
Chapter 1 
Review of Approximations for the 
Exchange-Correlation Energy in 
Density-Functional Theory 

Julien Toulouse 

Abstract In this chapter, we provide a review of the ground-state Kohn–Sham 
density-functional theory of electronic systems and some of its extensions, we 
present exact expressions and constraints for the exchange and correlation density 
functionals, and we discuss the main families of approximations for the exchange-
correlation energy: semilocal approximations, single-determinant hybrid approxi-
mations, multideterminant hybrid approximations, dispersion-corrected approxima-
tions, as well as orbital-dependent exchange-correlation density functionals. The 
chapter aims at providing both a consistent bird’s-eye view of the field and a detailed 
description of some of the most used approximations. It is intended to be readable 
by chemists/physicists and applied mathematicians. 

1.1 Basics of Density-Functional Theory 

1.1.1 The Many-Body Problem 

We consider an N -electron system (atom or molecule) in the Born–Oppenheimer 
and non-relativistic approximations. The electronic Hamiltonian in the position 
representation is, in atomic units, 

.H = −1

2

N∑

i=1

∇2
ri + 1

2

N∑

i=1

N∑

j=1
i �=j

1

|ri − rj | +
N∑

i=1

vne(ri ), (1.1) 
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where .∇2
ri = �ri is the Laplacian with respect to the electron coordinate . ri and 

.vne(ri ) = −∑Nn
α=1 Zα/|ri −Rα| is the nuclei-electron interaction depending on the 

positions .{Rα} and charges .{Zα} of the . Nn nuclei. The stationary electronic states 
are determined by the time-independent Schrödinger equation, 

.H�(x1, x2, . . . , xN) = E�(x1, x2, . . . , xN), (1.2) 

where .�(x1, x2, . . . , xN) is a wave function written with space-spin coordinates 
.xi = (ri , σi) ∈ R3 × {↑,↓} (with .{↑,↓} ∼= Z2 being the set of spin coordinates) 
which is antisymmetric with respect to the exchange of two coordinates, and E is 
the associated energy. 

Using Dirac notation, the Schrödinger equation (1.2) can be rewritten in a 
representation-independent formalism, 

.Ĥ |�〉 = E |�〉 , (1.3) 

where the Hamiltonian is formally written as 

. Ĥ = T̂ + Ŵee + V̂ne,

with the kinetic-energy operator . ̂T , the electron-electron interaction operator .Ŵee, 
and the nuclei-electron interaction operator . ̂Vne. 

The quantity of primary interest is the ground-state energy . E0. The variational 
theorem establishes that . E0 can be expressed as an infimum, 

.E0 = inf
�∈WN

〈�| Ĥ |�〉 , (1.4) 

where the search is over the set of N -electron antisymmetric normalized wave 
functions . � having a finite kinetic energy, 

. WN =
{
� ∈

N∧
L2(R3 × {↑,↓};C),� ∈ H 1((R3 × {↑,↓})N ;C), 〈�|�〉 = 1

}
,

(1.5) 

where .
∧N is the N -fold antisymmetrized tensor product, .L2 and .H 1 are the 

standard Lebesgue and Sobolev spaces (i.e., respectively, the space of functions that 
are square integrable and the space of functions that are square integrable together 
with their first-order derivatives), and .〈·|·〉 designates the . L2 inner product. Density-
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functional theory (DFT) is based on a reformulation of the variational theorem in 
terms of the one-electron density defined as1 

.ρ�(r) = N

∫

{↑,↓}×(R3×{↑,↓})N−1
|�(x, x2, . . . , xN)|2 dσdx2 . . . dxN, (1.6) 

which is normalized to the electron number, .
∫
R

3 ρ�(r)dr = N . 

1.1.2 The Universal Density Functional 

Building on the work of Hohenberg and Kohn [118], Levy [153] and Lieb [160] pro-
posed to define the following universal density functional .F [ρ] using a constrained-
search approach, 

.F [ρ] = min
�∈WN

ρ

〈�| T̂ + Ŵee |�〉 = 〈�[ρ]| T̂ + Ŵee |�[ρ]〉 , (1.7) 

where the minimization is done over the set of N -electron wave functions . �
yielding the fixed density . ρ [via Eq. (1.6)], 

. WN
ρ = {� ∈WN, ρ� = ρ}.

In Eq. (1.7), for a given density . ρ, .�[ρ] denotes a minimizing wave function, 
which is known to exist [160] but is possibly not unique. This so-called Levy–Lieb 
functional .F [ρ] is defined on the set of N -representable densities [160]: 

. DN = {ρ | ∃� ∈WN s.t. ρ� = ρ}
= {ρ ∈ L1(R3) | ρ � 0,

∫

R
3
ρ(r)dr = N,

√
ρ ∈ H 1(R3)}. (1.8) 

We note that an alternative universal density functional can be defined by a 
Legendre–Fenchel transformation, or equivalently by a constrained-search over N -
electron ensemble density matrices [160]. This so-called Lieb functional has the 
advantage of being convex but in this chapter we will simply use the Levy–Lieb 
functional of Eq. (1.7). 

The exact ground-state energy can then be expressed as 

.E0 = inf
ρ∈DN

{
F [ρ] +

∫

R
3
vne(r)ρ(r)dr

}
, (1.9)

1 An integration over a spin coordinate . σ just means a sum over the two values .σ ∈ {↑,↓}, i.e.  
.
∫
{↑,↓} dσ =∑σ∈{↑,↓} and .

∫
R

3×{↑,↓} dx =∑σ∈{↑,↓}
∫
R

3 dr. 
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and if a minimizer exists then it is a ground-state density .ρ0(r) for the potential 
.vne(r). Hence, the ground-state energy can in principle be obtained by minimizing 
over the density . ρ, i.e. a simple function of 3 real variables, which is a tremendous 
simplification compared to the minimization over a complicated many-body wave 
function . �. However, the explicit expression of .F [ρ] in terms of the density is not 
known, and the direct approximations for .F [ρ] that have been tried so far turn out 
not to be accurate enough. 

If there is a unique wave function .�[ρ] (up to a phase factor) in Eq. (1.7), we can 
define kinetic and potential contributions to .F [ρ], 

. F [ρ] = T [ρ] + Wee[ρ],

where .T [ρ] = 〈�[ρ]| T̂ |�[ρ]〉 and .Wee[ρ] = 〈�[ρ]| Ŵee |�[ρ]〉. The kinetic-
energy functional .T [ρ] is the contribution which is particularly difficult to approxi-
mate as an explicit functional of the density. 

1.1.3 The Kohn–Sham Scheme 

1.1.3.1 Decomposition of the Universal Functional 

Following the idea of Kohn and Sham (KS) [135], the difficulty of approximating 
.F [ρ] directly can be circumvented by decomposing .F [ρ] as 

.F [ρ] = Ts[ρ] + EHxc[ρ], (1.10) 

where .Ts[ρ] is the non-interacting kinetic-energy functional which can be defined 
with a constrained search,2 

.Ts[ρ] = min
�∈SN

ρ

〈�| T̂ |�〉 = 〈�[ρ]| T̂ |�[ρ]〉 , (1.11) 

where the minimization is over the set of N -electron single-determinant wave 
functions . � yielding the fixed density . ρ: 

.SN
ρ = {� ∈ SN, ρ� = ρ}.

2 It is also possible to define the non-interacting kinetic-energy functional analogously to the 
Levy–Lieb functional in Eq. (1.7) by minimizing over wave functions .� ∈ WN

ρ , i.e. . Ts,LL[ρ] =
min�∈WN

ρ
〈�| T̂ |�〉 [160]. In this case, the corresponding minimizing KS wave function can 

generally be a linear combination of Slater determinants. However, we often have . Ts,LL[ρ] =
Ts[ρ], in particular for densities . ρ that come from a non-interacting ground-state wave function 
which is not degenerate. In this chapter, we will usually assume this nondegeneracy condition. 
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Here, .SN is the set of N -electron single-determinant wave functions built from 
orthonormal spin orbitals 

. SN = {� = φ1∧φ2∧. . .∧φN | ∀i φi ∈ H 1(R3×{↑,↓};C), ∀i, j 〈φi |φj 〉 = δi,j },

where .φ1 ∧φ2 ∧ . . .∧φN designates the normalized N -fold antisymmetrized tensor 
product of N spin orbitals. The functional .Ts[ρ] is defined over the entire set of 
N-representable densities .DN since any N -representable density can be obtained 
from a single-determinant wave function [80, 105, 160]. In Eq. (1.11), for a given 
density . ρ, .�[ρ] denotes a minimizing single-determinant wave function (again 
known to exist [160] but possibly not unique), also referred to as a KS wave function. 
The remaining functional .EHxc[ρ] that Eq. (1.10) defines is called the Hartree-
exchange-correlation functional. The idea of the KS scheme is then to use the exact 
expression of .Ts[ρ] by reformulating the minimization over densities in Eq. (1.9) as  
a minimization over single-determinant wave functions . �, 

.E0 = inf
�∈SN

{〈�| T̂ + V̂ne |�〉 + EHxc[ρ�]} , (1.12) 

and if a minimum exists then any minimizing single-determinant wave function in 
Eq. (1.12) gives a ground-state density .ρ0(r). Thus, the exact ground-state energy 
can in principle be obtained by minimizing over single-determinant wave functions 
only. Even though a wave function has been reintroduced compared to Eq. (1.9), 
it is only a single-determinant wave function . � and therefore it still represents a 
tremendous simplification over the usual variational theorem involving a correlated 
(multideterminant) wave function . �. The advantage of Eq. (1.12) over Eq. (1.9) 
is that a major part of the kinetic energy can be treated exactly with the single-
determinant wave function . �, and only .EHxc[ρ] needs to be approximated as an 
explicit functional of the density. 

In practice, .EHxc[ρ] is decomposed as 

.EHxc[ρ] = EH[ρ] + Exc[ρ], (1.13) 

where .EH[ρ] is the Hartree energy functional, 

.EH[ρ] = 1

2

∫

R
3×R3

ρ(r1)ρ(r2)

|r1 − r2| dr1dr2, (1.14) 

representing the classical electrostatic repulsion energy for the charge distribution 
.ρ(r) and which is calculated exactly, and .Exc[ρ] is the exchange-correlation energy 
functional that remains to be approximated. If there is a unique KS wave function 
.�[ρ] (up to a phase factor), we can further decompose .Exc[ρ] as 

.Exc[ρ] = Ex[ρ] + Ec[ρ], (1.15)
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where .Ex[ρ] is the exchange energy functional, 

.Ex[ρ] = 〈�[ρ]| Ŵee |�[ρ]〉 − EH[ρ], (1.16) 

and .Ec[ρ] is the correlation energy functional, 

. Ec[ρ] = 〈�[ρ]| T̂ + Ŵee |�[ρ]〉 − 〈�[ρ]| T̂ + Ŵee |�[ρ]〉 = Tc[ρ] + Uc[ρ],

which contains a kinetic contribution . Tc[ρ] = 〈�[ρ]| T̂ |�[ρ]〉 − 〈�[ρ]| T̂ |�[ρ]〉
and a potential contribution .Uc[ρ] = 〈�[ρ]| Ŵee |�[ρ]〉−〈�[ρ]| Ŵee |�[ρ]〉. Using  
the fact that .�[ρ] is a single-determinant wave function, it can be shown that the 
exchange functional can be expressed as 

.Ex[ρ] = −1

2

∑

σ∈{↑,↓}

∫

R
3×R3

|γσ (r1, r2)|2
|r1 − r2| dr1dr2, (1.17) 

where . γσ , for .σ ∈ {↑,↓}, is the spin-dependent one-particle KS density matrix, 

.γσ (r, r′) (1.18) 

= N
∫

(R3×{↑,↓})N−1
�[ρ](r′, σ,  x2, . . . , xN)∗ �[ρ](r, σ, x2, . . . , xN)dx2 . . .  dxN, 

which shows that .Ex[ρ] � 0. Moreover, from the variational definition of . F [ρ], we  
see that .Ec[ρ] � 0. 

1.1.3.2 The Kohn–Sham Equations 

The single-determinant wave function . � in Eq. (1.12) is constructed from a set of 
N orthonormal occupied spin-orbitals .{φi}i=1,...,N . To enforce . Sz spin symmetry, 
each spin-orbital is factorized as .φi(x) = ϕi(r)χσi

(σ ), where .ϕi ∈ H 1(R3,C) is 
a spatial orbital and .χσi

is a spin function from .{↑,↓} to .{0, 1} such that . ∀σi, σ ∈
{↑,↓}, χσi

(σ ) = δσi ,σ (. σi is the spin of the spin-orbital i). Alternatively, when 
this is convenient, we will sometimes reindex the spatial orbitals, .{ϕi} −→ {ϕiσ }, 
including explicitly the spin . σ in the index. Writing the total electronic energy in 
Eq. (1.12) in terms of spin-orbitals and integrating over the spin variables, we obtain: 

.E[{ϕi}] = 1

2

N∑

i=1

∫

R
3
|∇ϕi(r)|2dr +

∫

R
3
vne(r)ρ(r)dr + EHxc[ρ], (1.19) 

where the density is expressed in terms of the orbitals as 

.ρ(r) =
N∑

i=1

|ϕi(r)|2 . (1.20)
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The minimization over . � can then be recast into a minimization of .E[{ϕi}] with 
respect to the spatial orbitals .{ϕi} with the constraint of keeping the orbitals 
orthonormalized. The stationary condition with respect to variations of .ϕi(r) leads 
to the KS equations [135], 

.

(
−1

2
∇2 + vne(r) + vHxc(r)

)
ϕi(r) = εiϕi(r), (1.21) 

where . εi is the Lagrange multiplier associated to the normalization condition of . ϕi

and .vHxc(r) is the Hartree-exchange-correlation potential defined as the functional 
derivative of .EHxc[ρ] with respect to .ρ(r), 

.vHxc(r) = δEHxc[ρ]
δρ(r)

, (1.22) 

which is itself a functional of the density. The orbitals satisfying Eq. (1.21) are called 
the KS orbitals. They are the eigenfunctions of the KS one-electron Hamiltonian, 

.hs(r) = −1

2
∇2 + vs(r), (1.23) 

where 

.vs(r) = vne(r) + vHxc(r) (1.24) 

is the KS potential, and . εi are then the KS orbital energies. Note that Eq. (1.21) 
constitutes a set of coupled self-consistent equations since the potential depends on 
all the occupied orbitals .{ϕi}i=1,...,N through the density [Eq. (1.20)]. The operator 
.hs(r) defines the KS system which is a system of N non-interacting electrons in an 
effective external potential .vs(r) ensuring that the density .ρ(r) in Eq. (1.20) is the  
same as the exact ground-state density .ρ0(r) of the physical system of N interacting 
electrons. The exact ground-state energy . E0 is then obtained by injecting the KS 
orbitals in Eq. (1.19). The other (unoccupied) eigenfunctions in Eq. (1.21) define 
virtual KS orbitals .{ϕa}a�N+1. 

Note that to define the potential .vHxc(r) in Eq. (1.22) a form of differentiability 
of the functional . EHxc[ρ], also referred to as  v-representability of the density, has 
been assumed. Justifying this is in fact subtle and has been debated [56, 57, 109, 
142–144, 164] (see also Chap. 5 by Kvaal in this volume). Here, we will simply 
assume that a form of differentiability of .EHxc[ρ] holds on at least a restricted set of 
densities that allows one to define the potential .vHxc(r) up to an additive constant. 
For a further restricted set of densities that should include ground-state densities 
of electronic Hamiltonians of molecular systems [Eq. (1.1)], it is expected that the 
KS potential .vs(r) tends to a constant as .|r| → ∞ and we choose this constant to 
be zero. Note also that the assumption of the existence of the KS potential .vs(r) in 
Eq. (1.23), which does not depend on spin coordinates, implies that each spin-orbital 
must indeed have a definite . Sz spin value.
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Following the decomposition of .EHxc[ρ] in Eq. (1.13), the potential .vHxc(r) is 
written as 

.vHxc(r) = vH(r) + vxc(r), (1.25) 

where .vH(r) = δEH[ρ]/δρ(r) = ∫
R

3 ρ(r′)/|r − r′|dr′ is the Hartree potential and 
.vxc(r) = δExc[ρ]/δρ(r) is the exchange-correlation potential. Likewise, following 
the decomposition of .Exc[ρ] in Eq. (1.15), and assuming that both .Ex[ρ] and . Ec[ρ]
are differentiable with respect to . ρ, the potential .vxc(r) can be further decomposed 
as 

.vxc(r) = vx(r) + vc(r), (1.26) 

where .vx(r) = δEx[ρ]/δρ(r) is the exchange potential and . vc(r) = δEc[ρ]/δρ(r)
is the correlation potential. Thus, the KS equations are similar to the Hartree– 
Fock (HF) equations, with the difference that they involve a local exchange 
potential .vx(r) instead of the nonlocal HF exchange potential, and an additional 
correlation potential. At least for ground-state densities of finite molecular systems, 
the exchange potential has the long-range asymptotic behavior (see, e.g., Ref. [93]), 

.vx(r) ∼|r|→∞ − 1

|r| , (1.27) 

whereas the correlation potential decays faster [4]. 

1.1.3.3 Extension to Spin Density-Functional Theory 

To deal with an external magnetic field, DFT has been extended from the total 
density to spin-resolved densities [13, 203]. Without external magnetic fields, this 
spin density-functional theory is in principle not necessary, even for open-shell 
systems (see, e.g., Ref. [263]). However, the dependence on the spin densities 
allows one to construct approximate exchange-correlation functionals that are more 
accurate, and is therefore almost always used in practice for open-shell systems. 

The spin density .ρσ,� with .σ ∈ {↑,↓} associated to a wave function . � is defined 
as 

. ρσ,�(r) = N

∫

(R3×{↑,↓})N−1
|�(x, x2, . . . , xN)|2 dx2 . . . dxN,

and integrates to the number of .σ -spin electrons . Nσ , i.e. .
∫
R

3 ρσ,�(r)dr = Nσ . For  
.ρ↑ ∈ DN↑ and .ρ↓ ∈ DN↓ , the universal density functional is now defined as [200], 

. F [ρ↑, ρ↓] = min
�∈WN

ρ↑,ρ↓
〈�| T̂ + Ŵee |�〉 = 〈�[ρ↑, ρ↓]| T̂ + Ŵee |�[ρ↑, ρ↓]〉 ,

(1.28)
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where the search is over the set of normalized antisymmetric wave functions . � with 
.N = N↑ + N↓ electrons and yielding the fixed spin densities . ρ↑ and . ρ↓: 

. WN
ρ↑,ρ↓ = {� ∈WN, ρ↑,� = ρ↑, ρ↓,� = ρ↓}.

In Eq. (1.28), .�[ρ↑, ρ↓] designates a minimizing wave function. 
A spin-dependent KS scheme is obtained by decomposing .F [ρ↑, ρ↓] as 

.F [ρ↑, ρ↓] = Ts[ρ↑, ρ↓] + EH[ρ] + Exc[ρ↑, ρ↓], (1.29) 

where .Ts[ρ↑, ρ↓] is defined as 

.Ts[ρ↑, ρ↓] = min
�∈SN

ρ↑,ρ↓
〈�| T̂ |�〉 = 〈�[ρ↑, ρ↓]| T̂ |�[ρ↑, ρ↓]〉 , (1.30) 

with a constrained search over the set of single-determinant wave functions . �
yielding the fixed spin densities . ρ↑ and . ρ↓: 

. SN
ρ↑,ρ↓ = {� ∈ SN, ρ↑,� = ρ↑, ρ↓,� = ρ↓}.

Here, .�[ρ↑, ρ↓] denotes a minimizing KS single-determinant wave function, . EH[ρ]
is the Hartree energy which is a functional of the total density .ρ = ρ↑ + ρ↓ only 
[Eq. (1.14)], and .Exc[ρ↑, ρ↓] is the spin-dependent exchange-correlation energy 
functional. The ground-state energy is then obtained as 

.E0 = inf
�∈SN

{〈�| T̂ + V̂ne |�〉 + EH[ρ�] + Exc[ρ↑,�, ρ↓,�]} . (1.31) 

Writing the spatial orbitals of the spin-unrestricted determinant as . {ϕiσ }i=1,...,N

(with the index explicitly including the spin . σ now for clarity), we arrive at the 
spin-dependent KS equations, 

.

(
−1

2
∇2 + vne(r) + vH(r) + vxc,σ (r)

)
ϕiσ (r) = εiσ ϕiσ (r), (1.32) 

with the spin-dependent exchange-correlation potential, 

.vxc,σ (r) = δExc[ρ↑, ρ↓]
δρσ (r)

, (1.33) 

and the spin density, 

.ρσ (r) =
Nσ∑

i=1

|ϕiσ (r)|2 . (1.34)
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As before, if there is a unique KS wave function .�[ρ↑, ρ↓] (up to a phase factor), 
we can decompose .Exc[ρ↑, ρ↓] into exchange and correlation contributions, 

.Exc[ρ↑, ρ↓] = Ex[ρ↑, ρ↓] + Ec[ρ↑, ρ↓], (1.35) 

with .Ex[ρ↑, ρ↓] = 〈�[ρ↑, ρ↓]| Ŵee |�[ρ↑, ρ↓]〉 − EH[ρ]. It turns out that the spin-
dependent exchange functional .Ex[ρ↑, ρ↓] can be exactly expressed in terms of the 
spin-independent exchange functional .Ex[ρ] [183], 

.Ex[ρ↑, ρ↓] = 1

2

(
Ex[2ρ↑] + Ex[2ρ↓]) , (1.36) 

which is known as the spin-scaling relation and stems directly from the fact the 
.↑- and .↓-spin electrons are uncoupled in the exchange energy [see Eq. (1.17)]. 
Therefore, any approximation for .Ex[ρ] can be easily extended to an approximation 
for .Ex[ρ↑, ρ↓]. Unfortunately, there is no such relation for the spin-dependent 
correlation functional .Ec[ρ↑, ρ↓]. 

Obviously, in the spin-unpolarized case, i.e. .ρ↑ = ρ↓ = ρ/2, this spin-dependent 
formalism reduces to the spin-independent one. 

1.1.4 The Generalized Kohn–Sham Scheme 

An important extension of the KS scheme is the so-called generalized Kohn–Sham 
(GKS) scheme [222], which recognizes that the universal density functional .F [ρ] of 
Eq. (1.7) can be decomposed in other ways than the KS decomposition of Eq. (1.10). 
In particular, we can decompose .F [ρ] as 

.F [ρ] = min
�∈SN

ρ

{〈�| T̂ |�〉 + EH[ρ�] + S[�]}+ S̄[ρ], (1.37) 

where .S[�] is any functional of a single-determinant wave function .� ∈ SN leading 
to a minimum in Eq. (1.37), and .S̄[ρ] is the corresponding complementary density 
functional that makes Eq. (1.37) exact. Defining the S-dependent GKS exchange-
correlation functional as 

.ES
xc[�] = S[�] + S̄[ρ�], (1.38) 

we can express the exact ground-state energy as 

.E0 = inf
�∈SN

{
〈�| T̂ + V̂ne |�〉 + EH[ρ�] + ES

xc[�]
}

, (1.39)
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and if a minimum exists then any minimizing single-determinant wave function 
in Eq. (1.39) gives a ground-state density .ρ0(r). Similarly to the KS equations 
[Eq. (1.21)], Eq. (1.39) leads to the one-electron GKS equations, 

.

