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A simple approximate expression in real and reciprocal spaces is given for the static exchange-correlation
kernel of a uniform electron gas interacting with the long-range part only of the Coulomb interaction. This
expression interpolates between the exact asymptotic behaviors of this kernel at small and large wave vectors
which in turn requires, among other things, information from the momentum distribution of the uniform
electron gas with the same interaction that have been calculated in the G0W0 approximation. This exchange-
correlation kernel as well as its complement analog associated to the short-range part of the Coulomb inter-
action are more local than the Coulombic exchange-correlation kernel and constitute potential ingredients in
approximations for recent adiabatic connection fluctuation-dissipation and/or density functional theory ap-
proaches of the electronic correlation problem based on a separate treatment of long- and short-range interac-
tion effects.
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I. INTRODUCTION

Density functional theory �DFT�1 applied within the
Kohn-Sham �KS�2 scheme is nowadays a widely used
method for electronic calculations in condensed-matter phys-
ics and quantum chemistry. The design of better approxima-
tions to the exchange-correlation energy functional, the cen-
tral quantity of the theory, constitutes an important topic of
research.

Following early ideas,3–5 the possibility of improving the
description of the exchange and/or correlation energy func-
tionals by treating separately its long- and short-range com-
ponents has recently gained growing interest.6–22 In this ap-
proach, the Coulomb electron-electron interaction is
decomposed as

1

r
= v��r� + v̄��r� , �1�

where v��r� is a long-range interaction, v̄��r� is the comple-
ment short-range interaction, and � is a parameter control-
ling the range of the separation. For example, a convenient
long-range interaction that has been often used is the so-
called erf interaction8–12,14–21,23

verf
� �r� =

erf��r�
r

, �2�

which vanishes for �=0 and reduces to the Coulomb inter-
action for �→�. The Coulombic exchange-correlation en-
ergy functional Exc,coul�n� can be in turn decomposed
as6–10,12,20,21

Exc,coul�n� = Exc,erf
� �n� + Ēxc,erf

� �n� , �3�

where Exc,erf
� �n� is the long-range component of exchange-

correlation energy, associated to the interaction verf
� �r�, and

Ēxc,erf
� �n� is the complement short-range part.

The long-range exchange-correlation energy, Exc,erf
� , can

be efficiently calculated by configuration interaction �CI�9,10

or multi-configurational self-consistent-field �MCSCF�24

methods enabling to handle near degeneracy in atoms and
molecules, and by second-order perturbation theory25 or
adiabatic connection fluctuation-dissipation �ACFD�13,26 ap-
proaches for describing van der Waals interactions. The

short-range exchange-correlation energy Ēxc,erf
� can be well

approximated by simple �semi�local density functional
approximations20,21 based a uniform electron gas model with
a modified electron-electron interaction8,27 �see also Ref. 28�.

Knowledge of the properties of the uniform electron gas
is always useful to gain more insight into the physics of
electronic correlation of inhomogeneous systems and ulti-
mately to construct better approximations. In particular, in
standard KS-DFT, the static exchange-correlation kernel of
the Coulombic uniform electron gas, fxc,coul, is of interest and
several accurate parametrizations are available �see, e.g.,
Refs. 29–31�. Indeed, fxc,coul has been recognized as a poten-
tial ingredient for density functional approximations �see,
e.g., Refs. 1, 2, and 32–37�. fxc,coul can also be used in prin-
ciple in ACFD approaches �see, e.g., Ref. 38 for an example
using a simplified kernel� or time-dependent density func-
tional theory �TDDFT� for density-density response calcula-
tions, although in these cases clear strategies to use fxc,coul
are still under investigation. As a matter of fact, the high
nonlocality of fxc,coul questions its transferability to inhomo-
geneous systems and limits its use.

In the framework of a long-range/short-range energy de-
composition in DFT, knowledge of the static exchange-
correlation kernel fxc,erf

� of a uniform electron gas with the
long-range erf interaction verf

� �r�, as well as its complement

analog f̄ xc,erf
� = fxc,coul− fxc,erf

� associated to the short-range part
of the Coulomb interaction, is also of interest. In particular,
fxc,erf

� can be used in approximations for the long-range
exchange-correlation energy Exc,erf

� within ACDF approaches

and f̄ xc,erf
� can be used to construct density functional ap-

proximations for the short-range exchange-correlation en-

ergy Ēxc,erf
� , following the same ideas as for the Coulombic
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functional Exc,coul. In comparison to fxc,coul, the nonlocality

character of fxc,erf
� and f̄ xc,erf

� tends to be attenuated by the
reduction of the interaction and the modified kernels may
thus be more transferable to inhomogeneous systems. In
principle, these kernels can also be useful in the context of
TDDFT.

The main purpose of this work is therefore the determi-
nation of the static exchange-correlation kernel of the uni-
form electron gas with the long-range erf interaction fxc,erf

� ,

the complement kernel f̄ xc,erf
� = fxc,coul− fxc,erf

� being directly
deducible from it. A simple approximation is constructed for
fxc,erf

� from its exact asymptotic behaviors which in turn re-
quire, among other things, information from the momentum
distribution associated to the modified interaction. Therefore,
the momentum distribution is preliminarily calculated by
many-body perturbation theory �MBPT�, in particular using
the GW approximation.39 All the calculations are also per-
formed with the Coulomb interaction which enables a check
by comparison to other available data. The production of
data of the same quality for fxc,coul and fxc,erf

� is also important

to construct the complement kernel f̄ xc,erf
� .

Let us describe now the system under consideration. The
uniform electron gas is described as N electrons in a box of
volume � with a uniform neutralizing background, studied
in the thermodynamic limit �i.e., N→� and �→� such that
the density n=N /� remains constant�. In second quantiza-
tion, its Hamiltonian writes

Ĥ = T̂ + V̂ , �4�

where T̂ is the kinetic energy operator

T̂ = �
k�

��k�ck�
† ck�, �5�

with ��k�=k2 /2, and V̂ is the electron-electron interaction

V̂ =
1

2�
�
q�0

�
k�

�
k���

v�q�ck+q�
† ck�−q��

† ck���ck�, �6�

where the constant term q=0 has been omitted since it can-
cels out with the electron-background and background-
background interactions. In Eq. �6�, v�q� is the Fourier trans-
form of an arbitrary electron-electron interaction. The
standard case corresponds to the Coulomb interaction

vcoul�q� =
4�

q2 , �7�

while for the long-range erf interaction the Fourier transform
writes

verf
� �q� =

4�

q2 e−q2/�4�2�. �8�

The paper is organized as follows. In Sec. II, we discuss
the calculation of the momentum distribution and associated
properties. In Sec. III, the static exchange-correlation kernel
is obtained by interpolation from its limiting behaviors. In
Sec. IV, as a basic example of the use of this kernel, the
long-range correlation energy of the uniform electron gas is

calculated. Section V summarizes and concludes this work.
Details of derivations and analytical parametrizations can be
found in Appendices A–D.

