Y b�

Mb

+⋯ ,

(A.8)

where the second-order derivatives are evaluated at (E[X],E[Y ]). The lead-

ing neglected term is O(1/Mb
2) if the third moments of X and Y are finite.

The second-order derivatives in Eq. (A.8) can in practice be evaluated

at ð �X , �Y Þ without changing the order of the approximation. Hence, an

estimator for f(E[X],E[Y ]) with an O(1/Mb
2) error is

f ðE½X�,E½Y �Þ � f ð �X , �Y Þ�1

2

@2f

@x2

	 

V½ �X b�
Mb

�1

2

@2f

@y2

	 

V½ �Y b�
Mb

� @2f

@x@y

	 

Cov½ �X b, �Y b�

Mb

+⋯ ,

(A.9)

where the second-order derivatives are evaluated at ð �X , �Y Þ.
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This approach is general and can be used to recover some well-known

unbiased estimators. For example, let us consider the covariance of two

random variables

Cov½X ,Y � ¼ E½XY ��E½X�E½Y � ¼ f ðE½XY �,E½X �,E½Y �Þ, (A.10)

for which f(x,y,z) ¼ x � yz. In this case, the generalization of Eq. (A.8)

to three variables with �X ¼ð1=MÞPM
i¼1 Xi and �Y ¼ð1=MÞPM

i¼1Yi

where Xi and Yi are M uncorrelated realizations of X and Y,

respectively, gives

E½ �XY � �X �Y ��Cov½X ,Y � ¼ �Cov½X ,Y �
M

, (A.11)

which leads to the usual unbiased estimator for the covariance

Cov½X ,Y � � M

M�1
�XY � �X �Yð Þ ¼ 1

M�1

XM
i¼1

Xi� �Xð Þ Yi� �Yð Þ:

(A.12)

A.2 Statistical Uncertainty
First consider a function of a single variable. The statistical uncertainty of

f ð �X Þ is given by σ½ f ð �X Þ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V½f ð �X Þ�p

where the variance of f ð �X Þ is

V½ f ð �X Þ� ¼E f ð �X Þ�E½ f ð �X Þ�ð Þ2
h i

. Subtracting Eq. (A.6) from Eq. (A.5)

gives

f ð �X Þ�E½ f ð �X Þ� ¼ df

dx

	 

ð �X �E½X �Þ+⋯ : (A.13)

Taking the square of this equation and the expectation value leads to the

leading term in the variance of f ð �X Þ

V½ f ð �X Þ� ¼ df

dx

	 
2

V½ �X �+⋯ : (A.14)

This equation can be generalized to a function of several variables. For

example, for two variables, the variance of f ð �X , �Y Þ is

V½ f ð �X , �Y Þ� ¼ @f

@x

	 
2

V½ �X �+ @f

@y

	 
2

V½ �Y �+2
@f

@x

	 

@f

@y

	 

Cov½ �X , �Y �+⋯ :

(A.15)
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Equation (A.15) can be used for estimating the variance of f ð �X , �Y Þ at the
cost of evaluating the variances V½ �X � and V½ �Y � and the covariance

Cov½ �X , �Y �. Note, however, that it can give a severe underestimate of the

error if @f/@x and @f/@y are small and Mb is not sufficiently large.

There is a simple alternative for estimating the variance of f that does not

suffer from this limitation and does not require calculating covariances.

Consider again the case of a single variable. Instead of defining the block

average of f in the obvious way, i.e., �f b¼ f ð �XbÞ, we define the block average
of f as

�f 1¼ f ð �X 1Þ for the first block b ¼ 1

�f b¼ bf ð �X ðbÞÞ�ðb�1Þf ð �X ðb�1ÞÞ for any block b� 2,
(A.16)

where �X ðbÞ is the running global average up to block b

�X ðbÞ¼ 1

b

Xb
b0¼1

�Xb0 : (A.17)

With this definition of the block average, it is easy to check that

f ð �X Þ¼ 1

Mb

XMb

b¼1

�f b, (A.18)

i.e., we have written f ð �X Þ as an average of random variables �f b. Provided

that the variance of X is finite, the block average fb introduced in

Eq. (A.16) can be expanded as

�f b¼ f ðE½X �Þ+ df

dx

	 

ð �Xb�E½X �Þ+⋯ : (A.19)

Assuming that f has a second-order Taylor expansion, the neglected term

converges to zero in probability for large b, at least as 1/(bMs). Therefore,

according to Eq. (A.19), for large b, the random variables �f b converge to

independent and equidistributed random variables (since the random vari-

ables �Xb are).
g Consequently, the variance of f ð �X Þ can be estimated with the

usual formula

g The naive definition of the block average as �f b ¼ f ð �XbÞwould also lead to Eq. (A.19) but the neglected
term would not converge to zero for large b.
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V½ f ð �X Þ� �V½ �f b�
Mb

� 1

Mb�1

1

Mb

XMb

b¼1

�f
2

b � f ð �X Þ2
 !

: (A.20)

This formula applies similarly for functions of several variables. The advan-

tage of Eq. (A.20) over Eq. (A.15) for estimating the variance is that it is

much simpler to implement and compute, especially for functions of many

variables. The estimation of the variance can be simply updated at each

block, just as for the expectation value.

REFERENCES
1. Hammond, B. L., Jr.; Lester, W. A.; Reynolds, P. J. Monte Carlo Methods in Ab Initio

Quantum Chemistry; World Scientific: Singapore, 1994.
2. Nightingale, M. P.; Umrigar, C. J. Monte Carlo Eigenvalue Methods in Quantum

Mechanics and Statistical Mechanics. In: Monte Carlo Methods in Chemical Physics;
Ferguson, D. M., Siepmann, J. I., Truhlar, D. G., Eds.; Advances in Chemical Physics,
105; Wiley: New York, 1998. Chapter 4.

3. Umrigar, C. J. Variational Monte Carlo Basics and Applications to Atoms and Mole-
cules. In: Quantum Monte Carlo Methods in Physics and Chemistry; Nightingale, M. P.,
Umrigar, C. J., Eds.; NATO ASI Ser. C, 525; Kluwer: Dordrecht, 1999; p 129.

4. Foulkes, W. M. C.; Mitas, L.; Needs, R. J.; Rajagopal, G. Quantum Monte Carlo Sim-
ulations of Solids. Rev. Mod. Phys. 2001, 73, 33.

5. Reynolds, P. J.; Ceperley, D. M.; Alder, B. J.; Lester, W. A. Fixed-Node Quantum
Monte Carlo for Molecules. J. Chem. Phys. 1982, 77, 5593.

6. Umrigar, C. J.; Nightingale, M. P.; Runge, K. J. A Diffusion Monte Carlo Algorithm
with Very Small Time-Step Errors. J. Chem. Phys. 1993, 99, 2865.

7. Austin, B. M.; Zubarev, D. Y.; Lester, W. A. Quantum Monte Carlo and Related
Approaches. Chem. Rev. 2012, 112, 263.
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