(
−1

2
∇2 + vne(r) + vH(r) + vS̄(r)

)
ϕiσ (r) + δS[�]

δϕ∗
iσ (r)

= εiσ ϕiσ (r), (1.40) 

where .vS̄(r) = δS̄[ρ]/δρ(r) is a local potential and .δS[�]/δϕ∗
iσ (r) generates a one-

electron (possibly nonlocal) operator. 
In the special case .S[�] = 0, we recover the KS exchange-correlation density 

functional: 

.ES=0
xc [�] = Exc[ρ�]. (1.41) 

Due to the freedom in the choice of .S[�], there is an infinity of GKS exchange-
correlation functionals .ES

xc[�] giving the exact ground-state energy via Eq. (1.39). 
This freedom and the fact that . � carries more information than .ρ� gives the 
possibility to design more accurate approximations for the exchange-correlation 
energy. 

Of course, by starting from the density functional .F [ρ↑, ρ↓] in Eq. (1.28), this 
GKS scheme can be extended to the spin-dependent case, leading to GKS exchange-
correlation functionals of the form .ES

xc[�] = S[�] + S̄[ρ↑,�, ρ↓,�]. 

1.2 Exact Expressions and Constraints for the Kohn–Sham 
Exchange and Correlation Functionals 

1.2.1 The Exchange and Correlation Holes 

Let us consider the pair density associated with the wave function .�[ρ] defined in 
Eq. (1.7), 

.ρ2(r1, r2) (1.42) 

= N(N  − 1)

∫

{↑,↓}2×(R3×{↑,↓})N−2 
|�[ρ](x1, x2, . . . ,  xN)|2 dσ1dσ2dx3 . . . dxN, 

which is a functional of the density, and normalized to the number of electron 
pairs, .

∫
R

3×R3 ρ2(r1, r2)dr1dr2 = N(N − 1). The pair density is proportional to the 
probability density of finding two electrons at positions .(r1, r2) with all the other 
electrons being anywhere. The pair density is useful to express the expectation value 
of the electron-electron interaction operator, 

. 〈�[ρ]| Ŵee |�[ρ]〉 = 1

2

∫

R
3×R3

ρ2(r1, r2)

|r1 − r2| dr1dr2. (1.43)
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Mirroring the decomposition of the Hartree-exchange-correlation energy performed 
in the KS scheme [Eq. (1.13)], the pair density can be decomposed as 

.ρ2(r1, r2) = ρ(r1)ρ(r2) + ρ2,xc(r1, r2). (1.44) 

The product of the densities .ρ(r1)ρ(r2) corresponds to the case of independent 
electrons [up to a change of normalization, i.e. . 

∫
R

3×R3 ρ(r1)ρ(r2)dr1dr2 = N2

instead of .N(N − 1)] and the exchange-correlation pair density . ρ2,xc(r1, r2)

represents the modification of the pair density due to exchange and correlation 
effects between the electrons. It can be further written as 

.ρ2,xc(r1, r2) = ρ(r1)hxc(r1, r2), (1.45) 

where .hxc(r1, r2) is the exchange-correlation hole. Introducing the conditional 
density .ρcond(r1, r2) = ρ2(r1, r2)/ρ(r1) of the remaining .N − 1 electrons at . r2
given that one electron has been found at . r1, the exchange-correlation hole can 
be interpreted as the modification of .ρcond(r1, r2) due to exchange and correlation 
effects: 

.ρcond(r1, r2) = ρ(r2) + hxc(r1, r2). (1.46) 

The positivity of .ρ2(r1, r2) implies that 

. hxc(r1, r2) ≥ −ρ(r2).

Moreover, from Eq. (1.46), we have the following sum rule: 

.∀r1 ∈ R3,

∫

R
3
hxc(r1, r2)dr2 = −1. (1.47) 

We can separate the exchange and correlation contributions in the exchange-
correlation hole. For this, consider the pair density .ρ2,KS(r1, r2) associated with 
the KS single-determinant wave function .�[ρ] defined in Eq. (1.11). It can be 
decomposed as 

.ρ2,KS(r1, r2) = ρ(r1)ρ(r2) + ρ2,x(r1, r2), (1.48) 

where .ρ2,x(r1, r2) is the exchange pair density, which is further written as 

.ρ2,x(r1, r2) = ρ(r1)hx(r1, r2), (1.49) 

where .hx(r1, r2) is the exchange hole. Just like the exchange-correlation hole, the 
exchange hole satisfies the conditions 

.hx(r1, r2) ≥ −ρ(r2),
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and 

.∀r1 ∈ R3,

∫

R
3
hx(r1, r2)dr2 = −1. (1.50) 

Moreover, since the exchange hole can be written as [compare with Eq. (1.17)] 

.hx(r1, r2) = − 1

ρ(r1)

∑

σ∈{↑,↓}
|γσ (r1, r2)|2, (1.51) 

where .γσ (r1, r2) = ∑Nσ

i=1 ϕ∗
iσ (r2)ϕiσ (r1) is the spin-dependent one-particle KS 

density matrix, it thus appears that the exchange hole is always non-positive, 

.hx(r1, r2) ≤ 0. (1.52) 

From Eqs. (1.16), (1.43), (1.48), and (1.49), it can be seen that the exchange energy 
functional can be written in terms of the exchange hole, 

.Ex[ρ] = 1

2

∫

R
3×R3

ρ(r1)hx(r1, r2)

|r1 − r2| dr1dr2, (1.53) 

leading to the interpretation of .Ex as the electrostatic interaction energy of an 
electron and its exchange hole. It is useful to write the exchange energy functional 
as 

.Ex[ρ] =
∫

R
3
ρ(r1)εx[ρ](r1)dr1, (1.54) 

where .εx[ρ](r1) is the exchange energy density per particle, 

.εx[ρ](r1) = 1

2

∫

R
3

hx(r1, r2)

|r1 − r2| dr2, (1.55) 

which is itself a functional of the density. It is also convenient to define the exchange 
energy density .ex[ρ](r) = ρ(r)εx[ρ](r). For finite systems, we have the exact 
asymptotic behavior [18, 168] 

.εx[ρ](r) ∼|r|→+∞ − 1

2|r| . (1.56) 

The correlation hole is defined as the difference 

.hc(r1, r2) = hxc(r1, r2) − hx(r1, r2),
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and, from Eqs. (1.47) and (1.50), satisfies the sum rule 

.∀r1 ∈ R3,

∫

R
3
hc(r1, r2)dr2 = 0, (1.57) 

which implies that the correlation hole has negative and positive contributions.3 In 
contrast with the exchange hole which is a smooth function of the interelectronic 
coordinate .r12 = r2 − r1, the correlation hole satisfies the electron-electron cusp 
condition (i.e., it has a derivative discontinuity in . r12) [132, 252], 

.∀r1 ∈ R3, h′
c(r1, r1) = hc(r1, r1), (1.58) 

where .h′
c(r1, r1) = (∂h̃c(r1, r12)/∂r12)r12=0 is the first-order derivative of the 

spherically averaged correlation hole . ̃hc(r1, r12) = (1/4πr2
12)
∫
S(0,r12)

hc(r1, r1 +
r12)dr12 and .S(0, r12) designates the sphere centered at . 0 and of radius .r12 = |r12|. 
The potential contribution to the correlation energy can be written in terms of the 
correlation hole: 

.Uc[ρ] = 1

2

∫

R
3×R3

ρ(r1)hc(r1, r2)

|r1 − r2| dr1dr2. (1.59) 

In order to express the total correlation energy .Ec[ρ] = Tc[ρ] + Uc[ρ] in a form 
similar to Eq. (1.59), we need to introduce the adiabatic-connection formalism. 

1.2.2 The Adiabatic Connection 

The idea of the adiabatic connection [102, 146, 147] (see, also, Ref. [106]) is to 
have a continuous path between the non-interacting KS system and the physical 
system while keeping the ground-state density constant. This allows one to obtain 
a convenient expression for the correlation functional .Ec[ρ] as an integral over this 
path. An infinity of such paths are possible, but the one most often considered 
consists in switching on the electron-electron interaction linearly with a coupling 
constant . λ. The Hamiltonian along this adiabatic connection is 

.Ĥ λ = T̂ + λŴee + V̂ λ, (1.60) 

where .V̂ λ is the external local potential operator imposing that the ground-state 
density is the same as the ground-state density of the physical system for all . λ ∈
R. Of course, Eq. (1.60) relies on a v-representability assumption, i.e. the external

3 Therefore, the correlation hole is really a “hole” only in some region of space, and a “bump” in 
other regions. 
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potential is assumed to exist for all . λ. The Hamiltonian (1.60) reduces to the KS 
non-interacting Hamiltonian for .λ = 0 and to the physical Hamiltonian for .λ = 1. 

Just as for the physical system, it is possible to define a universal functional 
associated with the system of Eq. (1.60) for each value of the parameter . λ, 

.Fλ[ρ] = min
�∈WN

ρ

〈�| T̂ + λŴee |�〉 = 〈�λ[ρ]| T̂ + λŴee |�λ[ρ]〉 , (1.61) 

where .�λ[ρ] denotes a minimizing wave function. This functional can be decom-
posed as 

.Fλ[ρ] = Ts[ρ] + Eλ
Hxc[ρ], (1.62) 

where .Eλ
Hxc[ρ] is the Hartree-exchange-correlation functional associated with the 

interaction .λŴee. One can write this functional as . Eλ
Hxc[ρ] = Eλ

H[ρ] + Eλ
x [ρ] +

Eλ
c [ρ], where the Hartree and exchange contributions are simply linear in . λ, 

. Eλ
H[ρ] = 1

2

∫

R
3×R3

ρ(r1)ρ(r2)
λ

|r1 − r2|dr1dr2 = λEH[ρ],

and 

. Eλ
x [ρ] = 〈�[ρ]| λŴee |�[ρ]〉 − Eλ

H[ρ] = λEx[ρ].

The correlation contribution is nonlinear in . λ, 

.Eλ
c [ρ] = 〈�λ[ρ]| T̂ + λŴee |�λ[ρ]〉 − 〈�[ρ]| T̂ + λŴee |�[ρ]〉 . (1.63) 

We will assume that .Fλ[ρ] is of class . C1 as a function of . λ for .λ ∈ [0, 1] and 
that .Fλ=0[ρ] = Ts[ρ], the latter condition being guaranteed for nondegenerate KS 
systems [see footnote on the definition of .Ts[ρ] just before Eq. (1.11)]. Taking the 
derivative of Eq. (1.63) with respect to . λ and using the Hellmann–Feynman theorem 
for the wave function .�λ[ρ],4 we obtain 

.
∂Eλ

c [ρ]
∂λ

= 〈�λ[ρ]| Ŵee |�λ[ρ]〉 − 〈�[ρ]| Ŵee |�[ρ]〉 . (1.64) 

4 In this context, the Hellmann–Feynman theorem states that in the derivative 

. 
∂Fλ[ρ]

∂λ
= 〈 ∂�λ[ρ]

∂λ
| T̂ + λŴee |�λ[ρ]〉 + 〈�λ[ρ]| Ŵee |�λ[ρ]〉 + 〈�λ[ρ]| T̂ + λŴee | ∂�λ[ρ]

∂λ
〉

the first and third terms involving the derivative of .�λ[ρ] vanish. This is due to the fact that . �λ[ρ]
is obtained via the minimization of Eq. (1.61) and thus any variation of .�λ[ρ] which keeps the 
density constant (which is the case for a variation with respect to . λ) gives a vanishing variation of 
.Fλ[ρ]. 
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Integrating over . λ from 0 to 1, and using .Eλ=1
c [ρ] = Ec[ρ] and .Eλ=0

c [ρ] = 0, we  
arrive at the adiabatic-connection formula for the correlation energy functional of 
the physical system 

.Ec[ρ] =
∫ 1

0
dλ 〈�λ[ρ]| Ŵee |�λ[ρ]〉 − 〈�[ρ]| Ŵee |�[ρ]〉 . (1.65) 

By introducing the correlation hole .hλ
c (r1, r2) associated to the wave function 

.�λ[ρ], the adiabatic-connection formula for the correlation energy can also be 
written as 

.Ec[ρ] = 1

2

∫ 1

0
dλ

∫

R
3×R3

ρ(r1)h
λ
c (r1, r2)

|r1 − r2| dr1dr2, (1.66) 

or, noting that .hλ
c (r1, r2) is the only quantity that depends on . λ in Eq. (1.66), in a 

more compact way, 

.Ec[ρ] = 1

2

∫

R
3×R3

ρ(r1)h̄c(r1, r2)

|r1 − r2| dr1dr2, (1.67) 

where .h̄c(r1, r2) = ∫ 1
0 dλ hλ

c (r1, r2) is the coupling-constant-integrated correlation 
hole. This leads to the interpretation of . Ec as the electrostatic interaction energy 
of an electron with its coupling-constant-integrated correlation hole. As for the 
exchange energy, the correlation energy functional can be written as 

.Ec[ρ] =
∫

R
3
ρ(r1)εc[ρ](r1)dr1, (1.68) 

where .εc[ρ](r1) is the correlation energy density per particle 

.εc[ρ](r1) = 1

2

∫

R
3

h̄c(r1, r2)

|r1 − r2| dr2, (1.69) 

which is a functional of the density. We can also define the correlation energy 
density .ec[ρ](r) = ρ(r)εc[ρ](r). 

Finally, note that the sum-rule and cusp conditions of Eqs. (1.57) and (1.58) apply 
to the .λ-dependent correlation hole in the form 

.∀r1 ∈ R3,

∫

R
3
hλ

c (r1, r2)dr2 = 0, (1.70) 

and 

.∀r1 ∈ R3, hλ ′
c (r1, r1) = λ hλ

c (r1, r1). (1.71)
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1.2.3 One-Orbital and One-Electron Spatial Regions 

For systems composed of only one spin-. ↑ (or, symmetrically, one spin-. ↓) electron 
(e.g., the hydrogen atom) with ground-state density .ρ1e(r) = |ϕ1↑(r)|2 where 
.ϕ1↑(r) is the unique occupied KS orbital, the exchange hole in Eq. (1.51) simplifies 
to .hx(r1, r2) = −ρ(r2), and consequently the exchange energy cancels out the 
Hartree energy: 

.Ex[ρ1e] = −EH[ρ1e]. (1.72) 

Furthermore, the correlation energy vanishes: 

.Ec[ρ1e] = 0. (1.73) 

This must of course also be true for the spin-dependent version of the functionals 
introduced in Sect. 1.1.3.3, i.e. 

.Ex[ρ1e, 0] = −EH[ρ1e] (1.74) 

and 

.Ec[ρ1e, 0] = 0. (1.75) 

For systems composed of two opposite-spin electrons (e.g., the helium atom or the 
dihydrogen molecule) in a unique doubly occupied KS orbital . ϕ1(r) = ϕ1↑(r) =
ϕ1↓(r) with ground-state density .ρ↑↓

2e (r) = 2|ϕ1(r)|2, the exchange hole simplifies 
to .hx(r1, r2) = −ρ(r2)/2, and consequently the exchange energy is equal to half 
the opposite of the Hartree energy: 

.Ex[ρ↑↓
2e ] = −1

2
EH[ρ↑↓

2e ]. (1.76) 

These are constraints for the exchange and correlation density functionals in the 
special cases .N = 1 and .N = 2. 

These special cases can be extended to more general systems. For systems with 
.N � 1 electrons containing a spatial region .�↑

1o in which, among the occupied KS 
orbitals, only one spin-. ↑ (or, symmetrically, one spin-. ↓) orbital is not zero (or, more 
generally, takes non-negligible values), we have again in this region 

.∀r1, r2 ∈ �
↑
1o, hx(r1, r2) = −ρ(r2),
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and therefore the contribution to the exchange energy density per particle coming 
from this region must locally cancel out the contribution to the Hartree energy 
density per particle coming from the same region, 

.∀r1 ∈ �
↑
1o, ε

�
↑
1o

x (r1) = −ε
�

↑
1o

H (r1), (1.77) 

where 

. ε�
H (r1)=(1/2)

∫

�

ρ(r2)/|r1−r2|dr2 and ε�
x (r1)=(1/2)

∫

�

hx(r1, r2)/|r1−r2|dr2.

Similarly, for systems with .N � 2 electrons containing a spatial region .�↑↓
1o in 

which, among the occupied KS orbitals, only one doubly occupied orbital is not 
zero, we have in this region 

. ∀r1, r2 ∈ �
↑↓
1o , hx(r1, r2) = −1

2
ρ(r2),

and therefore the contribution to the exchange energy density per particle coming 
from this region must locally be equal to half the opposite of the contribution to the 
Hartree energy density per particle coming from the same region, 

.∀r1 ∈ �
↑↓
1o , ε

�
↑↓
1o

x (r1) = −1

2
ε
�

↑↓
1o

H (r1). (1.78) 

Thus, we see, particularly clearly for these .�↑
1o or .�↑↓

1o regions, that the Hartree 
functional introduces a spurious self-interaction contribution which must be elimi-
nated by the exchange functional. Even though the concepts of .�

↑
1o and .�

↑↓
1o regions 

are formal, in practice they can be approximately realized in chemical systems. For 
example, the unpaired electron in a radical approximately corresponds to a .�↑

1o, 
and an electron pair in a single covalent bond, in a lone pair, or in a core orbital 
approximately corresponds to a .�↑↓

1o region. 
We can also consider one-electron regions .�1e that we define as5 

.∀r1, r2 ∈ �1e, ∀λ ∈ (0, 1], ρλ
2 (r1, r2) = 0, (1.79) 

where .ρλ
2 (r1, r2) is the pair density associated to the wave function .�λ[ρ] along the 

adiabatic connection. This implies 

.∀r1, r2 ∈ �1e, h̄xc(r1, r2) = −ρ(r2),

5 In the definition of Eq. (1.79) we exclude the point .λ = 0 in order to allow for the possibility of 
a discontinuity in . λ there due to a degeneracy. 
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where .h̄xc(r1, r2) = hx(r1, r2) + h̄c(r1, r2) and, consequently, the contribution to 
the exchange-correlation energy density per particle coming from this region must 
locally cancel out the contribution to the Hartree energy density per particle coming 
from the same region, 

.∀r1 ∈ �1e, ε�1e
xc (r1) = −ε

�1e
H (r1), (1.80) 

where .ε�
xc(r1) = (1/2)

∫
�

h̄xc(r1, r2)/|r1 − r2|dr2. For regions that are simultane-
ously one-electron and one-orbital regions, this simply implies that the contribution 
to the correlation energy must vanish, 

.∀r1 ∈ �1e ∩ �
↑
1o, ε

�1e∩�
↑
1o

c (r1) = 0, (1.81) 

where .ε�
c (r1) = (1/2)

∫
�

h̄c(r1, r2)/|r1 − r2|dr2, and we say that the correlation 
functional must not introduce a self-interaction error. However, the definition of 
.�1e regions also includes the case of an electron entangled in several orbitals, 
such as the region around one hydrogen atom in the dissociated dihydrogen 
molecule. In this latter case, the Hartree functional introduces an additional spurious 
contribution (beyond the spurious self-interaction) which must be compensated by 
a static correlation (or strong correlation) contribution in the exchange-correlation 
functional. 

1.2.4 Coordinate Scaling 

1.2.4.1 Uniform Coordinate Scaling 

We consider a norm-preserving uniform scaling of the spatial coordinates in the 
N -electron wave function along the adiabatic connection .�λ[ρ] [introduced in 
Eq. (1.61)] while leaving untouched the spin coordinates [154, 155, 157], 

. �λ
γ [ρ](r1, σ1, . . . , rN, σN) = γ 3N/2�λ[ρ](γ r1, σ1, , . . . , γ rN, σN),

where .γ ∈ (0,+∞) is a scaling factor. The scaled wave function .�λ
γ [ρ] yields the 

scaled density 

. ργ (r) = γ 3ρ(γ r),

with .
∫
R

3ργ (r)dr = ∫
R

3ρ(r)dr = N , and minimizes .〈�| T̂ + λγ Ŵee |�〉 since 

. 〈�λ
γ [ρ]| T̂ + λγ Ŵee |�λ

γ [ρ]〉 = γ 2 〈�λ[ρ]| T̂ + λŴee |�λ[ρ]〉 .
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We thus conclude that the scaled wave function at the density . ρ and coupling 
constant . λ corresponds to the wave function at the scaled density . ργ and coupling 
constant . λγ , 

. �λ
γ [ρ] = �λγ [ργ ],

or, equivalently, 

. �λ/γ
γ [ρ] = �λ[ργ ],

and that the universal density functional satisfies the scaling relation 

. Fλγ [ργ ] = γ 2Fλ[ρ],

or, equivalently, 

.Fλ[ργ ] = γ 2Fλ/γ [ρ]. (1.82) 

At .λ = 0, we find the scaling relation of the KS wave function .�[ρ] introduced 
in Sect. 1.1.3.1: 

. �[ργ ] = �γ [ρ].

This directly leads to the scaling relation for the non-interacting kinetic density 
functional [see Eq. (1.11)], 

. Ts[ργ ] = γ 2Ts[ρ],

for the Hartree density functional [see Eq. (1.14)], 

. EH[ργ ] = γEH[ρ],

and for the exchange density functional [see Eq. (1.16)], 

.Ex[ργ ] = γEx[ρ]. (1.83) 

However, the correlation density functional .Ec[ρ] has the more complicated 
scaling (as .F [ρ]), 

. Eλ
c [ργ ] = γ 2E

λ/γ
c [ρ],

and, in particular for .λ = 1, 

.Ec[ργ ] = γ 2E
1/γ
c [ρ]. (1.84)
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These scaling relations allow one to find the behavior of the density functionals in 
the high- and low-density limits. In the high-density limit (.γ → ∞), it can be shown 
from Eq. (1.84) that, for nondegenerate KS systems, the correlation functional . Ec[ρ]
goes to a constant, 

. lim
γ→∞ Ec[ργ ] = EGL2

c [ρ], (1.85) 

where .EGL2
c [ρ] is the second-order Görling–Levy (GL2) correlation energy [90, 91] 

(see Sect. 1.7.2). This is also called the weak-correlation limit since in this limit 
the correlation energy is negligible with respect to the exchange energy which 
is itself negligible with respect to the non-interacting kinetic energy: . |Ec[ργ ]| =
O(γ 0) � |Ex[ργ ]| = O(γ ) � Ts[ργ ] = O(γ 2). Equation (1.85) is an important 
constraint since atomic and molecular correlation energies are often close to the 
high-density limit. For example, for the ground-state density of the helium atom, 
we have .Ec[ρ] = −0.0421 hartree and .limγ→∞ Ec[ργ ] = −0.0467 hartree [119]. 