Unless otherwise stated, atomic units is assumed through-
out this work.

II. MOMENTUM DISTRIBUTION

Two of the most reliable calculations of the momentum
distribution of the Coulombic electron gas for a wide range
of densities are that of Takada and Yasuhara40 using the
effective-potential expansion method, and the quantum
Monte Carlo �QMC� calculation of Ortiz and Ballone.41

Here, we will consider the use of the more traditional meth-
ods of MBPT.

In MBPT, the momentum distribution n�k� is expressed as

n�k� = �
−�

+� d�

2�i
ei�0+

G�k,�� , �9�

where G�k ,�� is the one-particle Green function, calculated
in a given approximation. Daniel and Vosko42 have calcu-
lated the momentum distribution of the Coulombic electron
gas in the RPA. The fact that the RPA probably constitutes
the simplest MBPT approximation for the electron gas and
becomes exact in the high-density limit �rs→0 where
rs= �4�n /3�−1/3� makes it valuable for comparison to more
elaborate approximations. Later, additional exchange terms
have been included by Lam,43 but the improvement over the
RPA remains modest. More recently, more accurate MBPT
calculations of the momentum distribution of the Coulombic
electron gas have been reported using the GW
approximation39 at different self- consistency levels.44–47 In
its semi-self-consistent, GW0, or fully self-consistent, GW,
versions this method is known to be particle
conserving,45,48,49 i.e., fulfilling the exact condition

2� dk

�2��3n�k� = n , �10�

while the non-self-consistent G0W0 approximation is not.50

However, even in this case, the violation of Eq. �10� is nu-
merically small �2% at most for rs�10 according to our own
calculations�. Moreover, imposition of the self-consistency
does not necessarily improve the momentum distribution; in
particular the self-consistency increases the quasiparticle
renormalization factor at the Fermi surface ZF �Eq. �11��,45

which is suspected to already be too large at the G0W0 level
�see below�. We therefore choose to compute the momentum
distribution of the uniform electron gas with the modified erf
interaction in the G0W0 approximation �see Refs. 44, 46, and
51 for details�. For comparison purposes, calculations of the
momentum distribution in the RPA �see Refs. 42 and 51 for
details� have also been performed. The range of densities
explored goes from rs=0.1 to rs=10 and that of interaction
parameters from �=0.1 to �=30.

In order to assess the quality of the obtained momentum
distributions, we look especially at two quantities that char-
acterize well the effect of correlations on the momentum
distribution: the quasiparticle renormalization factor at the
Fermi surface,
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ZF = n�k → kF
+� − n�k → kF

−� , �11�

where kF= �3�2n�1/3 is the Fermi wave-vector, and the frac-
tion of electrons in the correlation tail �i.e., k	kF�


N

N
=

2

n
�

kF

� dk

�2��34�k2n�k� . �12�

We also compute some moments of the momentum distri-
bution: the second reduced moment �2 related to the kinetic
energy, and the fourth reduced moment �4. The dimension-
less quantity �2 is defined as

�2 =
�ÊK� − �ÊK�0

�ÊK�0

, �13�

where ÊK= �1/N��k���k�ck�
† ck� is the kinetic energy per par-

ticle operator, and �¯�0 and �¯� mean expectation values
between the non-interacting and interacting ground states,
respectively. Similarly, �4 is defined as

�4 =
�ÊK

2 � − �ÊK
2 �0

�ÊK
2 �0

, �14�

where ÊK
2 = �1/N��k���k�2ck�

† ck�. It is these moments that
appear in the asymptotic expansion of the static exchange-
correlation kernel �see Sec. III�.

We first present results for the Coulombic uniform elec-
tron gas and compare to available results in the literature in
order to assess the accuracy of the G0W0 approximation.

Figure 1 reports the momentum distribution ncoul�k� cal-
culated at the RPA and G0W0 levels for rs=5. The parametri-
zation of Gori-Giorgi and Ziesche �GZ�52 using accurate data
from Takada and Yasuhara40 and known theoretical con-
straints is also reported. One sees that the G0W0 calculation
greatly improves the RPA and is very close to the GZ param-
etrization, especially for the correlation tail.

The renormalization factor ZF,coul is plotted in Fig. 2.
ZF,coul given by the RPA is largely underestimated and even
negative at very low densities �rs	7�. As announced before,
G0W0 gives a renormalization factor slightly too large com-
pared to that of the GZ parametrization which uses the sup-

posedly more accurate data of Takada and Yasuhara40 for
ZF,coul.

The fraction of electrons in the correlation tail �
N /N�coul

is reported in Fig. 3. The RPA largely overestimates
�
N /N�coul. The G0W0 approximation gives �
N /N�coul that
is overall close to that given by the GZ parametrization,
slightly deviating for large rs �rs	8�. As an independent
check, we also report in Fig. 3 the fraction of electrons in the
correlation tail extracted from a coupled-cluster calculation
with double excitations �CCD�.53 In this calculation, the en-
ergy of a uniform electron with unoccupied non-interacting
levels shifted by a common gap is calculated and �
N /N�coul

is deduced as the derivative of the energy at zero gap accord-
ing to the Hellmann-Feynman theorem. The CCD calculation
is close to both the GZ and G0W0 results.

We now discuss results for the moments of the momen-
tum distribution.

Using the virial theorem, the reduced moment �2,coul for
the Coulomb interaction can be expressed exactly in terms of
the correlation energy of the uniform electron gas �see Ap-
pendix A�. This enables us to perform another test of the
accuracy of the G0W0 calculation. Figure 4 compares �2,coul
obtained with the virial theorem �Eq. �A5�� using the usual
Vosko-Wilk-Nusair �VWN� parametrization of the correla-
tion energy54 with the GZ parametrization, and with the RPA
and G0W0 calculations. The RPA calculation gives very poor

FIG. 1. The momentum distribution with the Coulomb interac-
tion for rs=5: GZ parametrization �Ref. 52� �solid curve�, RPA
�short-dashed curve�, and G0W0 �long-dashed curve� calculations.