In the low-density limit (.γ → 0), it can be shown from Eq. (1.82) that the 
Hartree-exchange-correlation energy .EHxc[ρ] goes to zero linearly in . γ , 

.EHxc[ργ ] ∼
γ→0

γ WSCE
ee [ρ], (1.86) 

where .WSCE
ee [ρ] = inf

�∈WN
ρ

〈�| Ŵee |�〉 is the strictly-correlated-electron (SCE) 

functional [86, 220, 221, 223]. This is also called the strong-interaction limit 
since in this limit the Hartree-exchange-correlation energy dominates over the non-
interacting kinetic energy: .EHxc[ργ ] = O(γ ) � Ts[ργ ] = O(γ 2). In this limit, 
the electrons strictly localize relatively to each other. In particular, for the uniform-
electron gas, this corresponds to the Wigner crystallization. Thus, in this limit, each 
electron is within a one-electron region .�1e [as defined in Eq. (1.79)]. For more 
information on the SCE functional, see Chap. 4 by Friesecke et al. in this volume. 

1.2.4.2 Non-uniform Coordinate Scaling 

We can also consider non-uniform one-dimensional or two-dimensional coordinate 
scalings of the density [156, 184], 

.ρ(1)
γ (x, y, z) = γρ(γ x, y, z) (1.87) 

and 

.ρ(2)
γ (x, y, z) = γ 2ρ(γ x, γy, z), (1.88) 

which also preserve the number of the electrons. These non-uniform density scalings 
provide constraints for the exchange and correlation functionals. In particular, in the
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non-uniform one-dimensional high-density limit, the exchange functional remains 
finite and the correlation functional vanishes [89, 154]: 

. lim
γ→∞ Ex[ρ(1)

γ ] > −∞ (1.89) 

and 

. lim
γ→∞ Ec[ρ(1)

γ ] = 0. (1.90) 

Also, in the non-uniform two-dimensional low-density limit, we have [89, 154]: 

. lim
γ→0

1

γ
Ex[ρ(2)

γ ] > −∞ (1.91) 

and 

. lim
γ→0

1

γ
Ec[ρ(2)

γ ] = 0. (1.92) 

The conditions of Eqs. (1.89)–(1.92) are particularly useful because they also 
correspond to the limit of rapidly varying densities [158]. 

1.2.5 Atoms in the Limit of Large Nuclear Charge 

A practical realization of the uniform high-density limit is provided by atomic ions 
in the limit of large nuclear charge, .Z → ∞, at fixed electron number N (see 
Refs. [65, 66, 123, 233]). In this limit, the exact ground-state atomic density . ρN,Z(r)
becomes the density of the isoelectronic hydrogenic (i.e., without electron-electron 
interaction) atom .ρH

N,Z(r), which obeys a simple scaling with Z: 

. ρN,Z(r) ∼
Z→∞ ρH

N,Z(r) = Z3ρH
N,Z=1(Zr).

One can thus apply Eqs. (1.83) and (1.85) with .γ = Z, which reveals that in an 
isoelectronic series the exchange functional scales linearly with Z, 

.Ex[ρN,Z] ∼
Z→∞ Ex[ρH

N,Z=1]Z, (1.93) 

and, for nondegenerate KS systems, the correlation functional saturates to a 
constant, 

. lim
Z→∞ Ec[ρN,Z] = EGL2

c [ρH
N,Z=1]. (1.94)
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Equations (1.93) and (1.94) are constraints for the exchange and correlation 
functionals, particularly relevant for highly ionized atoms but also for the core-
electron regions of heavy atoms in neutral systems. 

Another very interesting limit is the one of large nuclear charge of neutral atoms, 
.N = Z → ∞ (see, e.g., Ref. [129]). In this semiclassical limit, the exact ground-
state atomic density .ρN,Z(r) tends to the Thomas–Fermi (TF) density of a neutral 
atom .ρTF

Z (r) which has a known scaling with Z [162, 163]: 

.ρZ,Z(r) ∼
Z→∞ ρTF

Z (r) = Z2ρTF
Z=1(Z

1/3r). (1.95) 

In this limit, it was suggested that the exact exchange and correlation energies have 
the approximate large-Z asymptotic expansions [28, 30, 51] 

.Ex[ρZ,Z] ∼
Z→∞ −AxZ

5/3 + BxZ + · · · (1.96) 

and 

.Ec[ρZ,Z] ∼
Z→∞ −AcZ ln Z + BcZ + · · · , (1.97) 

with the coefficients .Ax = 0.220827, .Ac = 0.020727, .Bx ≈ 0.224, .Bc ≈ 0.0372. 
Recently, it was argued that there is in fact a missing term in .Z ln Z in the expansion 
of the exchange energy in Eq. (1.96) [10, 42]. 

1.2.6 Lieb–Oxford Lower Bound 

Lieb and Oxford derived a lower bound for the indirect Coulomb energy (i.e., the 
two-particle Coulomb potential energy beyond the Hartree energy) [161], which, 
when expressed in terms of the exchange or exchange-correlation functional, takes 
the form [187] 

.Ex[ρ] � Exc[ρ] � −CLO

∫

R
3
ρ(r)4/3dr, (1.98) 

where the optimal (i.e., smallest) constant .CLO (independent of the electron number 
N ) was originally shown to be in the range .1.23 � CLO � 1.68 [161]. The range 
was later successively narrowed to .1.4442 � CLO � 1.5765 [36, 41, 159, 187]. 
This bound is approached only in the low-density limit where the correlation energy 
becomes comparable to the exchange energy. Numerical results suggest that for 
densities of most physical systems the Lieb–Oxford lower bound on the exchange-
correlation energy is far from being reached [182].
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For two-electron densities, there is a specific tighter bound, 

.Ex[ρ2e] � Exc[ρ2e] � −C2

∫

R
3
ρ2e(r)4/3dr, (1.99) 

with the best known constant .C2 = 1.234 [161]. For one-electron densities, an even 
tighter bound is known for the exchange functional [74, 161], 

.Ex[ρ1e] � −C1

∫

R
3
ρ1e(r)4/3dr, (1.100) 

with the optimal constant .C1 = 1.092. For two-electron spin-unpolarized densities, 
we have .Ex[ρ↑↓

2e ] = 2Ex[ρ1e] with .ρ1e = ρ
↑↓
2e /2, and Eq. (1.100) implies [194] 

.Ex[ρ↑↓
2e ] � − C1

21/3

∫

R
3
ρ

↑↓
2e (r)4/3dr, (1.101) 

which is a much tighter bound than the bounds of Eqs. (1.98) and (1.99). 

1.3 Semilocal Approximations for the Exchange-Correlation 
Energy 

We review here the different classes of semilocal approximations for the exchange-
correlation energy. 

1.3.1 The Local-Density Approximation 

In the local-density approximation (LDA), introduced by Kohn and Sham [135], the 
exchange-correlation functional is approximated as 

. ELDA
xc [ρ] =

∫

R
3
eUEG

xc (ρ(r))dr,

where .eUEG
xc (ρ) is the exchange-correlation energy density of the infinite uniform 

electron gas (UEG) with the density . ρ. The UEG represents a family of systems of 
interacting electrons with an arbitrary spatially constant density .ρ ∈ [0,+∞) that 
acts as a parameter. Thus, in the LDA, the exchange-correlation energy density of 
an inhomogeneous system at a spatial point of density .ρ(r) is approximated as the 
exchange-correlation energy density of the UEG of the same density. 

In the spin-dependent version of LDA, sometimes specifically referred to as the 
local-spin-density approximation (LSDA), the exchange-correlation functional is
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approximated as [13] 

. ELSDA
xc [ρ↑, ρ↓] =

∫

R
3
eUEG

xc (ρ↑(r), ρ↓(r))dr,

where .eUEG
xc (ρ↑, ρ↓) is the exchange-correlation energy density of the UEG with 

spin densities .ρ↑ and . ρ↓. For spin-unpolarized systems, we recover the spin-
independent LDA as .ELDA

xc [ρ] = ELSDA
xc [ρ/2, ρ/2]. 

The function .eUEG
xc is a sum of exchange and correlation contributions, . eUEG

xc =
eUEG

x + eUEG
c , and it is convenient to introduce exchange and correlation energies 

per particle, .εUEG
x and .εUEG

c , such that .eUEG
x = ρ εUEG

x and .eUEG
c = ρ εUEG

c . The  
expression of the exchange energy per particle of the spin-unpolarized UEG is 

.εUEG
x (ρ) = Cx ρ1/3, (1.102) 

where .Cx = −(3/4)(3/π)1/3, and the spin-polarized version is simply obtained 
from the spin-scaling relation [Eq. (1.36)], leading to 

. εUEG
x (ρ↑, ρ↓) = εUEG

x (ρ)φ4(ζ ),

where .ζ = (ρ↑ − ρ↓)/ρ is the spin polarization and .φ4(ζ ) is defined by the general 
spin-scaling function 

.φn(ζ ) = (1 + ζ )n/3 + (1 − ζ )n/3

2
. (1.103) 

The LDA exchange functional is associated with the names of Dirac [44] and 
Slater [228]. For a rigorous mathematical derivation of Eq. (1.102), see Ref. [64]. 

The correlation energy per particle .εUEG
c (ρ↑, ρ↓) of the UEG cannot be cal-

culated analytically. This quantity has been obtained numerically for a sample 
of densities and fitted to a parametrized function satisfying the known high- and 
low-density expansions. Expressed in terms of the Wigner–Seitz radius . rs =
(3/(4πρ))1/3, the first terms of the high-density expansion (. rs → 0) have the form  

.εUEG
c (ρ↑, ρ↓) = A(ζ ) ln rs + B(ζ ) + C(ζ )rs ln rs + O(rs), (1.104) 

with spin-unpolarized coefficients .A(0) = (1 − ln 2)/π2, .B(0) = −0.046921, 
.C(0) = 0.009229, and fully spin-polarized coefficients .A(1) = A(0)/2, . B(1) =
−0.025738, .C(1) = 0.004792. The first terms of the low-density expansion (. rs →
+∞) have the form 

.εUEG
c (ρ↑, ρ↓) = a

rs
+ b

r
3/2
s

+ c

r2
s

+ O

(
1

r
5/2
s

)
, (1.105)
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where the coefficients .a = −0.895930, .b = 1.325, and .c = −0.365 are assumed to 
be independent of . ζ . The low-density limit of the UEG corresponds to the Wigner 
crystallization. For a recent review of results on the UEG, see Ref. [165]. 

The two most used parametrizations are the one of Vosko, Wilk, and Nusair 
(VWN) [265] and the more recent one of Perdew and Wang (PW92) [199] which 
we give here. In this parametrization, the UEG correlation energy per particle is 
estimated using the approximate spin-interpolation formula 

. εPW92
c (ρ↑, ρ↓) = εc(rs, 0) + αc(rs)

f (ζ )

f ′′(0)
(1 − ζ 4) + [εc(rs, 1) − εc(rs, 0)]f (ζ )ζ 4,

(1.106) 

where .εc(rs, ζ ) is the UEG correlation energy per particle as a function of . rs and . ζ , 
.f (ζ ) = [(1+ ζ )4/3 + (1− ζ )4/3 −2]/(24/3 −2) is a spin-scaling function borrowed 
from the exchange energy, and .αc(rs) = (∂2εc(rs, ζ )/∂ζ 2)ζ=0 is the spin stiffness. 
This spin-interpolation formula was first proposed in the VWN parametrization 
based on a study of the . ζ dependence of the UEG correlation energy per particle 
at the random-phase approximation (RPA) level. A unique parametrization function 

. G(rs, A, α1, β1, β2, β3, β4)

= −2(1 + α1rs)Aln

⎡

⎣1 + 1

2A
(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r2

s

)

⎤

⎦ ,

is then used for approximating .εc(rs, 0), .εc(rs, 1), and .−αc(rs), where 

. εc(rs, 0) = G(rs, A0, α1,0, β1,0, β2,0, β3,0, β4,0),

. εc(rs, 1) = G(rs, A1, α1,1, β1,1, β2,1, β3,1, β4,1),

. − αc(rs) = G(rs, A2, α1,2, β1,2, β2,2, β3,2, β4,2).

The form of G was chosen to reproduce the form of the high- and low-density 
expansions. The parameters . Ai , .β1,i , and .β2,i (with .i ∈ {0, 1, 2}) are fixed by the 
first two terms of the high-density expansion, while the parameters .α1,i , .β3,i , and 
.β4,i are fitted to quantum Monte Carlo (QMC) data [32] for .εc(rs, 0) and .εc(rs, 1), 
and to an estimation of .−αc(rs) extrapolated from RPA data. The parameters are 
given in Table I of Ref. [199]. 

We now discuss the merits and deficiencies of the LDA. By construction, the 
LDA is of course exact in the limit of uniform densities. More relevant to atomic 
and molecular systems is that the LDA exchange and correlation energies are 
asymptotically exact in the limit of large nuclear charge of neutral atoms . N =
Z → ∞. Indeed, in this semiclassical Thomas–Fermi limit, the LDA gives the 
exact coefficients . Ax and . Ac of the leading terms in the asymptotic expansions of
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Eqs. (1.96) and (1.97) [190]. However, the coefficients of the next terms are very 
different: .BLDA

x ≈ 0 instead of .Bx ≈ 0.224 and .BLDA
c ≈ −0.00451 instead of 

.Bc ≈ 0.0372 [28]. 
Due to the scaling of the UEG exchange energy per particle, 

. εUEG
x (γ 3ρ↑, γ 3ρ↓) = γ εUEG

x (ρ↑, ρ↓),

the LDA exchange functional correctly scales linearly under uniform coordinate 
scaling of the density [Eq. (1.83)]. Similarly, due the scaling of the UEG correlation 
energy per particle in the low-density limit [Eq. (1.105)], 

.εUEG
c (γ 3ρ↑, γ 3ρ↓) ∼

γ→0
γ

a

rs
, (1.108) 

the LDA correlation functional correctly scales linearly under uniform coordinate 
scaling to the low-density limit [Eq. (1.86)]. However, from the behavior of .εUEG

c in 
the high-density limit [Eq. (1.104)], 

.εUEG
c (γ 3ρ↑, γ 3ρ↓) ∼

γ→∞ −A(ζ ) ln γ, (1.109) 

we see that the LDA correlation functional diverges logarithmically under uniform 
coordinate scaling to the high-density limit whereas the exact correlation functional 
goes to a constant for nondegenerate KS systems [Eq. (1.85)]. Consequently, in 
the limit of large nuclear charge, .Z → ∞, at fixed electron number N , the  
LDA exchange energy correctly scales linearly with Z [Eq. (1.93)], albeit with 
an incorrect coefficient, and the LDA correlation energy does not reproduce the 
exact saturation behavior [Eq. (1.94)] for a nondegenerate isoelectronic series but 
incorrectly diverges [193]. Also, the LDA exchange and correlation functionals do 
not satisfy the non-uniform scaling conditions of Eqs. (1.89)–(1.92), but instead both 
diverge in these limits. 

The LDA can also be thought of as approximating the exchange and the 
(coupling-constant-integrated) correlation holes of an inhomogeneous system in 
Eqs. (1.55) and (1.69) by the corresponding exchange and correlation holes of the 
UEG. Namely, considering the spin-independent version for simplicity, the LDA 
exchange hole is 

.hLDA
x (r1, r2) = hUEG

x (ρ(r1), r12), (1.110) 

with 

.hUEG
x (ρ, r12) = −ρ

9

2

(
j1(kFr12)

kFr12

)2

, (1.111)
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where .r12 = |r2 − r1| is the interelectronic distance, .kF = (3π2ρ)1/3 is the Fermi 
wave vector, and . j1 is the spherical Bessel function of the first kind. Similarly, the 
LDA correlation hole is 

. ̄hLDA
c (r1, r2) = h̄UEG

c (ρ(r1), r12) =
∫ 1

0
dλ hλ,UEG

c (ρ(r1), r12).

Since the UEG is a physical system, the LDA exchange hole correctly fulfills the 
negativity and sum-rule condition [Eqs. (1.50) and (1.52)] and the LDA correlation 
hole correctly fulfills the sum-rule and electron-electron cusp condition [Eqs. (1.70) 
and (1.71)]. This constitutes a significant merit of the LDA. However, because the 
LDA exchange hole .hLDA

x (r1, r2) only depends on .ρ(r1) and not on . ρ(r2), the LDA  
exchange functional does not entirely eliminate the self-interaction contribution of 
the Hartree functional, in particular in one and two-electron systems [Eqs. (1.72) 
or (1.74), and (1.76)], or in one-orbital spatial regions of many-electron systems 
[Eqs. (1.77) and (1.78)]. Similarly, the LDA correlation functional does not vanish 
in one-electron systems [Eqs. (1.73) or (1.75)], or more generally in one-orbital 
one-electron regions [Eq. (1.81)]. Thus, the LDA introduces a self-interaction error. 
Moreover, the LDA exchange-correlation functional does not entirely cancel out the 
Hartree energy in entangled one-electron spatial regions [Eq. (1.80], i.e. it introduces 
a static-correlation error. 

Another deficiency of the LDA is that the (spin-independent) LDA exchange 
potential 

. vLDA
x (r) = δELDA

x [ρ]
δρ(r)

= 4

3
Cx ρ(r)1/3,

decays exponentially at infinity for finite molecular systems (since the density . ρ(r)
decays exponentially), i.e. much too fast in comparison to the .−1/|r| asymptotic 
behavior of the exact exchange potential [Eq. (1.27)]. Since asymptotic spatial 
regions are dominated by the highest occupied molecular orbital (HOMO) and are 
thus one-orbital regions (assuming the HOMO is not degenerate), this is another 
signature of the incorrectness of the LDA exchange functional in these one-orbital 
regions. 

For a review of mathematical results on the LDA, see Chap. 3 by Lewin et al. in 
this volume. 

1.3.2 The Gradient-Expansion Approximation 

The next logical step beyond the LDA is the gradient-expansion approxima-
tion (GEA) [135], in which the exchange-correlation functional is systematically 
expanded in the gradient and higher-order derivatives of the density. One way of 
deriving the GEA is to start from the UEG, introduce a weak and slowly-varying
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external potential .δv(r), and expand the exchange-correlation energy in terms of 
the gradients of the density (see, e.g., Refs. [55, 134, 166, 246]). Alternatively, one 
can perform a semiclassical expansion (i.e., an expansion in powers of the reduced 
Planck constant . ̄h) of the exact .Exc[ρ] in terms of the gradients of the external 
potential and use the mapping between the potential and the density to express it in 
terms of the gradients of the density (see, e.g., Ref. [49]). 

The spin-independent gradient expansion of the exchange functional is known 
up to fourth order (GEA4) [246], 

. EGEA4
x [ρ] = ELDA

x [ρ] + C(2)
x

∫

R
3

|∇ρ(r)|2
ρ(r)4/3 dr (1.112)

+C
(4)
x,1

∫

R
3

|∇2ρ(r)|2
ρ(r)2 dr + C

(4)
x,2

∫

R
3

|∇ρ(r)|2 ∇2ρ(r)
ρ(r)3 dr,

involving the density gradient .∇ρ(r) and Laplacian .∇2ρ(r). Sham [224] obtained 
the second-order coefficient .C(2)

x,S = −7/(432π(3π2)1/3) ≈ −0.001667. The  
calculation was done by starting with the screened Yukawa interaction . e−κr12/r12
and taking the limit .κ → 0 at the end of the calculation. It was later shown that 
this calculation contains an order-of-limit problem and that the correct Coulombic 
second-order coefficient is .C(2)

x = −5/(216π(3π2)1/3) ≈ −0.002382 [55, 134]. 
The fourth-order coefficients are .C(4)

x,1 = −73/(64800π3) ≈ −0.000036, and 

.C
(4)
x,2 ≈ 0.00009, where the last one has been numerically estimated [246]. Note that 

each term in Eq. (1.112) correctly fulfills the scaling relation of Eq. (1.83). The spin-
dependent gradient exchange expansion is simply obtained from the spin-scaling 
relation [Eq. (1.36)]. 

Similarly, Ma and Brueckner [166] obtained the spin-independent second-order 
gradient expansion (GEA2) of the correlation functional, 

.EGEA2
c [ρ] = ELDA

c [ρ] +
∫

R
3
C(2)

c (rs(r))
|∇ρ(r)|2
ρ(r)4/3 dr, (1.113) 

with a second-order coefficient in the high-density limit . C
(2)
c,MB(rs → 0) =

0.004235. It is believed [149] that this calculation contains a similar order-of-limit 
problem as in Sham’s coefficient .C(2)

x,S, in such a way that these two coefficients must 
be combined to obtain the correct second-order exchange-correlation coefficient 
in the high-density limit .C(2)

xc (rs → 0) = C
(2)
x,S + C

(2)
c,MB(rs → 0). The correct 

second-order correlation coefficient in the high-density limit is then . C(2)
c (rs →

0) = C
(2)
xc (rs → 0) − C

(2)
x = 0.004950. Similarly, the second-order correlation 

coefficient as a function of . rs can be obtained by .C(2)
c (rs) = C

(2)
xc (rs) − C

(2)
x , where



30 J. Toulouse

.C
(2)
xc (rs) has been parametrized in Ref. [206]. The spin-dependent generalization has 

the form [204, 271] 

.EGEA2
c [ρ↑, ρ↓] = ELSDA

c [ρ↑, ρ↓] (1.114) 

+
∑

σ,σ ′∈{↑,↓}

∫

R
3 
Cσ,σ ′,(2) 

c (rs(r), ζ(r)) 
∇ρσ (r) 
ρσ (r)2/3 · 

∇ρσ ′(r) 
ρσ ′(r)2/3 dr, 

where the functions .Cσ,σ ′,(2)
c (rs, ζ ) have been numerically calculated in the high-

density limit [204, 205]. 
The GEA should improve over the LDA for sufficiently slowly varying densities. 

Since the spin-independent GEA2 exchange energy per particle has the form 

. εGEA2
x (ρ,∇ρ) = ρ1/3(Cx + C(2)

x x2),

where .x = |∇ρ|/ρ4/3 is a dimensionless reduced density gradient, the precise 
condition for exchange is .x � 1. Unfortunately, for real systems like atoms and 
molecules, the reduced density gradient x can be large in some regions of space. 
In particular, in the exponential density tail, .ρ(r) ∝|r|→∞ e−α|r|, the reduced density 

gradient diverges .x(r) −−−−→|r|→∞ ∞. But this is not as bad as it seems since . ρ εGEA2
x

goes to zero anyway in this limit. The situation is more catastrophic for correlation. 
Indeed, in the high-density limit, the spin-independent GEA2 correlation energy per 
particle behaves as 

. εGEA2
c (γ 3ρ, γ 4∇ρ) ∼

γ→∞ −A(0) ln γ + γ 1/2C(2)
c (rs → 0)y2,

where .y = |∇ρ|/ρ7/6 is another reduced density gradient adapted to correlation. 
Therefore, in this limit, the GEA2 correlation correction diverges to .+∞ even faster 
than the LDA diverges to .−∞. 

Another aspect of the deficiency of the GEA is that the corresponding GEA 
exchange and correlation holes have unphysical long-range parts which break the 
negativity [Eq. (1.52)] and sum-rule conditions [Eqs. (1.50) and (1.57)]. 

In practice, the GEA tends to deteriorate the results obtained at the LDA level. 
Truncated gradient expansions should not be directly used but need to be resummed. 

1.3.3 Generalized-Gradient Approximations 

The failures of the GEA led to the development, which really started in the 1980s, 
of generalized-gradient approximations (GGAs) with the generic form 

.EGGA
xc [ρ↑, ρ↓] =

∫

R
3
eGGA

xc (ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r))dr, (1.115)
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where .eGGA
xc is some function. The GGAs are often called semilocal approximations 

in the sense that .eGGA
xc does not only use the local value of the spin densities 

.ρ↑(r) and .ρ↓(r) but also “semilocal information” through its gradients6 
. ∇ρ↑(r)

and .∇ρ↓(r). 
Many GGA functionals have been proposed. They generally provide a big 

improvement over LDA for molecular systems. However, their accuracy is still 
limited, in particular by self-interaction and static-correlation errors. We review here 
some of the most widely used GGA functionals. 

B88 Exchange Functional 
In the Becke 88 (B88 or B) exchange functional [18], the exchange energy density 
is written as 

. eB88
x (ρ↑, ρ↓,∇ρ↑,∇ρ↓) = eUEG

x (ρ↑, ρ↓) −
∑

σ∈{↑,↓}
ρ4/3

σ

βx2
σ

1 + 6βxσ sinh−1(xσ )
,

(1.116) 

where .xσ = |∇ρσ |/ρ4/3
σ . The fact that .eB88

x depends linearly on .ρ
4/3
σ and nonlinearly 

only on the dimensionless reduced density gradient .xσ (r) guarantees the scaling 
relation of Eq. (1.83). Using the exponential decay of the ground-state spin densities 
of Coulombic systems, .ρσ (r) ∝|r|→∞ e−ασ |r|, it can be verified that the chosen form 

for .eB88
x satisfies the exact asymptotic behavior of the exchange energy density per 

particle [Eq. (1.56)], although the corresponding exchange potential does not satisfy 
the exact .−1/r asymptotic behavior [Eq. (1.27)] [54]. For small . xσ , .eB88

x is correctly 
quadratic in . xσ . The parameter .β = 0.0042 was found by fitting to HF exchange 
energies of rare-gas atoms. A very similar value of . β can also be found by imposing 
the coefficient . Bx of the approximate large-Z asymptotic expansion of the exchange 
energy of neutral atoms [Eq. (1.96)] [51]. It turns out that imposing the coefficient of 
the second-order gradient expansion [Eq. (1.112)] would lead to a value of . β about 
two times smaller and would greatly deteriorate the accuracy of the functional for 
atoms and molecules. 

LYP Correlation Functional 
The Lee–Yang–Parr (LYP) [150] correlation functional is one of the rare functionals 
which have not been constructed starting from LDA. It originates from the Colle– 
Salvetti [38] correlation-energy approximation depending on the curvature of the HF 
hole. By using a gradient-expansion approximation of the curvature of the HF hole, 
LYP turned the Colle–Salvetti expression into a density functional depending on 
the density, the density gradient, and the Laplacian of the density. The dependence 
on the Laplacian of the density can be exactly eliminated by an integration by

6 For generality and simplicity, we consider here that the GGAs depend on the spin density 
gradients .∇ρ↑ and .∇ρ↓, but due to rotational invariance GGAs actually depend only on the scalar 
quantities .(∇ρ↑)2, .(∇ρ↓)2, and .∇ρ↑ · ∇ρ↓. 
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parts [174], giving the following correlation energy density 

. eLYP
c (ρ↑, ρ↓,∇ρ↑,∇ρ↓) = −a

4

1 + dρ−1/3

ρ↑ρ↓
ρ

− a b ω(ρ)

{
ρ↑ρ↓

×
[ ∑

σ∈{↑,↓}

(
211/3CFρ8/3

σ −
(

5

2
− δ(ρ)

18

)
|∇ρσ |2

−δ(ρ) − 11

9

ρσ

ρ
|∇ρσ |2

)

+
(

47

18
− 7δ(ρ)

18

)
|∇ρ|2

]
− 2

3
ρ2|∇ρ|2

+
(

2

3
ρ2 − ρ2↑

)
|∇ρ↓|2 +

(
2

3
ρ2 − ρ2↓

)
|∇ρ↑|2

}
,

where .ω(ρ) = ρ−11/3 exp(−cρ−1/3)/(1 + dρ−1/3), . δ(ρ) = cρ−1/3 + dρ−1/3/(1 +
dρ−1/3), and .CF = (3/10)(3π2)2/3. The parameters .a = 0.04918, .b = 0.132, 
.c = 0.2533, and .d = 0.349 were obtained in the original Colle–Salvetti expression 
by a fit to Helium data. Note that the LYP correlation energy vanishes for fully 
spin-polarized densities (.ρ↑ = 0 or .ρ↓ = 0) and therefore correctly vanishes for 
one-electron systems [Eq. (1.75)]. 

PW91 Exchange-Correlation Functional 
The Perdew–Wang 91 (PW91) (see Refs. [29, 187, 189]) exchange-correlation 
functional is based on a model of the exchange hole .hx(r1, r2) in Eq. (1.55) and 
of the coupling-constant-integrated correlation hole .h̄c(r1, r2) in Eq. (1.69). The 
idea is to start from the GEA model of these holes given as gradient expansions 
and remove the unrealistic long-range parts of these holes to restore important 
constraints satisfied by the LDA. Specifically, the spurious positive parts of the GEA 
exchange hole are removed to enforce the negativity condition of Eq. (1.52) and a 
cutoff in .|r1 − r2| is applied to enforce the normalization condition of Eq. (1.50). 
Similarly, a cutoff is applied on the GEA correlation hole to enforce the condition 
that the hole integrates to zero [Eq. (1.70)]. The exchange and correlation energies 
per particle calculated from these numerical holes are then fitted to functions of the 
density and density gradient chosen to satisfy a number of exact constraints. 

The spin-independent PW91 exchange energy density is written as 

.ePW91
x (ρ,∇ρ) = eUEG

x (ρ)F PW91
x (s), (1.117) 

where the so-called enhancement factor is 

. F PW91
x (s) = 1 + 0.19645s sinh−1(7.7956s) + [0.2743 − 0.1508 exp(−100s2)]s2

1 + 0.19645s sinh−1(7.7956s) + 0.004s4
,

(1.118)
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with the reduced density gradient .s = |∇ρ|/(2kFρ) = x/[2(3π2)1/3] where 
.kF = (3π2ρ)1/3 is the Fermi wave vector. The spin-dependent PW91 exchange 
energy density is simply obtained from the spin-scaling relation [Eq. (1.36)]: 
.ePW91

x (ρ↑, ρ↓,∇ρ↑,∇ρ↓) = [ePW91
x (2ρ↑, 2∇ρ↑) + ePW91

x (2ρ↓, 2∇ρ↓)]/2. The  
enhancement factor .F PW91

x (s) satisfies the second-order gradient expansion 
[Eq. (1.112)], .F PW91

x (s) = 1 + μ s2 + O(s4) with . μ = −16π(π/3)2/3C
(2)
x =

10/81 ≈ 0.1235, the local Lieb–Oxford bound, . F PW91
x (s) � −CLO/(Cx21/3) ≈

1.804, which is a sufficient and necessary condition for a spin-dependent GGA 
exchange functional to satisfy the Lieb–Oxford lower bound [Eq. (1.98)] for all 
densities [194] (note however that .1.804 is not an optimal bound), and the condition 
.lims→∞ s1/2F PW91

x (s) < ∞ which guarantees the non-uniform scaling finiteness 
conditions of Eqs. (1.89) and (1.91) [158, 194]. 

The PW91 correlation energy density is written as 

.ePW91
c (ρ↑, ρ↓,∇ρ↑,∇ρ↓) = ρ

[
εUEG

c (ρ↑, ρ↓) + H PW91(ρ↑, ρ↓, t)
]
, (1.119) 

where the gradient correction . H PW91(ρ↑, ρ↓, t) = H0(ρ↑, ρ↓, t) + H1(ρ↑, ρ↓, t)

depends on another reduced density gradient (adapted to correlation) . t =
|∇ρ|/(2φ2(ζ )ksρ) = y/[4φ2(ζ )(3/π)1/6] where .ks = √

4kF/π is the Thomas– 
Fermi screening wave vector and the spin-scaling function .φ2(ζ ) is defined by 
Eq. (1.103), with 

. H0(ρ↑, ρ↓, t) = φ2(ζ )3 β2

2α
ln

[
1 + 2α

β
t2 1 +At2

1 +At2 +A2t4

]
,

. A = 2α

β

[
exp(−2αεUEG

c (ρ↑, ρ↓)/(φ2(ζ )3β2)) − 1
]−1

,

. H1(ρ↑, ρ↓, t)

= 16

(
3

π

)1/3

[Cxc(rs) − C
(2)
c,MB(rs → 0) − C(2)

x ]φ2(ζ )3t2e−100φ2(ζ )4k2
s t2/k2

F ,

and .Cxc(rs) is taken from Ref. [206]. The function .H0(ρ↑, ρ↓, t) was 
chosen so that it fulfills the second-order gradient expansion [Eq. (1.114)], 
.H0(ρ↑, ρ↓, t) = βφ2(ζ )3t2 + O(t4), using an approximate . ζ dependence [271] 
and the Ma–Brueckner high-density-limit second-order coefficient [166] . β =
16(3/π)1/3C

(2)
c,MB(rs → 0) ≈ 0.06673, and so that it cancels the LDA correlation 

in the large-t limit, .limt→∞ H0(ρ↑, ρ↓, t) = −εUEG
c (ρ↑, ρ↓). The only fitted 

parameter is .α = 0.09. The function .H1(ρ↑, ρ↓, t) only serves to restore 
the correct second-order gradient expansion, such that . H PW91(ρ↑, ρ↓, t) =
16(3/π)1/3Cxc(rs)φ2(ζ )3t2 + O(t4), while keeping the large-t limit unchanged.
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PBE Exchange-Correlation Functional 
The Perdew–Burke–Ernzerhof (PBE) [188] exchange-correlation functional is a 
simplification of the PW91 functional with no fitted parameters which gives almost 
the same energies. The spin-independent PBE exchange energy density is written as 

.ePBE
x (ρ,∇ρ) = eUEG

x (ρ)F PBE
x (s), (1.120) 

where the enhancement factor is 

.F PBE
x (s) = 1 + κ − κ

1 + μs2/κ
. (1.121) 

The function .F PBE
x (s) has the second-order gradient expansion . F PBE

x (s) = 1 +
μ s2 + O(s4), and the parameter is chosen as . μ = 16π(π/3)2/3C

(2)
c,MB(rs →

0) ≈ 0.21951 so as to cancel the correlation second-order gradient expansion. The 
second parameter . κ is chosen so as to saturate the local Lieb–Oxford bound, i.e. 
.lims→∞ F PBE

x (s) = 1 + κ = −CLO/(Cx21/3) ≈ 1.804, leading to .κ = 0.804. The  
same exchange functional form was in fact proposed earlier in the Becke 86 (B86) 
functional [17] with empirical parameters (.μ = 0.235, .κ = 0.967). 

A revised version of the PBE exchange functional, called revPBE, was proposed 
where the local Lieb–Oxford bound constraint is relaxed and the parameter . κ =
1.245 is found instead by fitting to exchange-only total atomic energies for He 
and Ar, resulting in more accurate atomic total energies and molecular atomization 
energies [276]. Another revised version of the PBE exchange functional, called 
RPBE, was also proposed to achieve a similar improvement, while still enforcing 
the local Lieb–Oxford bound, by changing the form of the enhancement factor to 
.F RPBE

x (s) = 1 + κ(1 − exp(−μs2/κ)) with the same parameters as in the original 
PBE [103]. 

The PBE correlation energy density is written as 

.ePBE
c (ρ↑, ρ↓,∇ρ↑,∇ρ↓) = ρ

[
εUEG

c (ρ↑, ρ↓) + H PBE(ρ↑, ρ↓, t)
]
, (1.122) 

with the gradient correction 

. H PBE(ρ↑, ρ↓, t) = A(0)φ2(ζ )3 ln

[
1 + β

A(0)
t2 1 +At2

1 +At2 +A2t4

]

and 

. A = β

A(0)

[
exp(−εUEG

c (ρ↑, ρ↓)/(A(0)φ2(ζ )3)) − 1
]−1

.

As in the PW91 correlation functional, the function .H PBE(ρ↑, ρ↓, t) has the 
second-order gradient expansion .H PBE(ρ↑, ρ↓, t) = βφ2(ζ )3t2 + O(t4) where
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.β = 16(3/π)1/3C
(2)
c,MB(rs → 0) ≈ 0.06673, and it cancels the LDA corre-

lation in the large-t limit, .limt→∞ H PBE(ρ↑, ρ↓, t) = −εUEG
c (ρ↑, ρ↓). In con-

trast with the PW91 correlation functional, under uniform coordinate scaling 
to the high-density limit, the PBE correlation functional correctly cancels out 
the logarithm divergence of the LDA correlation functional [Eq. (1.109)], i.e. 
.H PBE(γ 3ρ↑, γ 3ρ↓, γ 1/2t) ∼

γ→∞ A(0)φ2(ζ )3 ln γ , where .A(0)φ2(ζ )3 is a good 

approximation to the coefficient .A(ζ ) [271]. 
A variant of the PBE exchange-correlation functional, called PBEsol [196], 

targeted for solid-state systems, was proposed where the correct second-
order exchange gradient-expansion coefficient is restored, i.e. . μPBEsol =
16π(π/3)2/3C

(2)
x = 10/81 ≈ 0.1235, and the second-order correlation gradient-

expansion coefficient .βPBEsol = 0.046 is found by fitting to jellium surface 
exchange-correlation energies. 

B97-GGA Exchange-Correlation Functional 
The Becke 97 GGA (B97-GGA) exchange-correlation functional is the GGA part 
of the B97 hybrid functional [22] (see Sect. 1.4.1). The B97-GGA exchange energy 
density is 

.eB97-GGA
x (ρ↑, ρ↓,∇ρ↑,∇ρ↓) =

∑

σ∈{↑,↓}
eUEG

x,σ (ρσ ) gx(xσ ), (1.123) 

where .eUEG
x,σ (ρσ ) = eUEG

x (ρσ , 0) is the spin-. σ contribution to the UEG exchange 

energy density and the gradient correction .gx(xσ ) is a function of .xσ = |∇ρσ |/ρ4/3
σ , 

.gx(xσ ) =
m∑

i=0

cx,i ux(xσ )i, (1.124) 

with .ux(xσ ) = γxx
2
σ /(1+γxx

2
σ ). The B97-GGA correlation energy density is written 

as the sum of opposite- and same-spin contributions 

. eB97-GGA
c (ρ↑, ρ↓,∇ρ↑,∇ρ↓) = eB97-GGA

c,↑↓ (ρ↑, ρ↓,∇ρ↑,∇ρ↓)

+
∑

σ∈{↑,↓}
eB97-GGA

c,σσ (ρσ ,∇ρσ ), (1.125) 

where 

.eB97-GGA
c,↑↓ (ρ↑, ρ↓,∇ρ↑,∇ρ↓) = eUEG

c,↑↓(ρ↑, ρ↓) gc,↑↓(x↑↓) (1.126) 

and 

.eB97-GGA
c,σσ (ρσ ,∇ρσ ) = eUEG

c,σσ (ρσ ) gc,σσ (xσ ). (1.127)
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In these expressions, . eUEG
c,↑↓(ρ↑, ρ↓) = eUEG

c (ρ↑, ρ↓) − eUEG
c (ρ↑, 0) − eUEG

c (ρ↓, 0)

and .eUEG
c,σσ (ρα) = eUEG

c (ρσ , 0) are estimations of the opposite- and same-spin 
contributions to the UEG correlation energy density [238, 239]. The opposite-spin 

gradient correction is taken as a function of .x↑↓ =
√

(x2↑ + x2↓)/2, 

.gc,↑↓(x↑↓) =
m∑

i=0

c
↑↓
c,i u↑↓

c (x↑↓)i, (1.128) 

with .u↑↓
c (x↑↓) = γ

↑↓
c x2↑↓/(1 + γ

↑↓
c x2↑↓), and the same-spin gradient correction is 

.gc,σσ (xσ ) =
m∑

i=0

cσσ
c,i uσσ

c (xσ )i, (1.129) 

with .uσσ
c (xσ ) = γ σσ

c x2
σ /(1 + γ σσ

c x2
σ ). The parameters .γx = 0.004, .γ ↑↓

c = 0.006, 
and .γ σσ

c = 0.2, were roughly optimized on atomic exchange and correlation 

energies. The other parameters . cx,i , . c
↑↓
c,i , .cσσ

c,i for a polynomial degree .m = 2 in 
Eqs. (1.124), (1.128), and (1.129) were optimized in the B97 hybrid functional in 
the presence of a fraction of HF exchange energy (see Sect. 1.4.1). 

The Hamprecht–Cohen–Tozer–Handy (HCTC) [104] exchange-correlation func-
tional uses the same form as the B97-GGA exchange-correlation functional but 
with a polynomial degree .m = 4 and the parameters . cx,i , . c

↑↓
c,i , .cσσ

c,i were 
optimized without HF exchange a set of energetic properties (atomic total ener-
gies, ionization energies, atomization energies), nuclear gradients, and accurate 
exchange-correlation potentials. 

1.3.4 Meta-Generalized-Gradient Approximations 

The meta-generalized-gradient approximations (meta-GGAs or mGGAs) are of the 
generic form, in their spin-independent version, 

.EmGGA
xc [ρ, τ ] =

∫

R
3
emGGA

xc (ρ(r),∇ρ(r),∇2ρ(r), τ (r))dr, (1.130) 

i.e., they use more ingredients than the GGAs, namely the Laplacian of the density 
.∇2ρ(r) and/or the non-interacting positive kinetic energy density .τ(r) associated 
with a single-determinant wave function . �, 

. τ(r) = τ�(r) = N

2

∫

{↑,↓}×(R3×{↑,↓})N−1
|∇r�(x, x2, . . . , xN)|2 dσdx2 . . . dxN

= 1

2

N∑

i=1

|∇ϕi(r)|2 , (1.131)
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where .{ϕi}i=1,...,N are the orbitals occupied in . �. The meta-GGAs are considered 
as part of the family of semilocal approximations, in the sense that .τ(r) contains 
semilocal information with respect to the orbitals. 

Meta-GGAs can be viewed as implicit functionals of the density only, i.e. 
.EmGGA

xc [ρ, τ�[ρ]], since .τ(r) can be considered itself as an implicit functional of 
the density via the KS single-determinant wave function .�[ρ]. This view in which 
.EmGGA

xc [ρ] is a proper approximation to the exchange-correlation density functional 
.Exc[ρ] of the KS scheme is normally adopted when constructing meta-GGAs 
approximations. However, the calculation of the functional derivative of . EmGGA

xc [ρ]
with respect to the density then requires the use of the complicated optimized-
effective-potential method (see Sect. 1.7). Therefore, in practical calculations, 
meta-GGAs are usually reinterpreted as explicit functionals of a single-determinant 
wave function . �, i.e. .EmGGA

xc [ρ�, τ�], [2, 9, 73, 180, 181, 232, 242, 275] or, in  
other words, approximations to an exact GKS exchange-correlation functional (see 
Sect. 1.1.4). 

In the latter approach, which we will here refer to as the meta-Kohn–Sham 
(mKS) scheme, we introduce a functional .EmKS

xc [ρ, τ ] (to which meta-GGAs are 
approximations) defined for . ρ and . τ simultaneously representable by a single-
determinant wave function .� ∈ SN and which defines the GKS functional 
.ES

xc[�] = EmKS
xc [ρ�, τ�] [see Eq. (1.38)] giving the exact ground-state energy via 

Eq. (1.39), 

.E0 = inf
�∈SN

{
〈�| T̂ + V̂ne |�〉 + EH[ρ�] + EmKS

xc [ρ�, τ�]
}

, (1.132) 

which, by taking variations with respect to the orbitals, gives the mKS equations: 

.

(
−1

2
∇2 + vne(r) + vH(r) + vmKS

xc (r)
)

ϕi(r) = εiϕi(r). (1.133) 

Here, .vmKS
xc (r) = vmKS

xc,1 (r) + vmKS
xc,2 (r) contains a usual local potential 

. vmKS
xc,1 (r) = δEmKS

xc [ρ, τ ]
δρ(r)

,

and a non-multiplicative operator [2, 9, 73, 242, 275] 

.vmKS
xc,2 (r) = −1

2
∇ ·
(

δEmKS
xc [ρ, τ ]
δτ(r)

∇
)

, (1.134) 

evaluated with .ρ(r) = ∑N
i=1 |ϕi(r)|2 and .τ(r) = (1/2)

∑N
i=1 |∇ϕi(r)|2. Interest-

ingly, the mKS equations can be rewritten as a Schrödinger-like equation with a 
position-dependent mass .m(r) [50], 

.

(
−1

2
∇ · 1

m(r)
∇ + vne(r) + vH(r) + vmKS

xc,1 (r)
)

ϕi(r) = εiϕi(r), (1.135)
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where .m(r) = (
1 + δEmKS

xc [ρ, τ ]/δτ(r)
)−1

. As in the KS scheme, the func-
tional .EmKS

xc [ρ, τ ] is decomposed into exchange and correlation contributions: 
.EmKS

xc [ρ, τ ] = EmKS
x [ρ, τ ] + EmKS

c [ρ, τ ]. In the spin-dependent version of the 
mKS scheme, we consider a similar functional of the spin-resolved densities and 
non-interacting positive kinetic energy densities .EmKS

xc [ρ↑, ρ↓, τ↑, τ↓] and the spin-
scaling relation of Eq. (1.36) is generalized to 

.EmKS
x [ρ↑, ρ↓, τ↑, τ↓] = 1

2

(
EmKS

x [2ρ↑, 2τ↑] + EmKS
x [2ρ↓, 2τ↓]

)
. (1.136) 

Correspondingly, the spin-dependent versions of the meta-GGAs are formulated in 
terms of the spin-resolved quantities . ρ↑, . ρ↓, .∇ρ↑, .∇ρ↓, .∇2ρ↑, .∇2ρ↓, . τ↑, and . τ↓. 

One motivation for the introduction of the variable .τ(r) is that it appears in the 
expansion of the spherically averaged exchange hole [entering in Eq. (1.55)] for 
small interelectronic distances . r12 [16], which for the case of a closed-shell system 
is 

. 
1

4πr2
12

∫

S(0,r12)

hx(r1, r1 + r12)dr12 = −ρ(r1)

2
(1.137)

−1

3

(
1

4
∇2ρ(r1) − τ(r1) + |∇ρ(r1)|2

8ρ(r1)

)
r2

12 + O(r4
12),

where .S(0, r12) designates the sphere centered at . 0 and of radius .r12 = |r12|. Thus 
.τ(r) is needed to describe the curvature of the exchange hole. 

Another important motivation is that .τ(r) is useful for identifying different types 
of spatial regions of electronic systems [245]. This is done by comparing .τ(r) with 
the von Weizsäcker kinetic energy density, 

.τW(r) = |∇ρ(r)|2
8ρ(r)

, (1.138) 

which is the exact non-interacting kinetic energy density for one-electron systems 
and two-electron spin-unpolarized systems, and, more generally, for one-orbital 
regions as introduced in Sect. 1.2.3. For example, the indicator 

.z(r) = τW(r)
τ (r)

, (1.139) 

which takes its values in the range .[0, 1] [141], identifies one-orbital regions (.z = 1). 
A better indicator is 

.α(r) = τ(r) − τW(r)
τUEG(r)

, (1.140)
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where .τUEG(r) = (3/10)(3π2)2/3ρ(r)5/3 is the non-interacting kinetic energy 
density of the UEG. This indicator .α(r) distinguishes one-orbital regions (.α = 0), 
slowly varying density regions (.α ≈ 1), and regions of density overlap between 
closed shells that characterize noncovalent bonds (.α � 1). 