FIG. 2. The renormalization factor with the Coulomb interac-
tion: GZ parametrization �Ref. 52� �solid curve�, RPA �short-dashed
curve�, and G0W0 �long-dashed curve� calculations.

FIG. 3. The fraction of electrons in the correlation tail of the
moment distribution with the Coulomb interaction: GZ parametri-
zation �Ref. 52� �solid curve�, RPA �short-dashed curve�, G0W0

�long-dashed curve�, and CCD �Ref. 53� �dotted curve� calculations.
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results for this quantity, especially for large rs. The GZ pa-
rametrization has been designed to reproduce the correct ki-
netic energy and consequently gives �2,coul identical to the
formula from the virial theorem. The G0W0 approximation
agrees well with this result for all rs.

Figure 5 shows the reduced moment �4,coul given by the
GZ parametrization and by the RPA and G0W0 calculations.
For comparison, a parametrization of �4,coul due to Farid,
Heine, Engel and Robertson �FHER� �Ref. 55� is also re-
ported. The G0W0 calculation agrees with the GZ parametri-
zation for rs�5 but deviates from above for larger values of
rs. The FHER parametrization is constantly below the GZ
result. These results reflect the fact that �4,coul is difficult to
compute accurately due to its important sensitivity to the
correlation tail of the momentum distribution. In comparison
to the RPA calculation, the G0W0 approximation, as well as
the GZ and FHER parametrizations, gives “reasonable esti-
mates” of �4,coul. For later use, �4,coul is given by the GZ
parametrization and by the RPA and G0W0 calculations are
fitted to analytical parametrizations in Appendix B.

Having assessed the precision of the G0W0 approximation
on the Coulombic electron gas, we now present the results
for the long-range erf interaction.

Figure 6 reports the momentum distribution nerf
� in the

RPA and G0W0 approximations for rs=5 and �=0.3. For

comparison with Fig. 1, the G0W0 calculation for the Cou-
lomb interaction is also shown. The reduction of the interac-
tion naturally brings the momentum distribution closer to the
non-interacting momentum distribution n0�k�=��kF−k�, even
if the modifications are small at the scale of the plot, espe-
cially for the correlation tail. Also, the difference between
RPA and G0W0 is reduced compared to the Coulombic case
at the same density.

The variation of the renormalization factor ZF,erf
� with the

interaction parameter � is reported in Fig. 7 for the RPA and
G0W0 approximation with rs=5. One sees that ZF,erf

� is very
sensitive with respect to � near �=0. Thus, even a very
small interaction introduces significant incoherence into the
evolution of an electron in the system.

The fraction of electrons in the correlation tail �
N /N�erf
�

is plotted in Fig. 8 for the RPA and G0W0 calculations. A
CCD calculation similar to that of Ref. 53 but with the erf
interaction is also reported. As for the Coulomb case, the
G0W0 and CCD agree well in all the range of �.

The reduced moment �2,erf
� associated with the long-range

erf interaction can also be expressed in terms of the correla-
tion energy via a generalization of the virial theorem to this
modified interaction �see Appendix A�. Figure 9 compares
�2,erf

� derived from the virial theorem �Eq. �A6�� using the

FIG. 4. �2,coul with the Coulomb interaction: formula from virial
theorem �Eq. �A5�, thick solid curve�, GZ parametrization �Ref. 52�
�solid curve superimposed with the thick solid curve�, RPA �short-
dashed curve�, and G0W0 �long-dashed curve� calculations.

FIG. 5. �4,coul with the Coulomb interaction: GZ �Ref. 52� �solid
curve� and FHER �Ref. 55� �dotted curve� parametrizations, RPA
�short-dashed curve�, and G0W0 �long-dashed curve� calculations.

FIG. 6. The momentum distribution with the erf interaction for
rs=5 and �=0.3: RPA �short-dashed curve� and G0W0 �long-dashed
curve� calculations. For comparison, the G0W0 calculation for the
Coulomb case �solid curve� is also shown.

FIG. 7. The renormalization factor with the erf interaction for
rs=5: RPA �short-dashed curve� and G0W0 �long-dashed curve�
calculations.
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parametrization of the correlation energy of Ref. 27 with the
RPA and G0W0 results. The G0W0 calculation is in overall
agreement with the formula from the virial theorem. The
slight inaccuracy of G0W0 in the Coulombic limit ��→�� is
inherent to the method which neglects part of the short-range
interactions. On the contrary, the inaccuracy for small � is of
numerical origins: when the interaction is too small, the
magnitude of the correlation tail is lower than the precision
of the method �which does not exceed 10−4 for the momen-
tum distribution in the present implementation�.

Finally, the reduced moments �4,erf
� calculated in the RPA

and G0W0 approximations are reported in Fig. 10 for rs=5.
Analytical parametrizations of these results are given in Ap-
pendix B. The parametrization of �4,erf

� in the G0W0 approxi-
mation will be used in the next section for the determination
of the exchange-correlation kernel.

III. STATIC EXCHANGE-CORRELATION KERNEL

The dynamical exchange-correlation kernel fxc�k ,��,
or equivalently the dynamical local-field factor
G�k ,��=−v�k�fxc�k ,��, is related to the linear dynamical
�interacting� response function 
�k ,�� via the Dyson-like
screening equation


�k,�� = 
0�k,�� + 
0�k,���v�k� + fxc�k,���
�k,�� ,

�15�

where 
0�k ,�� is the non-interacting dynamical response
function. The static exchange-correlation kernel is
fxc�k�= fxc�k ,�=0�.

The study of the local-field factor of the Coulombic elec-
tron gas has generated an abundant literature �see, e.g., Refs.
29, 30, and 55–71�. The QMC simulations30,69 give probably
one of the most reliable static exchange-correlation kernel
fxc,coul�k�. A remarkable feature of the QMC results is that
fxc,coul�k� does not have much structure and can be essentially
reproduced by combining its small-k constant value for
k�2kF and its large-k two-term asymptotic expansion for
k�2kF.30 For the case of the long-range erf interaction, ac-
curate data are not available to check this property. However,
it seems reasonable to assume that no additional structure
appears in the exchange- correlation kernel when the inter-
action is reduced. As a first approximation, we will thus con-
struct fxc,erf

� �k� from its limiting behaviors for the case of the
erf interaction, too.