Nowadays, .∇2ρ(r) is rarely used to construct meta-GGAs because it contains 
similar information to .τ(r), which can be seen by the second-order gradient 
expansion of .τ(r) [27]: 

.τGEA2(r) = τUEG(r) + 1

72

|∇ρ(r)|2
ρ(r)

+ 1

6
∇2ρ(r). (1.141) 

In comparison to GGAs, meta-GGAs are more versatile and generally constitute 
an improvement. Significantly, thanks to the use of . τ , self-interaction errors in the 
correlation functional can be essentially eliminated with meta-GGAs. They still 
suffer however from self-interaction errors in the exchange functional. We now 
describe some of the most used meta-GGA functionals. 

TPSS Exchange-Correlation Functional 
In the Tao–Perdew–Staroverov–Scuseria (TPSS) [198, 249] functional, the 
exchange energy density is written as 

.eTPSS
x (ρ,∇ρ, τ) = eUEG

x (ρ)F TPSS
x (s, z), (1.142) 

where the enhancement factor is a function of .s = |∇ρ|/(2kFρ) and .z = τW/τ , 

.F TPSS
x (s, z) = 1 + κ − κ

1 + xTPSS(s, z)/κ
, (1.143) 

with .κ = 0.804 so as to saturate the local Lieb–Oxford bound (just like in the PBE 
exchange functional) and 

. xTPSS(s, z) =
[(

10

81
+ c

z2

(1 + z2)2

)
s2 + 146

2025
q̃2
b − 73

405
q̃b

√
1

2

(
3

5
z

)2

+ 1

2
s4

+ 1

κ

(
10

81

)2

s4 + 2
√

e
10

81

(
3

5
z

)2

+ eμs6
]
/
(

1 + √
es2
)2

, (1.144) 

and .̃qb = (9/20)(α − 1)/[1 + bα(α − 1)]1/2 + 2s2/3 (where . α = (τ −
τW)/τUEG = (5s2/3)(z−1 − 1)) is a quantity that tends to the reduced density 
Laplacian .q = ∇2ρ/(4k2

Fρ) in the slowly varying density limit [using Eq. (1.141)]. 
The function .xTPSS(s, z) is chosen so as to satisfy the fourth-order gradient 
expansion [Eq. (1.112)] which can be written in the form of the enhancement factor 
.F GEA4

x (s, z) = 1 + (10/81)s2 + (146/2025)q2 − (73/405)s2q. The constant 
.μ = 0.21951 is chosen to retain the same large-s behavior of the PBE exchange 
functional, i.e. .F TPSS

x (s, z) ∼
s→∞ F PBE

x (s). The constants .c = 1.59096 and . e =
1.537 are chosen so as to eliminate the divergence of the potential at the nucleus
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for a two-electron exponential density and to yield the correct exchange energy 
(.−0.3125 hartree) for the exact ground-state density of the hydrogen atom. Finally, 
the constant .b = 0.40 is chosen, quite arbitrarily, as the smallest value that makes 
.F TPSS

x (s, z) a monotonically increasing function of s. 
The TPSS correlation functional is constructed by making minor refinements to 

the previously developed Perdew–Kurth–Zupan–Blaha (PKZB) [192] meta-GGA 
correlation functional, 

. eTPSS
c (ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓) = ρ εrevPKZB

c (ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓)

×
[
1 + d εrevPKZB

c

×(ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓)z3
]
, (1.145) 

where the revised PKZB correlation energy per particle is 

. εrevPKZB
c (ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓) = εPBE

c (ρ↑, ρ↓,∇ρ↑,∇ρ↓)
[
1 + C(ζ, ξ)z2

]

− [1 + C(ζ, ξ)] z2
∑

σ∈{↑,↓}

ρσ

ρ
ε̃PBE

c,σ (ρ↑, ρ↓,∇ρ↑,∇ρ↓), (1.146) 

with . ̃εPBE
c,σ (ρ↑, ρ↓,∇ρ↑,∇ρ↓) = max[εPBE

c (ρσ , 0,∇ρσ , 0), εPBE
c (ρ↑, ρ↓,∇ρ↑,

∇ρ↓)]
where .εPBE

c (ρ↑, ρ↓,∇ρ↑,∇ρ↓) is the PBE correlation energy per particle. Equa-
tion (1.146) constitutes a one-electron self-interaction correction on the PBE 
correlation functional. Indeed, for one-electron densities we have .z = 1 and 
.ζ = ±1, and the TPSS correlation energy correctly vanishes [Eqs. (1.75)]. The 
TPSS correlation functional preserves many properties of the PBE correlation 
functional: it has correct uniform coordinate scaling in the high- and low-density 
limits, vanishing correlation energy in the large density-gradient limit, and the same 
second-order gradient expansion (since the additional terms beyond PBE are at least 
in . z2 and thus only change the fourth-order terms of the gradient expansion). The 
parameters .d = 2.8 hartree. −1 and .C(0, 0) = 0.53 are chosen so as to recover the 
PBE surface correlation energy of jellium [145] over the range of valence-electron 
bulk densities. The rest of the function is taken as 

. C(ζ, ξ) = 0.53 + 0.87ζ 2 + 0.50ζ 4 + 2.26ζ 6

(1 + ξ2[(1 + ζ )−4/3 + (1 − ζ )−4/3]/2)4 ,

where .ξ = |∇ζ |/(2kF) is a reduced spin-polarization gradient. The function 
.C(ζ, ξ) is chosen so as to make the exchange-correlation energy independent of 
the spin polarization . ζ in the low-density limit [Eq. (1.86)] and to avoid that the 
self-interaction correction introduces additional correlation energy density in the 
core-valence overlap region of monovalent atoms such as Li.
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M06-L Exchange-Correlation Functional 
In the Minnesota 06 local (M06-L) exchange-correlation functional [278], the 
exchange energy density is written as 

.eM06-L
x (ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓) (1.147) 

=
∑

σ∈{↑,↓} 
ePBE 

x,σ (ρσ , ∇ρσ )f (wσ ) + eUEG 
x,σ (ρσ )hx(xσ , Zσ ). 

The first term in Eq. (1.147), which has the same form as in the previously developed 
M05 exchange functional [277], contains the spin-. σ PBE exchange energy density 
.ePBE

x,σ (ρσ ,∇ρσ ) = ePBE
x (ρσ , 0,∇ρσ , 0) and the kinetic-energy density correction 

factor 

.f (wσ ) =
11∑

i=0

aiw
i
σ , (1.148) 

where .wσ = (τUEG
σ /τσ − 1)/(τUEG

σ /τσ + 1) with . τUEG
σ = (3/10)(6π2)2/3ρ

5/3
σ

is an indicator of the delocalization of the exchange hole [24]. The second term in 
Eq. (1.147), which has the same form as in the VS98 exchange functional [264], 
contains the spin-. σ UEG exchange energy density .eUEG

x,σ (ρσ ) = eUEG
x (ρσ , 0) and 

the correction factor 

.hx(xσ , Zσ ) = h(xσ , Zσ , dx,0, dx,1, dx,2, dx,3, dx,4, αx), (1.149) 

where .xσ = |∇ρσ |/ρ4/3
σ and .Zσ = 2(τσ − τUEG

σ )/ρ
5/3
σ and h is the parametrized 

function 

. h(x, Z, d0, d1, d2, d3, d4, α) = d0

γ (x, Z, α)
+ d1x

2 + d2Z

γ (x, Z, α)2 + d3x
4 + d4x

2Z

γ (x, Z, α)3 ,

with .γ (x, Z, α) = 1 + α(x2 + Z). 
The M06-L correlation energy is written as the sum of opposite- and same-spin 

contributions, similarly to the B97-GGA correlation functional [Eq. (1.125)], 

.eM06-L
c (ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓)

= eM06-L
c,↑↓ (ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓) +

∑

σ∈{↑,↓}
eM06-L

c,σσ (ρσ ,∇ρσ , τσ ),
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where 

. eM06
c,↑↓(ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓) = eUEG

c,↑↓(ρ↑, ρ↓)
[
gc,↑↓(x↑↓) + hc,↑↓(x↑↓, Z↑↓)

]
,

and 

. eM06-L
c,σσ (ρσ ,∇ρσ ) = eUEG

c,σσ (ρσ )
[
gc,σσ (xσ ) + hc,σσ (xσ , Zσ )

]
Dσ (zσ ),

where the spin-decomposed UEG correlation energies .eUEG
c,↑↓(ρ↑, ρ↓) and . eUEG

c,σσ (ρσ )

were already defined after Eq. (1.127), and the gradient corrections .gc,↑↓(x↑↓) and 
.gc,σσ (xσ ) are given in Eqs. (1.128) and (1.129). The additional correction factors 
are 

.h↑↓
c (x↑↓, Z↑↓) = h(x↑↓, Z↑↓, d

↑↓
c,0, d

↑↓
c,1, d

↑↓
c,2, d

↑↓
c,3, d

↑↓
c,4, α↑↓

c ), (1.150) 

where .x↑↓ =
√

(x2↑ + x2↓)/2, .Z↑↓ = Z↑ + Z↓, and 

.hσσ
c (xσ , Zσ ) = h(xσ , Zσ , dσσ

c,0 , dσσ
c,1 , dσσ

c,2 , dσσ
c,3 , dσσ

c,4 , ασσ
c ). (1.151) 

The factor .Dσ (zσ ) = 1−zσ , where .zσ = τW
σ /τσ and .τW

σ = |∇ρσ |2/(8ρσ ), ensures 
that the correlation energy correctly vanishes for one-electron systems [23]. 

The parameters .γ ↑↓
c = 0.0031, and .γ σσ

c = 0.06, were optimized on the corre-

lation energies of He and Ne. The parameters .αx = 0.001867, .α↑↓
c = 0.003050, 

and .ασσ
c = 0.005151 were taken from Ref. [264]. The constraints .a0 + dx,0 = 1, 

.c
↑↓
c,0 + d

↑↓
c,0 = 1, and .cσσ

c,0 + dσσ
c,0 = 1 are enforced to obtain the correct UEG limit. 

The remaining 34 free parameters . ai , . c
↑↓
c,i , .cσσ

c,i for a polynomial degree . m = 4

in Eqs. (1.148), (1.128), and (1.129), and . dx,i , .d
↑↓
c,i , .dσσ

c,i in Eqs. (1.149), (1.150), 
and (1.151) were optimized on a large set of diverse physicochemical properties 
concerning main-group thermochemistry, reaction barrier heights, noncovalent 
interactions, electronic spectroscopy, and transition metal bonding. 

SCAN Exchange-Correlation Functional 
In the SCAN (strongly constrained and appropriately normed) [244] exchange-
correlation functional, the exchange energy density is written as 

.eSCAN
x (ρ,∇ρ, τ) = eUEG

x (ρ)F SCAN
x (s, α), (1.152) 

where the enhancement factor is a function of .s = |∇ρ|/(2kFρ) and . α =
(τ − τW)/τUEG, 

.F SCAN
x (s, α) = [h1

x(s, α) + fx(α)(h0
x − h1

x(s, α))]gx(s), (1.153)
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which interpolates between .α = 0 and .α ≈ 1, and extrapolates to .α → ∞ using the 
function 

. fx(α) = exp[−c1xα/(1 − α)]θ(1 − α) − dx exp[c2x/(1 − α)]θ(α − 1),

where . θ is the Heaviside step function. The function . gx(s) = 1 − exp(−a1s
−1/2)

is chosen to make .F SCAN
x (s, α) vanish like .s−1/2 as .s → ∞, which guarantees 

the non-uniform scaling finiteness conditions [Eqs. (1.89) and (1.91)] [158, 194], 
and .a1 = 4.9479 is taken to recover the exact exchange energy of the hydrogen 
atom. For .α ≈ 1 (slowly varying density regions), .F SCAN

x (s, α) ≈ h1
x(s, α)gx(s), 

where .h1
x(s, α) is a PBE-like resummation of the fourth-order gradient expansion 

[Eq. (1.112)], 

. h1
x(s, α) = 1 + k1 − k1

1 + xSCAN(s, α)/k1
,

where 

. xSCAN(s, α) = μs2[1 + (b4s
2/μ)e−|b4|s2/μ] + [b1s

2 + b2(1 − α)e−b3(1−α)2]2,

with .μ = 10/81, .b2 = (5913/405000)1/2, .b1 = (511/13500)/(2b2), .b3 = 0.5, and 
.b4 = μ2/k1 − 1606/18225 − b2

1. For .α = 0 (one-orbital regions), . F SCAN
x (s, α =

0) = h0
xgx(s) where .h0

x = 1.174 is chosen to saturate the local two-electron tight 
bound .F SCAN

x (s, α = 0) � 1.174, which is a sufficient and necessary condition for 
a meta-GGA exchange functional to satisfy the global tight bound of Eq. (1.101) for  
all two-electron spin-unpolarized densities [194]. 

The SCAN correlation energy density is written as 

.eSCAN
c (ρ↑, ρ↓,∇ρ↑,∇ρ↓, τ↑, τ↓) (1.154) 

= ρ [ε1 
c (ρ↑, ρ↓, t)  + fc(α)(ε0 

c (ρ↑, ρ↓, s) − ε1 
c (ρ↑, ρ↓, t))], 

which is again an interpolation between .α = 0 and .α = 1, and an extrapolation to 
.α → ∞ using the function 

. fc(α) = exp[−c1cα/(1 − α)]θ(1 − α) − dc exp[c2c/(1 − α)]θ(α − 1).

For .α = 1, the correlation energy par particle is taken as a revised version of the 
PBE correlation energy per particle, 

.ε1
c (ρ↑, ρ↓, t) = εUEG

c (ρ↑, ρ↓) + H SCAN
1 (ρ↑, ρ↓, t), (1.155) 

where 

.H SCAN
1 (ρ↑, ρ↓, t) = A(0)φ2(ζ )3 ln

[
1 + w1(1 − g(At2))

]
, (1.156)
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with .t = |∇ρ|/(2φ2(ζ )ksρ), .w1 = exp[−εUEG
c (ρ↑, ρ↓)/(A(0)φ2(ζ )3)] − 1, . A =

β(rs)/(A(0)w1), and .g(At2) = 1/(1 + 4At2)1/4. The function has a second-
order gradient expansion .H SCAN

1 (ρ↑, ρ↓, t) = β(rs)φ2(ζ )t2 + O(t4), where the 
coefficient .β(rs) = 0.066725(1 + 0.1rs)/(1 + 0.1778rs) is a rough fit of the density 
dependence of the second-order gradient expansion correlation coefficient beyond 
the Ma–Brueckner high-density-limit value and designed so that for .rs → ∞ the 
second-order gradient expansion terms for exchange and correlation cancel each 
other [195]. For .α = 0, the correlation energy par particle is constructed to be 
accurate for one- and two-electron systems and is written as 

.ε0
c (ρ↑, ρ↓, s) = [εLDA0

c (ρ) + H SCAN
0 (ρ, s)]Gc(ζ ). (1.157) 

The spin function .Gc(ζ ) = [1 − 2.3631(φ4(ζ ) − 1)](1 − ζ 12) is designed to make 
the correlation energy vanish for one-electron densities (.α = 0 and .ζ = ±1) and 
to make the exchange-correlation energy independent of . ζ in the low-density limit 
[Eq. (1.86)]. Equation (1.157) includes a LDA-type term [243] 

. εLDA0
c (ρ) = − b1c

1 + b2cr
1/2
s + b3crs

,

and a gradient correction 

. H SCAN
0 (ρ, s) = b1c ln [1 + w0(1 − g∞(ζ = 0, s))] ,

with .w0 = exp(−εLDA0
c (ρ)/b1c)−1 and . g∞(ζ = 0, s) = limζ→0 limrs→∞ g(At) =

1/(1 + 0.512104s2)1/4. The parameter .b1c = 0.0285764 is determined so 
that the high-density limit of .ε0

c (ρ↑, ρ↓, s) reproduces the exact correlation 
energy of the Helium isoelectronic series in the large-nuclear charge limit, i.e. 
.limZ→∞ Ec[ρN=2,Z] = EGL2

c [ρH
N=2,Z=1] = −0.0467 hartree [Eq. (1.94)]. The 

parameter .b3c = 0.125541 is determined to saturate the lower bound on the 
exchange-correlation energies of two-electron densities [Eq. (1.99)]. The parameter 
.b2c = 0.0889 is determined to reproduce the exact exchange-correlation energy of 
the He atom. 

The remaining seven parameters (.k1 = 0.065, .c1x = 0.667, .c2x = 0.8, 
.dx = 1.24, .c1c = 0.64, .c2c = 1.5, and .dc = 0.7) are determined by fitting to 
the approximate asymptotic expansions of the exchange and correlation energies 
of neutral atoms in large nuclear charge limit [Eqs. (1.96) and (1.97)], the binding 
energy curve of compressed Ar. 2, and jellium surface exchange-correlation energies.
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1.4 Single-Determinant Hybrid Approximations 

1.4.1 Hybrid Approximations 

Based on arguments relying on the adiabatic-connection formalism, in 1993 
Becke [19] proposed to mix a fraction of the exact or Hartree–Fock (HF) exchange 
energy .EHF

x with GGA functionals. In particular, he proposed a three-parameter 
hybrid (3H) approximation [20] of the form, written here in its spin-independent 
version, 

. E3H
xc [�] = a EHF

x [�] + b EGGA
x [ρ�] + (1 − a − b) ELDA

x [ρ�]
+ c EGGA

c [ρ�] + (1 − c) ELDA
c [ρ�], (1.158) 

with empirical parameters a, b, and c. The functional .E3H
xc [�] is thought of as a 

functional of a single-determinant wave function .� ∈ SN since .EHF
x [�] is itself a 

functional of . �, 

. EHF
x [�] = 〈�| Ŵee |�〉 − EH[ρ�] (1.159)

= −1

2

∑

σ∈{↑,↓}

Nσ∑

i=1

Nσ∑

j=1

∫

R
3×R3

ϕ∗
iσ (r1)ϕjσ (r1)ϕ

∗
jσ (r2)ϕiσ (r2)

|r1 − r2| dr1dr2,

where .{ϕiσ }i=1,...,Nσ are the orbitals occupied in . �. In 1996, Becke proposed a 
simpler one-parameter hybrid (1H) approximation [21], 

.E1H
xc [�] = a EHF

x [�] + (1 − a) EGGA
x [ρ�] + EGGA

c [ρ�], (1.160) 

where the fraction a of HF exchange has to be determined. For simplicity, we 
considered GGA functionals .EGGA

x [ρ�] and .EGGA
c [ρ�] in Eq. (1.160) but we can 

more generally use meta-GGA functionals .EmGGA
x [ρ�, τ�] and .EmGGA

c [ρ�, τ�]. 
These hybrid approximations should be considered as approximations of the 

GKS exchange-correlation functional .ES
xc[�] in Eq. (1.38) with .S[�] = a EHF

x [�]. 
The corresponding GKS equations [Eq. (1.1.4)] then include the term 

.
δS[�]
δϕ∗

iσ (r)
= a

∫

R
3
vHF

x,σ (r, r′)ϕiσ (r′)dr′, (1.161)
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where .vHF
x,σ (r, r′) is the nonlocal HF exchange potential7 

. vHF
x,σ (r, r′) = −

Nσ∑

j=1

ϕjσ (r)ϕ∗
jσ (r′)

|r − r′| .

The main benefit of adding a fraction of HF exchange is to decrease the self-
interaction error (see Sect. 1.2.3) introduced by semilocal exchange functionals 
which tends to favor too much delocalized electron densities over localized electron 
densities. The fraction of HF exchange should however be small enough to keep 
the compensation of errors usually occurring between the approximate semilocal 
exchange and correlation functionals. First, Becke used the value .a = 0.5 in the 
so-called Becke Half-and-Half functional [19], but then fits to various experimental 
data often repeatedly gave an optimal parameter a around .0.20–.0.25. A rationale has 
been proposed in favor of the value .0.25 [191]. By decreasing self-interaction errors 
in the exchange energy, hybrid approximations are often a big improvement over 
semilocal approximations for molecular systems with sufficiently large electronic 
gaps. However, for systems with small HOMO-LUMO gaps, such as systems with 
stretched chemical bonds or with transition metal elements, they tend to increase 
static-correlation errors. 

An interesting extension of the hybrid approximations are the so-called local 
hybrids, which use a position-dependent fraction .a(r) of a (non-uniquely defined) 
HF exchange energy density .eHF

x (r) [125] (see, Ref. [167] for a recent review), 
and which belong to the wider family of hyper-GGA functionals in which the 
correlation energy can also be expressed as a function of .eHF

x (r) [197]. The local-
hybrid approximations are much more flexible than the global hybrid approach 
exposed in this section but require more complicated and computationally expensive 
implementations. For this reason, they have not often been used and we will not 
consider them any further here. 

We now describe some of the most used hybrid approximations. 

B3LYP Exchange-Correlation Functional 
The B3LYP exchange-correlation functional [237] is the most famous and widely 
used three-parameter hybrid approximation [Eq. (1.158)]. It uses the B88 exchange 
functional and the LYP correlation functional, 

. EB3LYP
xc [�] = a EHF

x [�] + b EB88
x [ρ↑,�, ρ↓,�] + (1 − a − b) ELSDA

x [ρ↑,�, ρ↓,�]
+c ELYP

c [ρ↑,�, ρ↓,�] + (1 − c) ELSDA
c [ρ↑,�, ρ↓,�], (1.162) 

and the parameters .a = 0.20, .b = 0.72, and .c = 0.81 were found by optimizing on a 
set of atomization energies, ionization energies, proton affinities of small molecules

7 The possibility of combining a nonlocal HF potential with a local correlation potential was 
mentioned already in 1965 in the paper by Kohn and Sham [135]. 
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and first-row total atomic energies [20]. A caveat is that the VWN parametrization 
of the RPA correlation energy (sometimes referred to as VWN3) of the UEG was 
actually used for .ELSDA

c [ρ↑, ρ↓] instead of the VWN parametrization of the accurate 
correlation energy (sometimes referred to as VWN5) of the UEG [265]. 

B97 Exchange-Correlation Functional 
The Becke 97 (B97) exchange-correlation functional [22] is a GGA hybrid of the 
form 

. EB97
xc [�] = a EHF

x [�] + (1 − a) EB97-GGA
x [ρ↑,�, ρ↓,�]

+ EB97-GGA
c [ρ↑,�, ρ↓,�], (1.163) 

where the form of the B97-GGA exchange and correlation functionals were given 
in Eqs. (1.123) and (1.125). The fraction of HF exchange .a = 0.1943 and the 
remaining parameters .cx,0 = 1.00459, .cx,1 = 0.629639, .cx,2 = 0.928509, 
.c

↑↓
c,0 = 0.9454, .c↑↓

c,1 = 0.7471, .c↑↓
c,2 = −4.5961, .cσσ

c,0 = 0.1737, .cσσ
c,1 = 2.3487, and 

.cσσ
c,2 = −2.4868 for a polynomial degree .m = 2 in Eqs. (1.124), (1.128), and (1.129) 

were optimized on a set of total energies, atomization energies, ionization energies, 
and proton affinities. Note that, for .xσ = 0, the UEG limit is not imposed, which 
would require the parameters .cx,0, . c↑↓

c,0, and .cσσ
c,0 to be all strictly equal to 1. With 

the above optimized parameters, we see that it is nearly satisfied for the exchange 
energy and the opposite-spin correlation energy, but very far from it for the same-
spin correlation energy, which is drastically reduced compared to the LDA. 