The limiting behaviors of fxc�k� for both the Coulomb and
long-range erf interactions can be cast into the same form.
For k→0, the static exchange- correlation kernel has the
limit

fxc�0� = −
4�

kF
2 A , �16�

where the dimensionless coefficient A has been introduced to
retain the notation of the literature.30 When k→�, fxc�k� has
the following asymptotic expansion �up to k−2 order� �see
Appendix C�:

fxc
� �k� = −

4�

kF
2 C −

4�

k2 B , �17�

where C and B are also dimensionless quantities.
The coefficients A, B, and C naturally depend on the in-

teraction chosen. A is given by the compressibility sum rule
�see, e.g., Refs. 72 and 73�, which is valid for any electron-
electron interaction. C is related to the reduced second mo-
ment �2 of the momentum distribution. The expression of B

FIG. 8. The fraction of electrons in the correlation tail of the
momentum distribution with the erf interaction: RPA �short-dashed
curve�, G0W0 �long-dashed curve�, and CCD �dotted curve�
calculations.

FIG. 9. �2,erf
� with the erf interaction for rs=5: formula from

virial theorem �thick solid curve, Eq. �A6��, RPA �short-dashed
curve�, and G0W0 �long-dashed curve� calculations.

FIG. 10. �4,erf
� with the erf interaction for rs=5: RPA �short-

dashed curve� and G0W0 �long-dashed curve� calculations.
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involves, among other things, the second and fourth mo-
ments �2 and �4.

For the Coulomb interaction, Acoul is given by

Acoul = −
kF

2

4�

�2�n�xc,coul�
�n2 , �18�

with the exchange-correlation energy per particle �xc,coul
taken from the usual Vosko, Wilk, and Nusair �VWN�
parametrization.54 The coefficients Ccoul and Bcoul have been
calculated by Holas74,75 �see Appendix C, Eq. �C25�� and
read

Ccoul =
kF

4�2,coul

5�p
2 , �19�

and

Bcoul =
2

3
�1 − gcoul�0�� +

12kF
4�4,coul

35�p
2

−
4kF

4�2�2,coul + ��2,coul�2�
25�p

2 , �20�

where �p=	4�n is the plasma frequency, gcoul�0� is the on-
top pair-distribution function taken from Ref. 76, and �2,coul
is given by the virial formula of Eq. �A5�.

The different coefficients Bcoul resulting from the GZ,
RPA, and G0W0 parametrizations of �4,coul �Eq. �B1�� are
compared in Fig. 11. The parametrization of Moroni, Ceper-
ley, and Senatore �MCS�30 is also reported. The G0W0 calcu-
lation gives a reasonable estimation of Bcoul, in agreement
with the GZ and MCS parametrizations.

The coefficients Acoul, Bcoul, and Ccoul have been calcu-
lated �using the G0W0 parametrization of �4,coul� and fitted to
simple analytical formulas for convenience in Appendix D.

For the long-range erf interaction, the coefficient Aerf is

Aerf
� = −

kF
2

4�

�2�n�xc,erf
� �

�n2 , �21�

where �xc,erf
� is the exchange-correlation energy per particle

associated to the erf interaction taken from Ref. 27. The cal-

culation of Holas is generalized in Appendix C for the coef-
ficients Cerf and Berf �Eq. �C26��; they write

Cerf
� =

kF
4�2,erf

�

5�p
2 �22�

and

Berf
� = −

2�3

3�n

��xc,erf
�

��
+

12kF
4�4,erf

�

35�p
2 −

4kF
4�2�2,erf

� + ��2,erf
� �2�

25�p
2 ,

�23�

where �2,erf
� is given by the virial formula of Eq. �A6�. The

three coefficients have the correct Coulombic limit when
�→�: Aerf

�→�=Acoul, Berf
�→�=Bcoul, and Cerf

�→�=Ccoul.
The coefficients Aerf

� , Berf
� , and Cerf

� have been calculated
(using the G0W0 parametrization for �4,erf

� �Eq. �B2��) and
fitted to analytical formulas in Appendix D.

For both the Coulomb and long-range erf interactions,
fxc�k� is then approximated over the whole range of k by the
simple following stepwise interpolation between the two lim-
iting behaviors at k→0 and k→�

fxc�k� = 
 fxc�0� , fxc�0� 	 fxc
� �k� ,

fxc
� �k� , fxc�0� � fxc

� �k� .
� �24�

The junction point between the short and long wave vector
regions where fxc�0�= fxc

� �k� is located at k=	�kF with
�=B / �A−C�, and Eq. �24� can be rewritten in the more com-
pact form

fxc�k� = −
4�A

kF
2 − 4�� B

k2 +
C − A

kF
2 
��k − 	�kF� . �25�

In the case of the Coulomb interaction and for rs=5, Fig.
12 compares interpolation of Eq. �28� with the parametriza-
tion of MCS �Eq. 7 of Ref. 30 with n=8� and the parametri-
zation of Corradini, Del Sole, Onida, and Palummo �CDOP�
�Ref. 31� based on the same QMC data. The three curves are
in overall agreement, the main discrepancy arising around
k�2kF where the presence of a singularity or not is still a
matter of debate.29–31,55 Of course, our simple model cannot
be trusted for k�2kF.

FIG. 11. The coefficient Bcoul with the Coulomb interaction: GZ
�solid curve� and MCS �Ref. 30� �dotted curve� parametrizations,
RPA �short-dashed curve�, and G0W0 �long-dashed curve�
calculations.

FIG. 12. The static exchange-correlation kernel fxc,coul�k� with
the Coulomb interaction for rs=5: simple interpolation formula �Eq.
�25�, dashed curve�, MCS �Ref. 30� �solid curve�, and CDOP �Ref.
31� �dotted curve� parametrizations.
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Taking the inverse Fourier transform of Eq. �25�, we ob-
tain the static exchange-correlation kernel for both the Cou-
lomb and long-range erf interactions in real space

fxc�r� = −
4�C

kF
2 ��r� −

B

r
�1 −

2

�
Si�	�kFr�


+
2�C − A�

�r3kF
2 �sin�	�kFr� − 	�kFr cos�	�kFr�� ,

�26�

where Si�x�=�0
x sin�t� / tdt is the sine integral function. In Eq.

�26�, the second term gives the major contribution to fxc�r�
for r�0, the third term being only a small correction.

Figure 13 shows the static exchange-correlation kernel in
reciprocal and real spaces for rs=5 with the erf interaction
for a series of interaction parameters �. fxc,erf

� is naturally
reduced when the interaction decreases. More precisely, in
reciprocal space, fxc,erf

� �k� is flatten and the junction point is
slightly shifted toward larger values of k, while, in real
space, the spatial extension of fxc,erf

� �r� decreases. The kernel
fxc,erf

� thus becomes more and more local when � decreases.