PBE0 Exchange-Correlation Functional 
The PBE0 exchange-correlation functional [1, 60] is a GGA hybrid using the PBE 
exchange and correlation functionals, 

. EPBE0
xc [�] = a EHF

x [�] + (1 − a) EPBE
x [ρ↑,�, ρ↓,�]

+ EPBE
c [ρ↑,�, ρ↓,�], (1.164) 

and the fraction of the HF exchange is fixed at .a = 0.25 according to the rationale 
of Ref. [191]. This functional is also known under the name PBE1PBE. The “1” in 
the latter name emphasizes that there is one parameter, a, while the “0” in the more 
common name PBE0 emphasizes that this parameter is not found by fitting. 

TPSSh Exchange-Correlation Functional 
The TPSSh exchange-correlation functional [234] is a meta-GGA hybrid using the 
TPSS exchange and correlation functionals, 

. ETPSSh
xc [�] = a EHF

x [�] + (1 − a) ETPSS
x [ρ↑,�, ρ↓,�, τ↑,�, τ↓,�]

+ ETPSS
c [ρ↑,�, ρ↓,�, τ↑,�, τ↓,�], (1.165)
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and the fraction of the HF exchange .a = 0.10 was determined by optimizing on a 
large set of atomization energies. 

M06 and M06-2X Exchange-Correlation Functionals 
The M06 exchange-correlation functional [279] is a meta-GGA hybrid using the 
M06-L exchange and correlation functionals, 

. EM06
xc [�] = a EHF

x [�] + (1 − a) EM06-L
x [ρ↑,�, ρ↓,�, τ↑,�, τ↓,�]

+ EM06-L
c [ρ↑,�, ρ↓,�, τ↑,�, τ↓,�], (1.166) 

and the parameters in the M06-L exchange and correlation functionals were 
reoptimized together with the fraction of HF exchange .a = 0.27 on the same large 
set of diverse physicochemical properties used for the M06-L functional. In the 
M06-2X exchange-correlation functional the fraction of HF exchange is doubled, 
i.e. .a = 0.54, and the parameters were reoptimized with the function . hx(xσ , Zσ )

in Eq. (1.149) set to zero and excluding transition metal properties in the training 
set. With this large fraction of HF exchange, the M06-2X functional is designed for 
systems without transition metal elements. 

1.4.2 Range-Separated Hybrid Approximations 

Based on earlier ideas of Savin [216] (exposed in detail in Sect. 1.5.2), in 2001, 
Iikura et al. [121] proposed a long-range correction (LC) scheme in which the 
exchange-correlation energy is written as, in its spin-independent version, 

.ELC
xc [�] = Elr,μ,HF

x [�] + Esr,μ,GGA
x [ρ�] + EGGA

c [ρ�]. (1.167) 

This scheme has also been referred to as the range-separated hybrid exchange 
(RSHX) scheme [77]. In Eq. (1.167), .Elr,μ,HF

x [�] is the HF exchange energy for a 
long-range electron-electron interaction .w

lr,μ
ee (r12) = erf(μr12)/r12 (where . erf is the 

error function and the parameter .μ ∈ [0,+∞) controls the range of the interaction), 

.Elr,μ,HF
x [�] (1.168) 

= −1 

2

∑

σ∈{↑,↓} 

Nσ∑

i=1 

Nσ∑

j=1

∫

R
3×R3 

ϕ∗
iσ (r1)ϕjσ (r1)ϕ

∗
jσ (r2)ϕiσ (r2)w

lr,μ 
ee (r12)dr1dr2,
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and .Esr,μ,GGA
x [ρ] is a GGA exchange energy functional for the complementary 

short-range interaction .wsr,μ
ee (r12) = 1/r12 − wlr

ee(r12). This latter functional can 
be thought of as an approximation to the short-range exchange functional 

.Esr,μ
x [ρ] = 1

2

∫

R
3×R3

ρ(r1)hx(r1, r2)w
sr,μ
ee (r12)dr1dr2, (1.169) 

where .hx(r1, r2) is the KS exchange hole of Sect. 1.2.1. For .μ = 0, the long-range 
HF exchange energy vanishes, i.e. .Elr,μ=0,HF

x [�] = 0, and the short-range exchange 
functional reduces to the standard KS exchange functional, i.e. .Esr,μ=0

x [ρ] = Ex[ρ]. 
Reversely, for .μ → ∞, the long-range HF exchange energy reduces to the full-
range HF exchange energy, i.e. .Elr,μ→∞,HF

x [�] = EHF
x [�], and the short-range 

exchange functional vanishes, i.e. .Esr,μ→∞
x [ρ] = 0. Significantly, for large . μ, the  

short-range exchange functional becomes a local functional of the density [81, 255]: 

.Esr,μ
x [ρ] ∼

μ→∞ − π

4μ2

∫

R
3
ρ(r)2dr. (1.170) 

Like the hybrid approximations of Sect. 1.4.1, Eq. (1.167) should be considered 
as an approximation of the GKS exchange-correlation functional .ES

xc[�] in 

Eq. (1.38) with .S[�] = E
lr,μ,HF
x [�], and the corresponding GKS equations 

[Eq. (1.1.4)] then includes a long-range nonlocal HF exchange potential 
.v

lr,μ,HF
x,σ (r1, r2) = −∑Nσ

j=1 ϕjσ (r1)ϕ
∗
jσ (r2)w

lr,μ
ee (r12). Similarly to the hybrid 

approximations, the introduction of a fraction of long-range HF exchange reduces 
the self-interaction error (see, e.g., Ref. [179]). In addition, the short-range exchange 
part is easier to approximate with semilocal density-functional approximations, 
as Eq. (1.170) strongly suggests. In particular, the .−1/r asymptotic behavior of 
the exchange potential [Eq. (1.27)], which is difficult to satisfy with semilocal 
approximations, does not apply anymore to the short-range exchange potential. 

In 2004, Yanai et al. [273], introduced a more flexible scheme called the 
Coulomb-attenuating method (CAM) [273] in which fractions of HF exchange are 
added at both short range and long range, 

. ECAM
xc [�] = a Esr,μ,HF

x [�] + b Elr,μ,HF
x [�] + (1 − a) Esr,μ,GGA

x [ρ�]
+ (1 − b) Elr,μ,GGA

x [ρ�] + EGGA
c [ρ�], (1.171) 

where .Esr,μ,HF
x [�] = EHF

x [�] − E
lr,μ,HF
x [�] is the short-range HF exchange 

energy and .Elr,μ,GGA
x = EGGA

x − E
sr,μ,GGA
x is a long-range GGA exchange 

energy. The reintroduction of HF exchange at short range further reduces the 
self-interaction error and improves thermodynamic properties such as atomization 
energies. Again, Eq. (1.171) should be considered as an approximation of the GKS 
exchange-correlation functional .ES

xc[�] in Eq. (1.38) with .S[�] = a E
sr,μ,HF
x [�]+
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b E
lr,μ,HF 
x [�]. Other forms of modified electron-electron interactions are also 

possible (see, e.g., Refs. [113, 217, 255]). 
The approximations in Eqs. (1.167) and (1.171) are usually collectively referred 

to as range-separated hybrid approximations. Range-separated hybrids in the form 
of Eq. (1.171) are more flexible than the hybrid approximations of Sect. 1.4.1, and 
consequently are potentially more accurate, in particular for long-range electronic 
excitations. However, like the hybrid approximations, the presence of HF exchange 
tends to induce static-correlation errors for systems with small HOMO-LUMO gaps. 

The range-separation parameter . μ (also sometimes denoted as . ω) is generally 
chosen empirically, e.g. by fitting to experimental data. In practice, a value around 
.μ ≈ 0.3 − 0.5 bohr. −1, fixed for all systems, is often found to be optimal. It has 
also been proposed to adjust the value of . μ in each system, e.g. by requiring that the 
opposite of the HOMO energy be equal to the ionization energy calculated by total 
energy differences [12, 235, 236]. These so-called optimally tuned range-separated 
hybrids are well suited for the calculation of charge-transfer electronic excitations 
but have the disadvantage of not being size consistent [130]. 

A natural idea is to use a position-dependent range-separation parameter . μ(r)
which allows the range of the modified interaction to adapt to the local average 
electron-electron distance in the diverse spatial regions of the system. These 
locally range-separated hybrids [11, 133, 139] are promising but they induced 
computational complications and are still in the early stages of development. We 
will thus not consider them any further here. 

We now describe some of the most used approximations in the context of the 
range-separated hybrids. 

Short-Range LDA Exchange Functional 
The short-range LDA exchange functional [81, 216] can be obtained by using in 
Eq. (1.169) the LDA exchange hole [Eq. (1.110)], which leads to 

.Esr,μ,LDA
x [ρ] =

∫

R
3
esr,μ,UEG

x (ρ(r))dr, (1.172) 

with the short-range UEG exchange energy density 

.esr,μ,UEG
x (ρ) (1.173) 

= eUEG 
x (ρ)

[
1 − 

8μ̃ 
3

(√
π erf

(
1 

2μ̃

)
+ (2μ̃ − 4μ̃3)e−1/(4μ̃2) − 3μ̃ + 4μ̃3

)]
, 

where .μ̃ = μ/(2kF) is a dimensionless range-separation parameter. The spin-
dependent version is obtained from the same spin-scaling relation as in the standard 
case [Eq. (1.36)]. The short-range LDA exchange functional becomes exact for large 
. μ [Eq. (1.170)] and is the first building block for constructing short-range exchange 
GGA functionals.
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CAM-B3LYP Exchange-Correlation Functional 
The CAM-B3LYP exchange-correlation functional [273] uses Eq. (1.171) with 
short- and long-range versions of the B88 exchange functional and the same 
correlation functional used in B3LYP (i.e., .0.81 ELYP

c + 0.19 ELSDA
c ), 

. ECAM-B3LYP
xc [�] = a Esr,μ,HF

x [�] + b Elr,μ,HF
x [�] + (1 − a) Esr,μ,B88

x [ρ↑,�, ρ↓,�]
+ (1 − b) Elr,μ,B88

x [ρ↑,�, ρ↓,�] + 0.81ELYP
c [ρ↑,�, ρ↓,�]

+ 0.19ELSDA
c [ρ↑,�, ρ↓,�], (1.174) 

where the parameters .a = 0.19 and .b = 0.65 were optimized on atomization 
energies and the range-separation parameter .μ = 0.33 bohr. −1 was taken from 
Ref. [250], where it was optimized on equilibrium distances of diatomic molecules. 
In this expression, the short-range B88 exchange functional .Esr,μ,B88

x is defined by 
using in Eq. (1.169) the following generic GGA model for the exchange hole [121] 
(given here in its spin-independent version) 

.hGGA
x (ρ,∇ρ, r12) = −ρ

9

2

(
j1(kGGAr12)

kGGAr12

)2

, (1.175) 

with .kGGA = kF/
√

eGGA
x (ρ,∇ρ)/eUEG

x (ρ). The exchange-hole model of 
Eq. (1.175) properly yields the GGA exchange energy density .eGGA

x (ρ,∇ρ) for 
.μ = 0 and thus allows one to extend any standard GGA exchange functional 
to a short-range GGA exchange functional. Note however that it does not fulfill 
the sum rule [Eq. (1.50)]. The long-range B88 exchange functional is then simply 
.E

lr,μ,B88
x = EB88

x − E
sr,μ,B88
x . 

LC-. ωPBE Exchange-Correlation Functional 
The LC-. ωPBE exchange-correlation functional [266, 267] uses a short-range ver-
sion of the PBE exchange functional as well as the standard PBE correlation 
functional, 

. ELC-ωPBE
xc [�] = Elr,μ,HF

x [�] + Esr,μ,PBE
x [ρ↑,�, ρ↓,�]

+ EPBE
c [ρ↑,�, ρ↓,�]. (1.176) 

The short-range PBE exchange functional is obtained by using in Eq. (1.169) 
the following GGA exchange hole model constructed to yield the PBE exchange 
energy [59], 

.hPBE
x (ρ,∇ρ, r12) = ρJ PBE(s, kFr12), (1.177)
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where .s = |∇ρ|/(2kFρ) and 

. J PBE(s, u)=
[

− A
u2

1

1 + (4/9)Au2
+ (1.178)

(
A
u2 + B+ C[1 + s2F(s)]u2 + E[1 + s2G(s)]u4

)
e−Du2

]
e−s2H(s)u2

.

Here, . A, . B, . C, . D, and . E are constants chosen to obtain an oscillation-averaged UEG 
exchange hole for .s = 0, and .F(s), .G(s) and .H(s) are functions determined so that 
the hole yields the PBE exchange density for .μ = 0, and satisfies the sum rule 
[Eq. (1.50)] and the small-. r12 expansion [Eq. (1.137)] using the gradient expansion 
of . τ of Eq. (1.141). The range-separation parameter is fixed at .μ = ω = 0.4 bohr. −1

which has been found to be close to optimal for atomization energies, reaction 
barrier heights, and ionization energies [266]. 

. ωB97X Exchange-Correlation Functional 
The . ωB97X exchange-correlation functional [34] has the form of Eq. (1.171) with 
.b = 1: 

. EωB97X
xc [�] = a Esr,μ,HF

x [�] + Elr,μ,HF
x [�] + (1 − a) Esr,μ,B97-GGA

x [ρ↑,�, ρ↓,�]
+EB97-GGA

c [ρ↑,�, ρ↓,�]. (1.179) 

The short-range B97-GGA exchange density is defined as 

. esr,μ,B97-GGA
x (ρ↑, ρ↓,∇ρ↑,∇ρ↓) =

∑

σ∈{↑,↓}
esr,μ,UEG

x,σ (ρσ ) gx(xσ ),

where .e
sr,μ,UEG
x,σ (ρσ ) = e

sr,μ,UEG
x (ρσ , 0) is the spin-. σ contribution to the short-range 

UEG exchange energy density [Eq. (1.173)] and the gradient correction . gx(xσ )

where .xσ = |∇ρσ |/ρ4/3
σ has the same form as in Eq. (1.124) with polynomial 

degree . m = 4. In Eq. (1.179), the correlation functional has the same form as 
the B97-GGA correlation functional but again with polynomial degree . m = 4
in Eqs. (1.128) and (1.129). The fraction of short-range HF exchange .a ≈ 0.16, 
the range-separation parameter .μ = ω = 0.3 bohr. −1, and the linear coefficients 
in Eqs. (1.124), (1.128), and (1.129) were optimized on sets of atomic energies, 
atomization energies, ionization energies, electron and proton affinities, reaction 
barrier heights, and noncovalent interactions, with the constraints .a + cx,0 = 1, 
.c

↑↓
c,0 = 1, and .cσσ

c,0 = 1 to enforce the correct UEG limit.
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HSE Exchange-Correlation Functional 
The Heyd–Scuseria–Ernzerhof (HSE) exchange-correlation functional [117] is of  
the form of Eq. (1.171) with .b = 0 (i.e., no long-range HF exchange), 

. EHSE
xc [�] = aEsr,μ,HF

x [�] + (1 − a)Esr,μ,PBE
x [ρ↑,�, ρ↓,�] + Elr,μ,PBE

x [ρ↑,�, ρ↓,�]
+EPBE

c [ρ↑,�, ρ↓,�], (1.180) 

and involves the long-range PBE exchange functional . Elr,μ,PBE
x = EPBE

x −E
sr,μ,PBE
x

complementary to the short-range PBE exchange functional constructed from the 
PBE exchange hole model [Eqs. (1.177) and (1.178)]. In order to reproduce reliable 
values for the band gap in semiconducting solids, the range-separation parameter is 
fixed at .μ = 0.15 bohr. −1, which is a very small value compared to the other range-
separated hybrids. It means that the range of electron-electron distances covered 
by HF exchange is large, and the HSE functional could be thought of as a regular 
hybrid approximation but with the very long-range contribution of the HF exchange 
removed. This is particularly appropriate for solids since in these systems the 
very long-range HF exchange is effectively balanced by the correlation effects (a 
phenomenon known as screening). The fraction of (short-range) HF exchange is 
fixed at .a = 0.25 like in the PBE0 hybrid functional. 

1.5 Multideterminant Hybrid Approximations 

1.5.1 Double-Hybrid Approximations 

In 2006, Grimme [98] introduced a two-parameter double-hybrid (2DH) approxi-
mation, written here in its spin-independent version, 

. E2DH
xc = ax EHF

x [�] + (1 − ax) EGGA
x [ρ�] + (1 − ac)E

GGA
c [ρ�] + acE

MP2
c ,

(1.181) 

mixing a fraction . ax of the HF exchange energy with a GGA exchange functional, 
and a fraction . ac of the second-order Møller–Plesset (MP2) correlation energy 
.EMP2

c with a GGA correlation functional. In Eq. (1.181), the first three terms are 
first calculated in a self-consistent manner, and then the last term .EMP2

c is added 
perturbatively using the orbitals determined in the first step. The expression of . EMP2

c
is [247] 

.EMP2
c = −1

4

N∑

i=1

N∑

j=1

∑

a�N+1

∑

b�N+1

| 〈φiφj | |φaφb〉 |2
εa + εb − εi − εj

, (1.182) 

where .i, j and .a, b run over occupied and virtual spin orbitals, respectively, . εk

are spin orbital energies, and .〈φiφj | |φaφb〉 = 〈φiφj |φaφb〉 − 〈φiφj |φbφa〉 are
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antisymmetrized two-electron integrals with (in physicists’ notation) 

.〈φpφq |φrφs〉 =
∫

(R3×{↑,↓})2

φ∗
p(x1)φ

∗
q (x2)φr(x1)φs(x2)

|r1 − r2| dx1dx2. (1.183) 

Note that the notation in Eq. (1.182) assumes that the one-electron wave-function 
space is spanned by a discrete set of spin orbitals. In the exact theory, the continuum 
limit of the set of virtual spin orbitals is implied. 

The rigorous framework underlying these double-hybrid approximations was 
established by Sharkas et al. [226]. The idea is to decompose the universal density 
functional of Eq. (1.7) as  

.F [ρ] = min
�∈WN

ρ

〈�| T̂ + λŴee |�〉 + Ēλ
Hxc[ρ], (1.184) 

where .λ ∈ [0, 1] is a coupling constant and .Ēλ
Hxc[ρ] is a complementary density 

functional defined to make Eq. (1.184) exact. From Eqs. (1.10) and (1.62), we 
see that .Ēλ

Hxc[ρ] = EHxc[ρ] − Eλ
Hxc[ρ], where .EHxc[ρ] is the standard Hartree-

exchange-correlation functional of the KS scheme and .Eλ
Hxc[ρ] is the Hartree-

exchange-correlation functional along the adiabatic connection. The Hartree and 
exchange contributions are simply linear in . λ, 

.Ēλ
H[ρ] = (1 − λ)EH[ρ], (1.185) 

.Ēλ
x [ρ] = (1 − λ)Ex[ρ], (1.186) 

where .EH[ρ] and .Ex[ρ] are the standard Hartree and exchange functionals of the 
KS scheme. Moreover, from the uniform coordinate scaling relation of Eq. (1.84), 
we have 

.Ēλ
c [ρ] = Ec[ρ] − λ2Ec[ρ1/λ], (1.187) 

where .Ec[ρ] is the standard correlation functional of the KS scheme and . ρ1/λ(r) =
(1/λ)3ρ(r/λ) is the scaled density. The decomposition in Eq. (1.184) leads to the 
following expression of the exact ground-state energy 

.E0 = inf
�∈WN

{〈�| T̂ + V̂ne + λŴee |�〉 + Ēλ
Hxc[ρ� ]} , (1.188) 

where the infimum is over general multideterminant wave functions .� ∈ WN . 
This constitutes a multideterminant extension of the KS scheme. Note that this 
multideterminant KS scheme can trivially be extended to spin-dependent density 
functionals and functionals depending on the kinetic-energy density [232].
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The double-hybrid ansatz can be seen as a particular approximation within 
this multideterminant KS scheme [226]. To see this, we define a density-scaled 
one-parameter hybrid (DS1H) approximation by restricting the minimization in 
Eq. (1.188) to single-determinant wave functions .� ∈ SN , 

.E
DS1H,λ
0 = inf

�∈SN

{
〈�| T̂ + V̂ne + λŴee |�〉 + Ēλ

Hxc[ρ�]
}
, (1.189) 

obtaining an energy which necessarily depends on . λ. A minimizing single-
determinant wave function .�λ must satisfy the self-consistent eigenvalue equation 

.

(
T̂ + V̂ne + λV̂ HF

Hx [�λ] + ̂̄V λ

Hxc[ρ�λ ]
)

|�λ〉 = Eλ
0 |�λ〉 , (1.190) 

where .V̂ HF
Hx [�λ] is the nonlocal HF potential operator evaluated with the DS1H 

wave function . �λ and .
̂̄V

λ

Hxc[ρ�λ ] is the local Hartree-exchange-correlation potential 
operator generated by the energy functional .Ēλ

Hxc[ρ] and evaluated at the DS1H 
density .ρ�λ . If written explicitly in terms of spin orbitals, Eq. (1.190) would have 
the form of the GKS equations [Eq. (1.40)]. The DS1H ground-state energy can be 
finally written as 

. E
DS1H,λ
0 = 〈�λ| T̂ + V̂ne |�λ〉 + EH[ρ�λ ] + λEHF

x [�λ]
+ (1 − λ)Ex[ρ�λ ] + Ēλ

c [ρ�λ ], (1.191) 

where the full Hartree energy .EH[ρ] has been recomposed. The exchange-
correlation energy in Eq. (1.191) is of the form of a hybrid approximation 
[Eq. (1.160)]. 

All that is missing in Eq. (1.191) is the correlation energy associated with the 
scaled interaction .λŴee. It can be calculated by a nonlinear Rayleigh–Schrödinger 
perturbation theory [5, 6, 69] starting from the DS1H reference. Consider the 
following energy expression with the perturbation parameter .α ∈ [0, 1], 

. E
λ,α
0 = inf

�∈WN

{
〈�| T̂ + V̂ne + λV̂ HF

Hx [�λ] + αλŴ |�〉 + Ēλ
Hxc[ρ� ]

}
,

(1.192) 

where .λŴ = λ
(
Ŵee − V̂ HF

Hx [�λ]) is the scaled Møller–Plesset perturbation oper-
ator. For .α = 0, the stationary equation associated with Eq. (1.192) reduces to 
the DS1H eigenvalue equation [Eq. (1.190)]. For . α = 1, Eq. (1.192) reduces to 
Eq. (1.188), so .Eλ,α=1

0 is the exact energy, independently of . λ. The sum of the 
zeroth-order energy and first-order energy correction gives simply the DS1H energy, 
.E

DS1H,λ
0 = E

λ,(0)
0 + E

λ,(1)
0 . Thanks to the existence of a Brillouin theorem just like 

in standard Møller–Plesset perturbation theory (see Refs. [5, 6, 69]), only double
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excitations contribute to the first-order wave-function correction .�λ,(1) and the 
second-order energy correction has a standard MP2 form 

. E
λ,(2)
0 = λ2 〈�λ| Ŵ |�λ,(1)〉 = λ2EMP2

c ,

where .EMP2
c has the expression in Eq. (1.182) with DS1H spin orbitals and 

associated orbital eigenvalues (which implicitly depend on . λ). This second-order 
perturbation theory defines a density-scaled one-parameter double-hybrid (DS1DH) 
approximation 

.E
DS1DH,λ
0 = E

DS1H,λ
0 + E

λ,(2)
0 , (1.193) 

which contains the exchange-correlation energy contribution 

.EDS1DH,λ
xc = λEHF

x [�λ] + (1 − λ)Ex[ρ�λ ] + Ēλ
c [ρ�λ ] + λ2EMP2

c . (1.194) 

To make connection with the double-hybrid ansatz of Eq. (1.181), we can also define 
a one-parameter double-hybrid (1DH) approximation, obtained by neglecting the 
density scaling in the correlation functional, i.e. .Ec[ρ1/λ] ≈ Ec[ρ] in Eq. (1.187), 

.E1DH,λ
xc = λEHF

x [�λ]+ (1 −λ)Ex[ρ�λ]+ (1 −λ2)Ec[ρ�λ ]+λ2EMP2
c , (1.195) 

which, after using semilocal approximations for .Ex[ρ] and .Ec[ρ], has the form of 
Eq. (1.181) with parameters .ax = λ and .ac = λ2. In this rigorous formulation of the 
double-hybrid approximations, the fraction of HF exchange is thus connected to the 
fraction of MP2 correlation. Taking into account approximately the scaling of the 
density in .Ec[ρ1/λ], it has also been proposed to use .ac = λ3 [260]. Fromager [67] 
also proposed an extension of this rigorous formulation in order to justify the use of 
double-hybrid approximations with two parameters such that .ac � a2

x = λ2. 
An essential advantage of double-hybrid approximations is that the presence 

of nonlocal MP2 correlation allows one to use a larger fraction of nonlocal HF 
exchange, which helps decreasing the self-interaction error. This usually provides 
an improvement over hybrid approximations for molecular systems with sufficiently 
large electronic gaps. However, a large fraction of HF exchange and a fraction of 
MP2 correlation also generally means large static-correlation errors in systems with 
small HOMO-LUMO gaps. 

The first and still best known double-hybrid approximation is B2PLYP [98], 
which is based on the B88 exchange functional and the LYP correlation functional, 

.EB2PLYP
xc = ax EHF

x [�] + (1 − ax) EB88
x [ρ↑,�, ρ↓,�]

+ (1 − ac)E
LYP
c [ρ↑,�, ρ↓,�] + acE

MP2
c ,
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and the parameters .ax = 0.53 and .ac = 0.27 have been optimized on a set 
of atomization energies. Interestingly, even though the two parameters have been 
optimized without any constraint, we have .ac ≈ a2

x = 0.28 as predicted by 
Eq. (1.195). 

It has also been proposed to use the spin-component-scaled (SCS) version of 
MP2 [95] to construct spin-component-scaled double-hybrid approximations of the 
form [136, 137] 

. ESCS-DH
xc = ax EHF

x [�] + (1 − ax) EGGA
x [ρ�] + (1 − ac)E

GGA
c [ρ�]

+cOSEMP2
c,OS + cSSEMP2

c,SS , (1.196) 

which contains four empirical parameters . ax, . ac, . cOS, and . cSS. In this expression, 
.EMP2

c,OS and .EMP2
c,SS are the opposite-spin (OS) and same-spin (SS) contributions to the 

MP2 correlation energy obtained by restricting the sums over i and j in Eq. (1.182) 
to spin orbitals of opposite and same spins, respectively. Since in MP2 the same-
spin component is usually overestimated relative to the opposite-spin component, 
this SCS variant is a simple way to achieve higher accuracy without increasing 
computational cost. 

For reviews on different flavors of double hybrids and their assessments, the 
reader may consult Refs. [82, 171, 212, 241]. It has also been proposed to construct 
double-hybrid approximations where the MP2 correlation term is extended to a 
higher-order correlation method such as RPA [3, 100, 172, 173, 211] or coupled-
cluster [35, 76]. More generally, the multideterminant extension of the KS scheme of 
Eq. (1.188) allows one to define hybrids combining any wave-function method with 
density functionals. For example, a multiconfiguration hybrid approximation based 
on Eq. (1.188) which combines a multiconfiguration self-consistent-field (MCSCF) 
wave function with density functionals has been proposed in the goal of tackling 
strongly correlated systems [225]. This approach has also been used to combine 
valence-bond (VB) theory [274] or variational two-electron reduced-density-matrix 
theory [176] with DFT. 

1.5.2 Range-Separated Double-Hybrid Approximations 

1.5.2.1 Range-Separated One-Parameter Double-Hybrid Approximations 

In 2005, Ángyán et al. [6] introduced what could be called the first range-separated 
one-parameter double-hybrid approximation, i.e. combining HF exchange and MP2 
correlation with density functionals using a one-parameter decomposition of the 
electron-electron interaction. This is based on the range-separated multideterminant 
extension of the KS scheme introduced earlier by Savin [216] (see, also, Refs. [215, 
217, 255]) and which actually predates and inspired the multideterminant extension 
of the KS scheme of Eq. (1.188).
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The idea is to decompose the universal density functional of Eq. (1.7) as  

.F [ρ] = min
�∈WN

ρ

〈�| T̂ + Ŵ lr,μ
ee |�〉 + Ē

sr,μ
Hxc [ρ], (1.197) 

where .Ŵ lr,μ
ee is the long-range electron-electron interaction operator (associated 

with the pair potential .wlr,μ
ee (r12) = erf(μr12)/r12 as already used in the range-

separated hybrids of Sect. 1.4.2) and .Ēsr,μ
Hxc [ρ] is the complementary short-range 

density functional defined to make Eq. (1.197) exact. As before, the parameter 
.μ ∈ [0,+∞) controls the range of the separation. The complementary short-
range functional can be written as .Ēsr,μ

Hxc [ρ] = EHxc[ρ] − E
lr,μ
Hxc[ρ], where . EHxc[ρ]

is the standard Hartree-exchange-correlation functional of the KS scheme and 
.E

lr,μ
Hxc[ρ] is the Hartree-exchange-correlation functional associated with the long-

range interaction .wlr,μ
ee (r12). It is often convenient to decompose the short-range 

functional as (see Refs. [240, 254, 258] for an alternative decomposition) 

. Ē
sr,μ
Hxc [ρ] = E

sr,μ
H [ρ] + Esr,μ

x [ρ] + Ēsr,μ
c [ρ],

where .Esr,μ
H [ρ] is the short-range Hartree functional, 

. E
sr,μ
H [ρ] = 1

2

∫

R
3×R3

ρ(r1)ρ(r2)w
sr,μ
ee (r12)dr1dr2,

with the short-range interaction .wsr,μ
ee (r12) = 1/r12 − w

lr,μ
ee (r12), .E

sr,μ
x [ρ] is the 

short-range exchange functional [Eq. (1.169)] which can also be written as 

. Esr
x [ρ] = 〈�[ρ]| Ŵ sr,μ

ee |�[ρ]〉 − E
sr,μ
H [ρ],

with the KS single-determinant wave function .�[ρ], and .Ēsr,μ
c [ρ] is the comple-

mentary short-range correlation functional. Just like for Eq. (1.188), the decomposi-
tion in Eq. (1.197) leads to the following expression of the exact ground-state energy 

.E0 = inf
�∈WN

{
〈�| T̂ + V̂ne + Ŵ lr,μ

ee |�〉 + Ē
sr,μ
Hxc [ρ� ]

}
, (1.198) 

where the infimum is over general multideterminant wave functions .� ∈WN . 
To obtain an MP2/DFT hybrid scheme, we proceed analogously to Sect. 1.5.1. 

First, we define the following range-separated hybrid (RSH) approximation by 
restricting the minimization in Eq. (1.198) to single-determinant wave functions 
.� ∈ SN , 

.E
RSH,μ
0 = inf

�∈SN

{
〈�| T̂ + V̂ne + Ŵ lr,μ

ee |�〉 + Ē
sr,μ
Hxc [ρ�]

}
, (1.199)
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obtaining an energy which necessarily depends on . μ. A minimizing single-
determinant wave function .�μ must satisfy the self-consistent eigenvalue equation 

.

(
T̂ + V̂ne + V̂

lr,μ,HF
Hx [�μ] + ̂̄V sr,μ

Hxc [ρ�μ]
)

|�μ〉 = Eμ
0 |�μ〉 , (1.200) 

where .V̂ lr,μ,HF
Hx [�μ] is the nonlocal long-range HF potential operator evaluated 

with the RSH wave function .�μ and .̂̄V
sr,μ
Hxc [ρ�μ ] is the local short-range Hartree-

exchange-correlation potential operator generated by the energy functional . Ēsr,μ
Hxc [ρ]

and evaluated at the RSH density .ρ�μ . The RSH ground-state energy can be finally 
written as 

. E
RSH,μ
0 = 〈�μ| T̂ + V̂ne |�μ〉 + EH[ρ�μ ] + Elr,μ,HF

x [�μ]
+ Esr,μ

x [ρ�μ ] + Ēsr,μ
c [ρ�μ ], (1.201) 

where the full Hartree energy .EH[ρ] has been recomposed. The exchange-
correlation energy in Eq. (1.201) has a similar form as in the LC scheme of 
Eq. (1.167). 

To calculate the missing long-range correlation energy in Eq. (1.201), we can 
define a nonlinear Rayleigh–Schrödinger perturbation theory [5, 6, 69] starting 
from the RSH reference. We start from the following energy expression with the 
perturbation parameter .α ∈ [0, 1], 

.E
μ,α
0 = inf

�∈WN

{
〈�| T̂ +V̂ne+V̂

lr,μ,HF
Hx [�μ]+αŴ lr,μ |�〉+Ē

lr,μ
Hxc[ρ� ]

}
, (1.202) 

where .Ŵ lr,μ =
(
Ŵ

lr,μ
ee − V̂

lr,μ,HF
Hx [�μ]

)
is the long-range Møller–Plesset pertur-

bation operator. For .α = 0, the stationary equation associated with Eq. (1.202) 
reduces to the RSH eigenvalue equation [Eq. (1.200)]. For . α = 1, Eq. (1.202) 
reduces to Eq. (1.198), so .Eμ,α=1

0 is the exact energy, independently of . μ. The  
sum of the zeroth-order energy and first-order energy correction gives simply the 
RSH energy, .ERSH,μ

0 = E
μ,(0)
0 + E

μ,(1)
0 . As in Sect. 1.5.1, only double excitations 

contribute to the first-order wave-function correction .�μ,(1) and the second-order 
energy correction has a standard MP2 form 

. E
μ,(2)
0 = 〈�μ| Ŵ lr,μ |�μ,(1)〉 = Elr,μ,MP2

c ,

where .Elr,μ,MP2
c has the same expression as in Eq. (1.182) with RSH spin orbitals 

and associated orbital eigenvalues (which implicitly depend on . μ) but using the 
long-range two-electron integrals 

. 〈φpφq |φrφs〉lr,μ =
∫

(R3×{↑,↓})2
φ∗

p(x1)φ
∗
q (x2)φr(x1)φs(x2)w

lr,μ
ee (r12)dx1dx2,

(1.203)
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instead of the standard two-electron integrals of Eq. (1.183). This second-order 
perturbation theory defines a RSH+MP2 approximation, 

.E
RSH+MP2,μ
0 = E

RSH,μ
0 + Elr,μ,MP2

c , (1.204) 

which contains the exchange-correlation energy contribution 

.ERSH+MP2,μ
xc = Elr,μ,HF

x [�μ] + Esr,μ
x [ρ�μ ] + Ēsr,μ

c [ρ�μ ] + Elr,μ,MP2
c . (1.205) 

When using semilocal density-functional approximations for the short-range func-
tionals .Esr,μ

x [ρ] and .Ēsr,μ
c [ρ], the RSH+MP2 exchange-correlation energy expres-

sion of Eq. (1.205) thus constitutes range-separated double-hybrid approximations 
similar to the double hybrids of Sect. 1.5.1. The optimal value for the range-
separation parameter is often around .μ ≈ 0.5 bohr. −1 [77, 177]. This scheme has 
the advantage of dropping the long-range part of both the exchange and correlation 
density functionals, which are usually not well described by semilocal density-
functional approximations. Moreover, using a long-range MP2 correlation energy 
has the advantage of leading to a correct qualitative description of London disper-
sion interaction energies [6, 78, 79, 251], while displaying a fast convergence with 
the one-electron basis size [63]. Similar to the SCS double hybrids [Eq. (1.196)], a 
SCS variant of the RSH+MP2 scheme has also been proposed [213]. 

The range-separated multideterminant extension of the KS scheme of Eq. (1.198) 
allows one to define various hybrid schemes combining any wave-function method 
with density functionals. For example, one can go beyond second order by using 
long-range coupled-cluster [75, 83, 84, 262] or random-phase approximations [124, 
185, 257, 261, 262]. To describe strongly correlated systems, one can also use 
for the long-range part wave-function methods such as configuration interaction 
(CI) [31, 62, 152, 202], MCSCF [70, 71, 108], density-matrix renormalization 
group (DMRG) [107], or multireference perturbation theory [68]. Density-matrix 
functional theory (DMFT) [201, 209, 210] and Green-function methods [128, 207] 
have also been used for the long-range part. 

We now consider the approximations used for .E
sr,μ
x [ρ] and . Ē

sr,μ
c [ρ]. In  

Sect. 1.4.2, we have already described the short-range exchange LDA [Eq. (1.172)] 
and some short-range exchange GGAs for .E

sr,μ
x [ρ]. Here, we describe the 

short-range LDA correlation functional and another short-range GGA exchange-
correlation functional. 

Short-Range LDA Correlation Functional 
The complementary short-range LDA (or LSDA) correlation functional is 

.Ēsr,μ,LSDA
c [ρ↑, ρ↓] =

∫

R
3
ēsr,μ,UEG

c (ρ↑(r), ρ↓(r))dr, (1.206)
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where .ēsr,μ,UEG
c (ρ↑, ρ↓) = ρ ε̄

sr,μ,UEG
c (ρ↑, ρ↓) is the complementary short-range 

UEG correlation energy density. In this expression, .ε̄sr,μ,UEG
c (ρ↑, ρ↓) is defined by 

.ε̄sr,μ,UEG
c (ρ↑, ρ↓) = εUEG

c (ρ↑, ρ↓) − εlr,μ,UEG
c (ρ↑, ρ↓), (1.207) 

where .εUEG
c (ρ↑, ρ↓) and .εlr,μ,UEG

c (ρ↑, ρ↓) are the correlation energies per particle 
of the UEG with the standard Coulomb and long-range electron-electron interac-
tions, respectively. A simple spin-independent parametrization of .ε̄sr,μ,UEG

c was 
given in Ref. [259]. A better spin-dependent parametrization was constructed in 
Ref. [186] which uses the PW92 parametrization for .εUEG

c (ρ↑, ρ↓) [Eq. (1.106)] and 

the following parametrization for .εlr,μ,UEG
c (ρ↑, ρ↓) in terms of . rs = (3/(4πρ))1/3

and .ζ = (ρ↑ − ρ↓)/ρ: 

. εlr,μ,UEG
c (ρ↑, ρ↓) =

[
φ2(ζ )3Q

(
μ

√
rs

φ2(ζ )

)
+a1(rs, ζ )μ3 + a2(rs, ζ )μ4 + a3(rs, ζ )μ5 + a4(rs, ζ )μ6

+a5(rs, ζ )μ8

]

(1 + b0(rs)2μ2)4
.

In this expression, .φ2(ζ ) is a spin-scaling function defined by Eq. (1.103), .Q(x) is 
a function determined from the small-. μ and/or small-. rs limit, 

. Q(x) = 2 ln(2) − 2

π2 ln

(
1 + ax + bx2 + cx3

1 + ax + dx2

)
,

with .a = 5.84605, .c = 3.91744, .d = 3.44851, .b = d − 3πα/[4 ln(2) − 4], 
.α = 4/(9π)1/3, and the functions .ai(rs, ζ ) are 

. a1(rs, ζ ) = 4b0(rs)
6C3(rs, ζ ) + b0(rs)

8C5(rs, ζ ),

. a2(rs, ζ ) = 4b0(rs)
6C2(rs, ζ ) + b0(rs)

8C4(rs, ζ ) + 6b0(rs)
4εPW92

c (rs, ζ ),

. a3(rs, ζ ) = b0(rs)
8C3(rs, ζ ),

. a4(rs, ζ ) = b0(rs)
8C2(rs, ζ ) + 4b0(rs)

6εPW92
c (rs, ζ ),

.a5(rs, ζ ) = b0(rs)
8εPW92

c (rs, ζ ),
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where .εPW92
c (rs, ζ ) is the PW92 parametrization of the UEG correlation energy per 

particle. The functions .Ci(rs, ζ ) are determined from the large-. μ limit, 

. C2(rs, ζ ) = −3gc(0, rs, ζ )

8r3
s

,

. C3(rs, ζ ) = −g(0, rs, ζ )√
2πr3

s

,

. C4(rs, ζ ) = −9[g′′
c (0, rs, ζ ) + (1 − ζ 2)D2(rs)]

64r3
s

,

. C5(rs, ζ ) = −9[g′′(0, rs, ζ ) + (1 − ζ 2)D3(rs)]
40

√
2πr3

s

,

where .g(0, rs, ζ ) is the on-top pair-distribution function8 of the Coulombic UEG 
and .g′′(0, rs, ζ ) is its second-order derivative with respect to .r12 at .r12 = 0, and 
similarly for their correlation parts .gc(0, rs, ζ ) = g(0, rs, ζ ) − (1 − ζ 2)/2 and 
.g′′

c (0, rs, ζ ) = g′′(0, rs, ζ ) − φ8(ζ )/(5α2r2
s ) with .φ8(ζ ) defined by Eq. (1.103). 

The .ζ -dependence of the latter quantities is assumed to be exchange-like, i.e. 
.g(0, rs, ζ ) ≈ (1 − ζ 2)g(0, rs, ζ = 0) and . g′′(0, rs, ζ ) ≈ ζ 2+g′′(0, rs/ζ

1/3
+ , ζ =

1) + ζ 2−g′′(0, rs/ζ
1/3
− , ζ = 1) where .ζ± = (1 ± ζ )/2. The on-top pair-distribution 

function has been parametrized in Ref. [85] as  

. g(0, rs, ζ = 0) = (1 − Brs + Cr2
s + Dr3

s + Er4
s )e−Frs ,

with .B = 0.7317 − d , .C = 0.08193, .D = −0.01277, .E = 0.001859, and . F =
0.7524. The remaining functions were determined by fitting to QMC data: 

. b0(rs) = 0.784949rs,

. g′′(0, rs, ζ = 1) = 25/3

5α2r2
s

1 − 0.02267rs

1 + 0.4319rs + 0.04r2
s
,

. D2(rs) = e−0.547rs

r2
s

(−0.388rs + 0.676r2
s ),

.D3(rs) = e−0.31rs

r3
s

(−4.95rs + r2
s ).

8 For a general system, the pair-distribution function .g(r1, r2) is defined from the pair density 
.ρ2(r1, r2) [Eq. (1.42)] as .ρ2(r1, r2) = ρ(r1)ρ(r2)g(r1, r2). The on-top value is the value at 
electron coalescence, i.e. for .r1 = r2. 
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Short-Range PBE(GWS) Exchange-Correlation Functional 
The Goll–Werner–Stoll (GWS) variant of the short-range PBE exchange-correlation 
functional [83, 84] is a slight modification of the short-range PBE functional 
developed in Ref. [256]. The exchange energy density is 

.esr,μ,PBE(GWS)
x (ρ,∇ρ) = esr,μ,UEG

x (ρ)Fx(s, μ̃), (1.211) 

with an enhancement factor of the same form as in the standard PBE exchange 
functional, 

.Fx(s, μ̃) = 1 + κ − κ

1 + b(μ̃)s2/κ
, (1.212) 

with .s = |∇ρ|/(2kFρ) and .μ̃ = μ/(2kF). In this expression, .κ = 0.840, as in  
the standard PBE exchange functional, to saturate the local Lieb–Oxford bound 
(for .μ = 0) and .b(μ̃) = bPBE[bT(μ̃)/bT(0)]e−αxμ̃

2
where . bPBE = 0.21951

is the second-order gradient-expansion coefficient of the standard PBE exchange 
functional, and .bT(μ̃) is a function coming from the second-order GEA of the short-
range exchange energy [254, 256], 

.bT(μ̃) = −c1(μ̃) + c2(μ̃)e1/(4μ̃2)

c3(μ̃) + 54c4(μ̃)e1/(4μ̃2)
, (1.213) 

with .c1(μ̃) = 1+22μ̃2+144μ̃4, .c2(μ̃) = 2μ̃2(−7+72μ̃2), . c3(μ̃) = −864μ̃4(−1+
2μ̃2), and .c4(μ̃) = μ̃2[−3−24μ̃2+32μ̃4+8μ̃

√
π erf(1/(2μ̃))]. Finally, . αx = 19.0

is a damping parameter optimized for the He atom. 
Similarly, the correlation energy density has the same form as the standard PBE 

correlation functional, 

. ̄esr,μ,PBE(GWS)
c (ρ↑, ρ↓,∇ρ↑,∇ρ↓) = ρ

[
ε̄sr,μ,UEG

c (ρ↑, ρ↓) + Hμ(ρ↑, ρ↓, t)
]
,

with .t = |∇ρ|/(2φ2(ζ )ksρ) and the gradient correction 

. Hμ(ρ↑, ρ↓, t) = A(0)φ2(ζ )3 ln

[
1 + β(μ)

A(0)
t2 1 +A(μ)t2

1 +A(μ)t2 +A(μ)2t4

]
,

where 

. A(μ) = β(μ)

A(0)

[
exp(−ε̄sr,μ,UEG

c (ρ↑, ρ↓)/(A(0)φ2(ζ )3)) − 1
]−1

,

and 

.β(μ) = βPBE

(
ε̄

sr,μ,UEG
c (ρ↑, ρ↓)

ε̄
sr,μ=0,UEG
c (ρ↑, ρ↓)

)αc

, (1.214)
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and the value of .A(0) is given after Eq. (1.104). In Eq. (1.214), .β = 0.066725 is 
the second-order gradient coefficient of the standard PBE correlation functional and 
.αc = 2.78 is a damping parameter optimized for the He atom. 

For .μ = 0, this short-range PBE exchange-correlation functional reduces to the 
standard PBE exchange-correlation functional and for large . μ it reduces to the short-
range LDA exchange-correlation functional. 