Symmetrically, the complement kernel f̄ xc,erf
� = fxc,coul− fxc,erf

�

also becomes more and more local when � increases �not
shown�.

In the limit of the Coulomb interaction, the kernel of Eq.
�26� displays Friedel-like long-range oscillations in real
space of quasiperiodicity 	�kF�2kF coming mainly from

the second term in Eq. �26�. These oscillations connected
with the behavior of the kernel in reciprocal space around
k�2kF constitute an usual feature of models for the
exchange-correlation kernel of the uniform electron gas. In
our model, these oscillations are likely to be exaggerated due
to the sharp cutoff in Eq. �25� and their relevance for inho-
mogeneous systems is questionable. However, the oscilla-
tions in our model for fxc,erf

� �r� rapidly spread out and vanish
when � decreases, i.e., when the interaction is reduced �see
Fig. 13�, so that this problem disappears. Symmetrically, the

oscillations in the complement kernel f̄ xc,erf
� �r� also disappear

when � increases. These results are consistent with the com-
mon intuition that the decrease of the interaction reduces the
structure of the exchange-correlation kernel. Note that in the
uniform electron gas the interaction can also be reduced by
decreasing rs so that an equivalent way to look at fxc,erf

� �r� in
the limit of a small interaction, �→0 for a fixed rs, is to look
at the high-density limit, rs→0, for a fixed �.

IV. CORRELATION ENERGY FROM STATIC
EXCHANGE-CORRELATION KERNEL

As an example of the usefulness of the static exchange-
correlation kernel, we follow Lein, Gross, and Perdew77 and
compute the correlation energy of the uniform electron gas
from it.

Indeed, the correlation energy per particle can be exactly
deduced in principle from the dynamical exchange-
correlation kernel using the ACFD approach. For comparison
purposes, we begin by the standard case of the Coulomb
interaction for which the expression is �see, e.g., Ref. 77�

�c,coul
ACFD =

− 1

2�n
�

0

1

d�� dq

�2��3vcoul�q�

� �
0

�

d�
�vcoul

� �q� + fxc,coul
� �q,i���
0�q,i��2

1 − �vcoul
� �q� + fxc,coul

� �q,i���
0�q,i��
,

�27�

with the scaled interaction vcoul
� �q�=�vcoul�q� and the associ-

ated exchange-correlation kernel fxc,coul
� �q ,�� related to

fxc,coul�q ,�� by a simple scaling relation77

fxc,coul
� �n��q,�� = �−1fxc,coul�n/�3��q/�,�/�2� . �28�

We can thus use Eq. �27� to estimate the relevance of our
simple model of the static exchange-correlation kernel to ob-
tain correlation energies, even though in theory the fre-
quency dependence is also needed to obtain the exact corre-
lation energy. Figure 14 reports the error in the correlation
obtained with Eq. �27�, 
�c,coul=�c,coul

ACFD−�c,coul, using several
approximations for fxc,coul: RPA �fxc,coul=0�, MCS, and
CDOP parametrizations and the interpolation formula of Eq.
�25�. The expansion of the exact correlation energy for
rs→0 �see, e.g., Refs. 78–80� is �c,coul=C0 ln rs+C1
+O�rs ln rs� with C0= �1−ln 2� /�2 and C1=−0.046 920 5
while in the RPA it is �c,coul

RPA =C0 ln rs+C1
RPA+O�rs ln rs� with

C1
RPA=−0.071 100. The error in the RPA correlation energy

at rs→0 is due to the difference C1
X=C1−C1

RPA=0.024 179

FIG. 13. The static exchange-correlation kernel fxc,erf
� in recip-

rocal �Eq. �25�� and direct �Eq. �26�� spaces for rs=5 with the erf
interaction �dashed curves� for �=0.2, 0.3, 0.5, and 1.0. For com-
parison, the case of the Coulomb interaction �solid curve� is also
shown.
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corresponding to the contribution of exchange diagrams.
When a static exchange-correlation kernel is used in Eq.
�27�, the correlation energy is greatly improved compared to
the RPA. The exchange-correlation kernel of Eq. �25� gives
results very close to those given by the MCS and CDOP
parametrizations, validating our simple interpolation.

We now generalize the ACFD approach to the case of the
long-range erf interaction. In this case, the long-range corre-
lation energy per particle is given by

�c,erf
�,ACFD =

− 1

2�n
�

0

1

d�� dq

�2��3verf
� �q�

� �
0

�

d�
�verf

�,��q� + fxc,erf
�,� �q,i���
0�q,i��2

1 − �verf
�,��q� + fxc,erf

�,� �q,i���
0�q,i��
,

�29�

with the scaled interaction verf
�,��q�=�verf

� �q� and the associ-
ated exchange-correlation kernel fxc,erf

�,� �q ,��. The scaling re-
lation of Eq. �28� is easily generalized to the erf interaction
�see also Ref. 81�

fxc,erf
�,� �n��q,�� = �−1fxc,erf

�/� �n/�3��q/�,�/�2� . �30�

The error in the long-range correlation energy obtained
with Eq. �29�, 
�c,erf

� =�c,erf
�,ACFD−�c,erf

� , in the RPA �fxc,erf
� =0�

and with the exchange-correlation kernel of Eq. �25� is
represented in Fig. 15 for �=1. The reduction of the
interaction mainly acts at small rs decreasing the error given
by the RPA. As for the Coulomb case, the exchange-
correlation kernel of Eq. �25� enables to correct the RPA for
larger values of rs.

V. SUMMARY AND CONCLUSION

We have given a simple approximate expression in real
and reciprocal spaces for static exchange-correlation kernel
fxc,erf

� of a uniform electron gas interacting with the long-
range part only of the Coulomb interaction �Eqs. �25� and
�26��. This expression interpolates between the exact
asymptotic behaviors of the kernel at small and large wave

vectors which in turn requires, among other things, informa-
tion from the momentum distribution of the uniform electron
gas with the same interaction that we have calculated in
the G0W0 approximation. In the limit of the Coulomb inter-
action ��→��, the proposed exchange-correlation kernel
fxc,erf

�→�= fxc,coul is close to other parametrizations of the litera-
ture based on QMC data. As a matter of course, the comple-

ment kernel f̄ xc,erf
� = fxc,coul− fxc,erf

� associated to the short-
range part of the Coulomb interaction is also obtained in
this work.

In the same way that the static exchange-correlation ker-
nel of the Coulombic uniform electron gas is an essential
ingredient in ACFD and DFT approaches of the electronic

correlation problem, the modified kernels fxc,erf
� and f̄ xc,erf

� can
be used in alternative ACFD and DFT approaches based on a
separate treatment of long- and short-range correlations. As a
simple illustration, the long-range correlation energy of the
uniform electron gas has been calculated from fxc,erf

� . In com-
parison to the Coulombic kernel fxc,coul, the modified kernels

fxc,erf
� and f̄ xc,erf

� are more local, which may improve their
transferability to inhomogeneous systems and therefore fa-
cilitate their use in applications. We are currently investigat-
ing such an issue.
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APPENDIX A: KINETIC ENERGY
FROM VIRIAL THEOREM

In this appendix, using the virial theorem, we give
the expression of �2 �Eq. �13�� for the Coulomb and erf
interactions.

FIG. 14. The error in the correlation energy 
�c,coul=�c,coul
ACFD

−�c,coul for the Coulomb interaction �Eq. �27�� with different
exchange-correlation kernels: RPA �fxc=0, short-dashed curve�,
MCS �Ref. 30� �solid curve�, and CDOP �Ref. 31� �dotted curve�
parametrizations and the simple interpolation formula �Eq. �25�,
long-dashed curve�.

FIG. 15. The error in the correlation energy 
�c,erf
� =�c,erf

�,ACFD

−�c,erf
� for the erf interaction �Eq. �29�� with different exchange-

correlation kernels: RPA �fxc=0, short-dashed curve�, the simple
interpolation formula �Eq. �25�, long-dashed curve�, for �=1.
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1. The virial theorem

The virial theorem for the uniform electron gas with the
Coulomb interaction writes82,83

2tcoul�rs� + vcoul�rs� = − rs
d�coul�rs�

drs
, �A1�

where tcoul�rs�= t0�rs�+ tc,coul�rs� is the interacting kinetic
energy per particle, which can be decomposed into a
non-interacting contribution t0�rs� and a correlation contribu-
tion tc,coul�rs�, vcoul�rs� is the electron-electron repulsion en-
ergy per particle, and �coul�rs�= tcoul�rs�+vcoul�rs�= t0�rs�
+�xc,coul�rs� is the total energy per particle which can be de-
composed into the non-interacting kinetic energy t0�rs� and
the exchange-correlation energy per particle �xc,coul�rs�.
Eliminating vcoul�rs� for �xc,coul�rs� in Eq. �A1� and using
the virial theorem for the non-interacting electron gas,
2t0�rs�=−rsdt0�rs� /drs, and the virial relation for exchange
only, �x,coul�rs�=−rsd�x,coul�rs� /drs, we arrive at the virial
theorem for the correlation part �see also Ref. 55�

tc,coul�rs� + �c,coul�rs� = − rs
d�c,coul�rs�

drs
. �A2�

For the erf interaction, the virial theorem of Eq. �A1� is
generalized as �see Ref. 81�

2terf
� �rs� + verf

� �rs� − �
�verf

� �rs�
��

= − rs

��erf
� �rs�
�rs

. �A3�

Following the same steps as for the Coulomb interaction, it
can be shown that the virial theorem for the correlation con-
tributions reads now

tc,erf
� �rs� + �c,erf

� �rs� − �
��c,erf

� �rs�
��

= − rs

��c,erf
� �rs�
�rs

. �A4�

2. Expression of �2

Using tc,coul�rs�=−d�rs�c,coul�rs�� /drs coming from Eq.
�A2� and t0�rs�=3kF

2 /10, the expression of �2,coul for the Cou-
lomb interaction writes

�2,coul =
tc,coul�rs�

t0�rs�
= −

10

3kF
2

d�rs�c,coul�rs��
drs

. �A5�

For the erf interaction, Eq. �A4� gives
tc,erf
� �rs�=−��rs�c,erf

� �rs�� /�rs+���c,erf
� �rs� /�� and the expres-

sion of �2,erf
� is

�2,erf
� =

tc,erf
� �rs�
t0�rs�

=
10

3kF
2 �−

��rs�c,erf
� �rs��
�rs

+ �
��c,erf

� �rs�
��


 .

�A6�

APPENDIX B: ANALYTICAL PARAMETRIZATION
OF �4

In this appendix, we give analytical parametrizations for
the reduced moment �4 of the momentum distribution �Eq.

�14�� calculated by several methods for the Coulomb and erf
interactions.

1. Coulomb interaction

For the Coulomb interaction, �4,coul is parametrized as

�4,coul = �
i=3

6

dix
i, �B1�

where x=	rs. A least-square fit of the result of the GZ pa-
rametrization gives d3=0.271 191, d4=−0.009 998,
d5=−0.036 383, d6=0.006 706. For the RPA calculation we
obtain d3=0.093 623, d4=0.194 288, d5=0.051 445,
d6=0.005 449, and for the G0W0 calculation, d3=0.126 362,
d4=0.001 428, d5=0.014 278, d6=−0.004 522.

2. erf interaction

For the erf interaction, we take the parametrization

�4,erf
� = �

i=3

6

eix
i, �B2�

with ei= �ei1�+ei2�2� / �1+ei3�2�. The optimal parameters
reproducing the RPA calculation are e31=−0.690 727,
e32=0.393 525, e33=3.398 631, e41=0.231 529,
e42=0.885 698, e43=5.999 882, e51=0.001 233,
e52=−0.061 940, e53=2.887 302, e61=0.001 083,
e62=−0.000 060, e63=0.391 712. Those for the G0W0
calculation are e31=−0.525 472,
e32=0.417 720, e33=5.102 281, e41=0.223 039,
e42=0.316 492, e43=5.984 490, e51=0.002 486,
e52=−0.000 770, e53=0.265 086, e61=−0.004 998,
e62=−0.003 175, e63=1.191 797.

APPENDIX C: ASYMPTOTIC EXPANSION OF THE
STATIC EXCHANGE-CORRELATION KERNEL

In this appendix, following the procedure proposed by
Holas,74,75 we derive the asymptotic expansion of the static
exchange-correlation kernel fxc�k� of the uniform electron
gas for k→� for the erf interaction. For comparison, results
for the Coulomb interaction are also given. Contrary to the
rest of this work and except for Eqs. �C25� and �C26�, mo-
mentum are expressed in units of kF, energies and frequen-
cies in units of kF

2 throughout this appendix.

1. Frequency moments of the linear response function

Knowledge of the frequency moments of the frequency-
dependent linear response function 
�k ,�� is useful to study
the asymptotic behavior of the static response function for
k→�. These moments are defined as

Ml�k� =
2

�
�

0

�

Im 
�k,���ld� . �C1�

The zeroth, first, and third moments are well known:74,75,84

M0�k� = − 2nS�k� , �C2�
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M1�k� = − nk2, �C3�

M3�k� = − nk2� k4

2
+ 2k2�ÊK� + nk2v�k� − 4�nGPV�k�
 ,

�C4�

where S�k� is the static structure factor,

ÊK= �1/N��k���k�ck�
† ck� is the kinetic energy per particle

operator, �¯� means expectation value between the interact-
ing ground state, and GPV�k� is the “Pathak-Vashishta”84 �or
“Niklasson”85� local-field factor

GPV�k� = Ga
PV�k� + Gb

PV�k� , �C5�

with

Ga
PV�k� =

1

n
� dp

�2��3

�k · p�2

k2

v�p�
4�

�S�p� − 1� , �C6�

and

Gb
PV�k� = −

1

n
� dp

�2��3

�k · p�2

k2

v�p�
4�

�S��k − p�� − 1� .

�C7�

The asymptotic expansion of M0�k� as k→� is given by that
of S�k� �Ref. 86

M0�k� = − 2n�1 +
C

k4 + o� 1

k4
� . �C8�

For the Coulomb interaction, C is directly related to the cusp
condition: Ccoul=−2�p

2g��0�=−2�p
2g�0� where �p=	4�n is

the plasma frequency, and g�0� and g��0� are the on-top val-
ues of the pair-distribution function and of its spherical-
average derivative. For the cuspless erf interaction, C van-
ishes: Cerf=0.

The asymptotic expansion of M3�k� writes

M3�k� = −
nk6

4
�1 +

8

k2 �ÊK� +
4

k4nv�k� −
16

k4 �nGPV�k → ��

+ o� 1

k4
� , �C9�

where the limit GPV�k→�� is determined as follows.
Ga

PV�k� is actually independent of k and writes

Ga
PV =

1

3

1

n
� dp

�2��3

p2v�p�
4�

�S�p� − 1� , �C10�

which gives, for the Coulomb interaction,

Ga,coul
PV =

1

3

1

n
� dp

�2��3 �Scoul�p� − 1� =
1

3
�gcoul�0� − 1� ,

�C11�

and, for the erf interaction,

Ga,erf
PV,� =

1

3

1

n
� dp

�2��3e−p2/�4�2��Serf
� �p� − 1�

=
�3

6�n
� dp

�2��3

�verf
� �p�
��

�Serf
� �p� − 1� =

�3

3�n

��xc,erf
�

��
,

�C12�

where the Hellmann-Feynman theorem has been used for the
last line, and �xc,erf

� is the exchange-correlation energy per
particle with the erf interaction.

After a trivial variable transformation, the limit of Gb
PV as

k→� is easily seen to be

Gb
PV�k → �� = −

1

n
� dp

�2��3

�k − p�2v��k − p��
4�

�S�p� − 1� ,

�C13�

which gives, for the Coulomb interaction,

Gb,coul
PV �k → �� = −

1

n
� dp

�2��3 �Scoul�p� − 1�

= − �gcoul�0� − 1� , �C14�

and, for the erf interaction,

Gb,erf
PV,��k → �� = −

1

n
� dp

�2��3e−�k − p�2/�4�2��Serf
� �p� − 1�

= − e−k2/�4�2��gerf
� �0� − 1� , �C15�

where gerf
� �0� is the on-top pair-distribution function associ-

ated to the erf interaction.

2. Static linear response function

The static linear response function 
�k ,0� can be ex-
pressed by the spectral representation


�k,0� =
2

�
�

0

� Im 
�k,��
�

d� , �C16�

i.e., we simply have 
�k ,0�=M−1�k�. Using this result,
Holas74,75 showed that the asymptotic expansions for large k
of M0�k�, M1�k�, and M3�k� �Eqs. �C8�, �C3�, and �C9�� are
sufficient to determine the asymptotic expansion of 
�k ,0�
up to k−4 order:


�k,0� =
− 4n

k2 �1 +
8

3
�ÊK�

1

k2 + o� 1

k2
� . �C17�

He then determined the following terms in the asymptotic
expansion of 
�k ,0� by �not rigorously� inferring them as
follows. The following term in k−3 in the square brackets of
Eq. �C17� is set to zero by a simple argument involving the
continuity and the likely non-oscillating behavior of the mo-
ments Ml�k� with respect to l. The next term in k−4 is inferred
from the asymptotic expansion of the static response func-
tion calculated to first order with respect to the electron-
electron interaction. We follow the same procedure.

The �zeroth-order� Lindhard static response function

0�k ,0� is well known. Its asymptotic expansion for large k
writes
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0�k,0� =
− 4n

k2 �1 +
8

3
�ÊK�0

1

k2 +
64

5
�ÊK

2 �0
1

k4 + o� 1

k4
� ,

�C18�

where ÊK
2 = �1/N��k���k�2ck�

† ck� and �¯�0 means expecta-
tion value between the non-interacting ground state.

The asymptotic expansion of the first-order correction to
the static response function 
1�k ,0� has been calculated for
the Coulomb interaction by Geldart and Taylor59,87 �see also
Ref. 63�. This result is conveniently generalized to an arbi-
trary interaction as


1�k,0� =
− 4n

k2 �− 4�p
2�2Ga,HF

PV +
k2v�k�

4�

 1

k4 + o� 1

k4
� ,

�C19�

with

Ga,HF
PV =

1

3

1

n
� dp

�2��3

p2v�p�
4�

�SHF�p� − 1� , �C20�

and the Hartree-Fock �HF� static structure factor

SHF�p� = 1 −
2

n
� dk

�2��3n0�k�n0��k + p�� . �C21�

For the Coulomb interaction, we simply have
Ga,HF,coul

PV = �gHF,coul�0�−1� /3 where gHF,coul�0�=1/2 is the HF
on-top pair-distribution function. For the erf interaction,
Ga,HF,erf

PV,� =�3 / �3�n���x,erf
� /�� where �x,erf

� is the exchange en-
ergy per particle associated to this modified interaction.

Following Holas,74,75 we then infer the following term in
k−4 in the square brackets of Eq. �C17� from the correspond-
ing term in the expansion of 
0�k ,0�+
1�k ,0� with the sub-

stitutions �ÊK
2 �0→ �ÊK

2 � and Ga,HF
PV →Ga

PV. We thus finally ob-
tain


�k,0� =
− 4n

k2 
1 +
8

3
�ÊK�

1

k2 + �64

5
�ÊK

2 � − 4�p
2�2Ga

PV

+
k2v�k�

4�

� 1

k4 + o� 1

k4
� . �C22�

Observe that the form of the asymptotic expansion of 
�k ,0�
�Eq. �C22�� does depend explicitly on the interaction v�k�
and is therefore different for the Coulomb and erf interac-
tions.

3. Static exchange-correlation kernel

The static exchange-correlation kernel fxc�k� writes �see
Eq. �15��

fxc�k� = 
0�k,0�−1 − 
�k,0�−1 − v�k� , �C23�

and its asymptotic expansions for large k is therefore deter-
mined from the expansions of 
0�k ,0� and 
�k ,0� �Eqs.
�C18� and �C22�. Introducing the quantities

�2= ��ÊK�− �ÊK�0� / �ÊK�0 and �4= ��ÊK
2 �− �ÊK

2 �0� / �ÊK
2 �0 with

�ÊK�0=3/10 and �ÊK
2 �0=3/28, we obtain �with k in units of

kF and �p in units of kF
2�

fxc�k� =
− 4��2

5�p
2 −

4�

k2 �− 2Ga
PV +

12�4

35�p
2 −

4�2�2 + �2
2�

25�p
2 


+ o� 1

k2
 . �C24�

The term explicitly depending on v�k� in the asymptotic ex-
pansion of 
�k ,0� �Eq. �C22�� exactly cancels with the Har-
tree kernel v�k� in the expression of fxc�k� �Eq. �C23��.
Therefore, the asymptotic expansion of fxc�k� �Eq. �C24��
does have the same form for the Coulomb and erf
interactions. Note, however, that the local field factor
G�k�=−v�k�fxc�k� involves explicitly the interaction and has
therefore different asymptotic behaviors for the Coulomb
and erf interactions.

Coming back to atomic units now and specializing to the
Coulomb interaction, Eq. �C24� becomes

fxc,coul�k� =
− 4�kF

2�2,coul

5�p
2 −

4�

k2 �2

3
�1 − gcoul�0�� +

12kF
4�4,coul

35�p
2

−
4kF

4�2�2,coul + ��2,coul�2�
25�p

2 
 + o� 1

k2
 , �C25�

while for the erf interaction, we have

fxc,erf
� �k� =

− 4�kF
2�2,erf

�

5�p
2 −

4�

k2 �−
2�3

3�n

��xc,erf
�

��
+

12kF
4�4,erf

�

35�p
2

−
4kF

4�2�2,erf
� + ��2,erf

� �2�
25�p

2 
 + o� 1

k2
 . �C26�

APPENDIX D: ANALYTICAL PARAMETRIZATIONS
OF A, B, AND C

To facilitate the evaluation of the static exchange-
correlation kernel for the Coulomb and erf interaction, we
give analytical parametrizations of the coefficients A, B, and
C determining its limiting behaviors for small and large k
�see Sec. III�.

1. Coulomb interaction

For the Coulomb interaction, the coefficient A �Eq. �18��
is parametrized as follows

Acoul = �
i=0

6

aix
i, �D1�

with x=	rs and the fitted parameters a0=0.250 019,
a1=−0.000 162, a2=0.013 441, a3=−0.003 591,
a4=0.000 380, a5=0.000 002, and a6=−0.000 003.

For the coefficient B �Eq. �20��, we adopt the analytical
form of Moroni, Ceperley, and Senatore30 incorporating the
correct limit B�rs→0�=1/3:

Bcoul =
1 + b1x + b2x3

3 + b3x + b4x3 , �D2�

but the parameters are refitted with the parametrization of �4
�Eq. �B1�� with the G0W0 data: b1=0.721 543,
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b2=0.317 320, b3=−0.133 379, and b4=0.269 494.
The coefficient C �Eq. �19�� is parametrized as

Ccoul =
�i=1

6
cix

i

1 + �i=1

4
f ix

i
, �D3�

with c1=0.002 127, c2=0.169 597, c3=0.450 771, c4=
−0.023 265, c5=0.001 855, c6=−0.000 069, f1=7.062 604,
f2=8.589 773, f3=2.747 407, and f4=0.648 920.

2. erf interaction

For the erf interaction, Aerf
� �Eq. �21�� is represented by the

analytical parametrization

Aerf
� =

�i=2

6
gix

i

1 + h4x4 , �D4�

with gi=gi1�+gi2�2 and h4=g41�+h42�
2. The fitted param-

eters are g21=−0.029 315, g22=−0.000 927, g31=0.061 867,
g32=0.010 970, g41=−0.053 761, g42=0.078 580,
g51=0.012 970, g52=0.014 669, g61=−0.001 232,
g62=−0.000 891, h41=−0.025 963, h42=0.389 673.

The coefficient Berf
� �Eq. �23�� is parametrized as

Berf
� =

�i=0

3
jix

i

1 + k1x + k3x3 , �D5�

where ji= �ji1�+ ji2�2� / �1+ ji3�2� and ki= �ki1�+ki2�2� / �1
+ki3�2�. Using the parametrization of Eq. �B2� for �4

� in the
G0W0 approximation, the fitted parameters obtained are
j01=0.010 533, j02=−0.002 640, j03=0.314 403,
j11=−0.143 455, j12=0.046 302, j13=0.014 315,
j21=−0.415 043, j22=0.194 149, j23=0.078 849,
j31=0.164 085, j32=0.925 083, j33=0.491 612,
k11=0.291 633, k12=0.102 905, k13=0.013 551,
k31=0.014 324, k32=0.714 449, k33=0.473 130.

Finally, the coefficient Cerf
� �Eq. �22�� is parametrized as

Cerf
� =

�i=1

6
lix

i

1 + m4x4 , �D6�

where li= �li1�+ li2�2� / �1+ li3�2� and m4= �m41�
+m42�

2� / �1+m43�
2�. The fitted parameters are

l11=−0.039 662, l12=0.002 346, l13=0.405 492,
l21=0.187 782, l22=0.066 673, l23=0.759 503,
l31=−0.270 823, l32=−0.083 482, l33=0.511 806,
l41=0.133 824, l42=0.061 658, l43=0.348 085,
l51=−0.027 392, l52=0.024 384, l53=0.261 739,
l61=0.001 877, l62=−0.005 601, l63=0.351 272,
m41=−0.090 916, m42=1.238 974, and m43=0.251 286.
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