1.5.2.2 Range-Separated Two-Parameter Double-Hybrid Approximations 

In 2018, Kalai and Toulouse [127] introduced what we will call range-separated 
two-parameter double-hybrid approximations, combining HF exchange and MP2 
correlation with density functionals using a two-parameter decomposition of the 
electron-electron in a way reminiscent of the CAM decomposition [Eq. (1.171)] 
(see, also, Refs. [40, 75]). This is based on a multideterminant extension of the 
KS scheme which generalizes the schemes of Sects. 1.5.1 and 1.5.2.1. 

We first decompose the universal density functional of Eq. (1.7) as  

.F [ρ] = min
�∈WN

ρ

〈�| T̂ + Ŵ lr,μ
ee + λŴ sr,μ

ee |�〉 + Ē
sr,μ,λ
Hxc [ρ], (1.215) 

where the parameter .μ ∈ [0,+∞) controls the range of the separation as always, 
the parameter .λ ∈ [0, 1] corresponds to the fraction of the short-range electron-
electron interaction in the wave-function part, and .Ēsr,μ,λ

Hxc [ρ] is the complementary 
short-range density functional defined to make this decomposition exact. As before, 
the latter functional can be decomposed as 

. Ē
sr,μ,λ
Hxc [ρ] = E

sr,μ,λ
H [ρ] + Esr,μ,λ

x [ρ] + Ēsr,μ,λ
c [ρ].

The Hartree and exchange contributions are linear in . λ, 

. E
sr,μ,λ
H [ρ] = (1 − λ)E

sr,μ
H [ρ],

.Esr,μ,λ
x [ρ] = (1 − λ)Esr,μ

x [ρ], (1.216) 

where .Esr,μ
H [ρ] and .Esr,μ

x [ρ] are the short-range Hartree and exchange functionals 
introduced in Sect. 1.5.2.1, and the correlation contribution can be written as 

.Ēsr,μ,λ
c [ρ] = Ec[ρ] − Eμ,λ

c [ρ],
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where .Ec[ρ] is the standard KS correlation functional and .E
μ,λ
c [ρ] is the correlation 

functional associated with the interaction .w
lr,μ
ee (r12) + λw

sr,μ
ee (r12). The exact 

ground-state energy can then be expressed as 

.E0 = inf
�∈WN

{
〈�| T̂ + V̂ne + Ŵ lr,μ

ee + λŴ sr,μ
ee |�〉 + Ē

sr,μ,λ
Hxc [ρ� ]

}
, (1.217) 

which constitutes a generalization of Eqs. (1.188) and (1.198). 
To obtain a MP2/DFT hybrid scheme, we proceed in full analogy to Sects. 1.5.1 

and 1.5.2.1. First, we define the following single-determinant range-separated two-
parameter hybrid (RS2H) approximation, 

.E
RS2H,μ,λ
0 = inf

�∈SN

{
〈�| T̂ + V̂ne +Ŵ lr,μ

ee +λŴ sr,μ
ee |�〉+ Ē

sr,μ,λ
Hxc [ρ�]

}
, (1.218) 

and use it as a reference for defining a perturbation theory similarly to Eqs. (1.192) 
and (1.202). At second order, we obtain 

.E
RS2H+MP2,μ,λ
0 = E

RS2H,μ,λ
0 + Eμ,λ,MP2

c , (1.219) 

where .Eμ,λ,MP2
c is the MP2 correlation energy expression evaluated with RS2H 

spin orbitals and orbital eigenvalues, and the two-electron integrals associated with 
the interaction .w

lr,μ
ee (r12)+λw

sr,μ
ee (r12). This RS2H+MP2 scheme thus contains the 

exchange-correlation energy contribution 

. ERS2H+MP2,μ,λ
xc = Elr,μ,HF

x [�μ,λ] + λEsr,μ,HF
x [�μ,λ] + (1 − λ)Esr,μ

x [ρ�μ,λ]
+ Ēsr,μ,λ

c [ρ�μ,λ] + Eμ,λ,MP2
c , (1.220) 

where .�μ,λ is a minimizing single-determinant wave function in Eq. (1.218). 
A good approximation for the .λ-dependence of the complementary correlation 

functional .Ēsr,μ,λ
c [ρ] is [127] 

.Ēsr,μ,λ
c [ρ] ≈ Ēsr,μ

c [ρ] − λ2Ēsr,μ
√

λ
c [ρ], (1.221) 

where .Ēsr,μ
c [ρ] is the short-range correlation functional introduced in Sect. 1.5.2.1. 

In particular, the .λ-dependence in Eq. (1.221) is correct both in the high-density 
limit, for a non-degenerate KS system, and in the low-density limit. Thanks 
to Eqs. (1.216) and (1.221), the semilocal density-functional approximations for 
.E

sr,μ
x [ρ] and .Ē

sr,μ
c [ρ] of Sect. 1.5.2.1 can be reused here without developing 

new ones. In Ref. [127], the short-range PBE(GWS) exchange and correlation 
functionals were used, and the optimal parameters .μ = 0.46 bohr. −1 and . λ = 0.58
were found on small sets of atomization energies and reaction barrier heights, i.e. 
values similar to the ones usually used separately in range-separated hybrids and 
double hybrids.
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The RS2H+MP2 scheme improves a bit over the RSH+MP2 scheme of 
Sect. 1.5.2.1, particularly for interaction energies of hydrogen-bonded systems. 
Even if the presence of short-range MP2 correlation deteriorates in principle 
the convergence rate with the one-electron basis size, in practice the fraction 
of pure short-range MP2 correlation (.λ2 ≈ 0.34) is small enough to keep a 
fast basis convergence. Accuracy can be improved, particularly for dispersion 
interactions, by supplanting the MP2 term by coupled-cluster or random-phase 
approximations [126]. Like for the approach of Sect. 1.5.2.1, many wave-function 
methods could be used in the general scheme of Eq. (1.217). 

1.6 Semiempirical Dispersion Corrections and Nonlocal van 
der Waals Density Functionals 

Among the previously considered exchange-correlation approximations, only the 
range-separated double hybrids of Sect. 1.5.2, thanks to their long-range non-
local correlation component, are capable of fully describing London dispersion 
interactions, crucial for describing weakly bonded systems. To improve the other 
approximations (semilocal functionals, single-determinant hybrids, double hybrids 
without range separation) for weakly bonded systems, it has been proposed to add 
to them a semiempirical dispersion correction or a nonlocal van der Waals density 
functional. We now describe these approaches. 

1.6.1 Semiempirical Dispersion Corrections 

To explicitly account for London dispersion interactions, it has been proposed in 
the 2000s to add to the standard approximate functionals a semiempirical dispersion 
correction of the form [52, 96, 97, 272] 

.Edisp = −s

Nn∑

α=1

Nn∑

β=1
β>α

f (Rαβ)
C

αβ
6

R6
αβ

, (1.222) 

where .Rαβ is the distance between each pair of atoms and .Cαβ
6 is the London 

dispersion coefficient between these atoms. Here, .f (Rαβ) is a damping function 
which tends to 1 at large .Rαβ and tends to zero at small . Rαβ , e.g.  

.f (Rαβ) = 1

1 + e−d(Rαβ/RvdW
αβ −1)

, (1.223)
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with the sum of tabulated atomic van der Waals radii .RvdW
αβ = RvdW

α + RvdW
β and a 

constant d, and s is a scaling parameter that can be adjusted for each approximate 
functional. The dispersion coefficient .Cαβ

6 for any pair of atoms is empirically 
calculated from tabulated same-atom dispersion coefficients .Cαα

6 and/or atomic 
polarizabilities. This approach was named “DFT-D” by Grimme [96]. 

The last version of DFT-D (referred to as DFT-D3) also includes .Cαβ
8 two-body 

terms and .Cαβγ

9 three-body terms [99]. There have also been various proposals to 
make the determination of dispersion coefficients less empirical, such as the scheme 
of Becke and Johnson [25] based on the exchange-hole dipole moment, the scheme 
of Tkatchenko and Scheffler [253] based on a Hirshfeld atomic partitioning, or the 
scheme of Sato and Nakai [214] based on the local-response approximation [45]. 

The “DFT-D” approach provides a big and inexpensive improvement for the 
description of weakly bonded systems. One limitation is that the semiempirical 
dispersion correction, being just a force field in its simplest variant, affects only 
the molecular geometry of the system but not directly its electronic structure. Some 
of the most used DFT-D functionals are:

• The PBE-D exchange-correlation functional [97], based on the PBE functional 
with a scaling parameter .s = 0.75;

• The B97-D exchange-correlation functional [97], based on the B97-GGA func-
tional with a scaling parameter .s = 1.25 and reoptimized linear coefficients in 
Eqs. (1.124), (1.128), and (1.129) in the presence of the semiempirical dispersion 
correction;

• The B3LYP-D exchange-correlation functional [97], based on the B3LYP hybrid 
functional with a scaling parameter .s = 1.05;

• The . ωB97X-D exchange-correlation functional [33], based on the . ωB97X range-
separated hybrid functional with a scaling parameter .s = 1, a modified 
damping function, and reoptimized parameters in . ωB97X in the presence of the 
semiempirical dispersion correction. 

The semiempirical dispersion correction can also be added to double-hybrid 
approximations. For example, B2PLYP-D [218] is based on the B2PLYP double 
hybrid with a scaling parameter .s = 0.55. The scaling parameter is small since 
the fraction of MP2 correlation in B2PLYP already partially takes into account 
dispersion interactions. It has also been proposed to add a semiempirical disper-
sion correction to the SCS version of the double hybrids [Eq. (1.196)], resulting 
in a family of dispersion-corrected spin-component-scaled double-hybrid (DSD) 
approximations [136–138]. An example of double hybrid is this latter family is 
DSD-BLYP [136], which uses the B88 exchange functional and the LYP correlation 
functional.
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1.6.2 Nonlocal van der Waals Density Functionals 

Another approach to describe dispersion interactions is to add to the standard 
approximate functionals a so-called nonlocal van der Waals density functional of 
the form [43, 151, 268–270] 

.Enl
c [ρ] = 1

2

∫

R
3×R3

ρ(r1)ρ(r2)φ(r1, r2)dr1dr2, (1.224) 

where .φ(r1, r2) is a correlation kernel. Two main families of such nonlocal correla-
tion functionals exist: the “van der Waals density functionals” (vdW-DF) [43, 151] 
and the Vydrov–Van Voorhis (VV) functionals [268–270]. 

We will only describe the last version of the VV functionals, i.e. the VV10 
nonlocal correlation functional [270]. In this functional, the correlation kernel is 
taken as 

. φVV10(r1, r2) = − 3

2g(r1, r12)g(r2, r12)(g(r1, r12) + g(r2, r12))
+ βδ(r1 − r2),

where .r12 = |r2 − r1| is the interelectronic distance, . β is a constant determining the 
local (delta-distribution) part of the kernel, and the function g is defined as 

.g(r, r12) = ω0(r)r2
12 + κ(r). (1.225) 

In Eq. (1.225), .ω0(r) =
√

ωg(r)2 + ωp(r)2

3 involves the square of the local plasma 

frequency .ωp(r)2 = 4πρ(r) and the square of the local band gap . ωg(r)2 =
C|∇ρ(r)|4/ρ(r)4, where C is an adjustable parameter controlling the large-. r12
asymptotic dispersion coefficients, and .κ(r) = b kF(r)2/ωp(r), where . kF(r) =
(3π2ρ(r))1/3 is the local Fermi wave vector and b is an adjustable parameter 
controlling the short-range damping of the large-.r12 asymptote. As expected for 
dispersion interactions, in the large-. r12 limit, .φVV10(r1, r2) behaves as .1/r6

12: 

. φVV10(r1, r2) ∼
r12→∞ − 3

2ω0(r1)ω0(r2)(ω0(r1) + ω0(r2))r
6
12

.

The constant .β = (3/b2)3/4/16 is chosen to make .Enl
c [ρ] vanish in the uniform 

density limit, thus leaving this limit unchanged when .Enl
c [ρ] is added to another 

density functional. The adjustable parameters .C ≈ 0.009 and .b ≈ 6 are found by 
optimization of . C6 dispersion coefficients and of weak intermolecular interaction 
energies, respectively, the precise values depending on which exchange-correlation 
functional the VV10 correction is added to.
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Nonlocal van der Waals density functionals are necessarily more computationally 
expensive than semiempirical dispersion corrections. However, they have the 
advantage of being less empirical and, since they are functionals of the density, of 
impacting directly on the electronic structure of the system. The VV10 nonlocal 
functional has been incorporated in a number of recently developed exchange-
correlation functionals, for example:

• The . ωB97X-V exchange-correlation functional [169], based on the . ωB97X 
range-separated hybrid [Eq. (1.179)] with reoptimized linear coefficients in 
Eq. (1.124) with polynomial degree .m = 2 and in Eqs. (1.128) and (1.129) with 
polynomial degree .m = 1, as well as reoptimized VV10 parameters . C = 0.01
and .b = 6.0;

• The . ωB97M-V exchange-correlation functional [170], based on the . ωB97X 
range-separated hybrid [Eq. (1.179)] but with more general and combinatorially 
optimized meta-GGA exchange and correlation enhancement factors and the 
same VV10 parameters .C = 0.01 and .b = 6.0 as in . ωB97X-V. 

1.7 Orbital-Dependent Exchange-Correlation Density 
Functionals 

We discuss here some exchange-correlation density functionals explicitly depending 
on the KS orbitals (for a review, see Ref. [140]). Since the KS orbitals are themselves 
functionals of the density, these exchange-correlation expressions are thus implicit 
functionals of the density (for notational simplicity, this dependence on the density 
of the orbitals and other intermediate quantities will not be explicitly indicated). 
In fact, the single-determinant and multideterminant hybrid approximations of 
Sects. 1.4 and 1.5 already belong to this family, with the caveat that the orbitals are 
obtained with a nonlocal potential. In this section, we are concerned with orbital-
dependent exchange-correlation energy functionals with orbitals obtained with a 
local potential, i.e. staying within the KS scheme.9 These approximations tend to be 
more computationally involved than the approximations previously seen and have 
thus been much less used so far.

9 The boundary between the various single-determinant and multideterminant hybrids of Sects. 1.4 
and 1.5 and the orbital-dependent functionals of the present section is however thin. For example, it 
is possible to optimize the orbitals using a local potential in hybrids or range-separated hybrids [8, 
131, 229], and in double hybrids or range-separated double hybrids [230, 231]. 
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1.7.1 Exact Exchange 

The exact exchange (EXX) energy functional [Eq. (1.16)] can be expressed in terms 
of the KS orbitals, 

. Ex[ρ] = −1

2

∑

σ∈{↑,↓}

Nσ∑

i=1

Nσ∑

j=1

∫

R
3×R3

ϕ∗
iσ (r1)ϕjσ (r1)ϕ

∗
jσ (r2)ϕiσ (r2)

|r1 − r2| dr1dr2,

(1.226) 

and has exactly the same form as the HF exchange [Eq. (1.159)], but the orbitals 
used in both expressions are in general different. 

Since the exact exchange energy in Eq. (1.226) is not an explicit functional of 
the density, the corresponding exchange potential .vx(r) = δEx[ρ]/δρ(r) cannot be 
calculated directly. We can however find an workable equation for .vx(r) by first 
considering the functional derivative of .Ex[ρ] with respect to the KS potential . vs(r)
and then applying the chain rule: 

.
δEx[ρ]
δvs(r)

=
∫

R
3

δEx[ρ]
δρ(r′)

δρ(r′)
δvs(r)

dr′. (1.227) 

Introducing the non-interacting KS static linear-response function . χ0(r′, r) =
δρ(r′)/δvs(r), we can rewrite Eq. (1.227) as  

. 

∫

R
3
vx(r′)χ0(r′, r)dr′ = δEx[ρ]

δvs(r)
,

which is known as the optimized-effective-potential (OEP) equation for the exact-
exchange potential [91, 92, 248]. 

Using first-order perturbation theory on the KS system, explicit expressions in 
terms of the orbitals can be derived for .χ0(r′, r) and .δEx[ρ]/δvs(r). The expression 
of .χ0(r′, r) is 

. χ0(r′, r) = −
∑

σ∈{↑,↓}

Nσ∑

i=1

∑

a�Nσ +1

ϕ∗
iσ (r′)ϕ∗

aσ (r)ϕiσ (r)ϕaσ (r′)
εaσ − εiσ

+ c.c. ,

where i and a run over occupied and virtual spatial orbitals, respectively, and c.c. 
stands for the complex conjugate. The expression of .δEx[ρ]/δvs(r) is 

.
δEx[ρ]
δvs(r)

=
∑

σ∈{↑,↓}

Nσ∑

i=1

Nσ∑

j=1

∑

a�Nσ +1

〈ϕaσ ϕjσ |ϕjσ ϕiσ 〉ϕaσ (r)ϕ∗
iσ (r)

εaσ − εiσ

+ c.c. ,
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where .〈ϕaσ ϕjσ |ϕjσ ϕiσ 〉 are two-electron integrals over KS spatial orbitals: 

.〈ϕaσ ϕjσ |ϕjσ ϕiσ 〉 =
∫

R
3×R3

ϕ∗
aσ (r1)ϕ

∗
jσ (r2)ϕjσ (r1)ϕiσ (r2)

|r1 − r2| dr1dr2. (1.228) 

Applying this OEP method with the EXX energy (and no correlation energy 
functional) is an old idea [227, 248], but reasonably efficient calculations for 
molecules have been possible only relatively recently [87, 122]. The EXX occupied 
orbitals turn out to be very similar to the HF occupied orbitals, and thus the EXX 
ground-state properties are also similar to the HF ones. However, the EXX virtual 
orbitals (which see a .−1/r asymptotic potential for a neutral system) tend to be 
much less diffuse than the HF virtual orbitals (which see an exponentially decaying 
potential for a neutral system), and may be more adapted for calculating excited-
state properties. 

1.7.2 Second-Order Görling–Levy Perturbation Theory 

In 1993, Görling and Levy [90, 91] developed a perturbation theory in terms of 
the coupling constant . λ of the adiabatic connection (Sect. 1.2.2) which provides an 
explicit orbital-dependent second-order approximation for the correlation energy 
functional. The Hamiltonian along the adiabatic connection [Eq. (1.60)] can be 
written as 

. Ĥ λ = T̂ + λŴee + V̂ λ

= Ĥs + λ(Ŵee − V̂Hx) − V̂ λ
c , (1.229) 

where .Ĥs = Ĥ λ=0 = T̂ + V̂s is the KS non-interacting reference Hamiltonian 
(which will be assumed to have a nondegenerate ground state). Equation (1.229) 
was obtained by decomposing the potential operator keeping the density constant as 
.V̂ λ = V̂s − λV̂Hx − V̂ λ

c , where .V̂s = V̂ λ=0 is the KS potential operator, .λV̂Hx is the 
Hartree-exchange potential operator which is linear in . λ, and .V̂ λ

c is the correlation 

potential which starts at second order in . λ, i.e. .V̂ λ
c = λ2V̂

(2)
c +· · · . Using a complete 

set of orthonormal eigenfunctions .�n and eigenvalues . En of the KS Hamiltonian, 
.Ĥs |�n〉 = En |�n〉, the normalized ground-state wave function of the Hamiltonian 
.Ĥ λ can be expanded as .�λ = � + λ�(1) + · · · where .� = �0 is the ground-state 
KS single-determinant wave function and .�(1) is its first-order correction given by 

. |�(1)〉 = −
∑

n �=0

〈�n| Ŵee − V̂Hx |�〉
En − E0

|�n〉 .
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Using the expression in Eq. (1.63), the correlation energy functional can also be 
expanded in powers of . λ: 

. Eλ
c [ρ] = 〈�λ| T̂ + λŴee |�λ〉 − 〈�| T̂ + λŴee |�〉 .

= E(0)
c + λE(1)

c + λ2E(2)
c + · · · . (1.230) 

Since .�λ=0 = �, the zeroth-order term vanishes: .E(0)
c = 0. Using the expression 

of the first-order derivative of .Eλ
c with respect to . λ in Eq. (1.64), i.e. . ∂Eλ

c /∂λ =
〈�λ| Ŵee |�λ〉 − 〈�| Ŵee |�〉, we find that the first-order term vanishes as well: 
.E

(1)
c = 0. The second-order term corresponds to the second-order Görling–Levy 

(GL2) correlation energy and is given by 

.EGL2
c [ρ] = E(2)

c = 〈�| Ŵee |�(1)〉 = 〈�| Ŵee − VHx |�(1)〉 , (1.231) 

where the second equality comes from the fact that .〈�| V̂Hx |�(1)〉 = 0 since it is the 
derivative with respect to . λ at .λ = 0 of .〈�λ| V̂Hx |�λ〉 = ∫

R
3 vHx(r)ρ(r)dr, which 

does not depend on . λ by virtue of the fact that the density .ρ(r) is constant along the 
adiabatic connection. Using the last expression in Eq. (1.231) allows one to express 
the GL2 correlation energy as 

.EGL2
c [ρ] = −

∑

n �=0

| 〈�| Ŵee − V̂Hx |�n〉 |2
En − E0

. (1.232) 

It is instructive to decompose the GL2 correlation energy as 

.EGL2
c [ρ] = EMP2

c + ES
c , (1.233) 

where .EMP2
c is a MP2-like correlation energy evaluated with KS spin orbitals, 

.EMP2
c = −1

4

N∑

i=1

N∑

j=1

∑

a�N+1

∑

b�N+1

| 〈φiφj | |φaφb〉 |2
εa + εb − εi − εj

, (1.234) 

and . ES
c is the contribution coming from the single excitations (which does not vanish 

here, contrary to HF-based MP2 perturbation theory), 

.ES
c = −

N∑

i=1

∑

a�N+1

| 〈φi | V̂ HF
x − V̂x |φa〉 |2
εa − εi

, (1.235) 

involving the difference between the integrals over the nonlocal HF exchange 
potential .〈φi | V̂ HF

x |φa〉 = −∑N
j=1〈φiφj |φjφa〉 and over the local KS exchange 

potential .〈φi | V̂x |φa〉 = ∫
R

3×{↑,↓} φ∗
i (x)vx(r)φa(x)dx.
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Calculations of the GL2 correlation energy using either a non-self-consistent 
post-EXX implementation or a more complicated OEP self-consistent procedure 
have been tested (see, e.g., Refs. [53, 94, 175]) but the results are often disappoint-
ing. It is preferable to go beyond second order with random-phase approximations 
in the adiabatic-connection fluctuation-dissipation approach. 

1.7.3 Adiabatic-Connection Fluctuation-Dissipation Approach 

1.7.3.1 Exact Adiabatic-Connection Fluctuation-Dissipation Expression 

Using the adiabatic-connection formula of Eq. (1.65), the correlation energy func-
tional can be written as 

. Ec[ρ] =
∫ 1

0
dλ 〈�λ| Ŵee |�λ〉 − 〈�| Ŵee |�〉

= 1

2

∫ 1

0
dλ

∫

R
3×R3

ρλ
2,c(r1, r2)

|r1 − r2| dr1dr2, (1.236) 

where .ρλ
2,c(r1, r2) = ρλ

2 (r1, r2) − ρ2,KS(r1, r2) is the correlation part of the pair 

density along the adiabatic connection. The pair density .ρλ
2 (r1, r2) can be expressed 

with the pair-density operator .ρ̂2(r1, r2) = ρ̂(r1)ρ̂(r2)−δ(r1−r2)ρ̂(r1) where . ̂ρ(r)
is the density operator, 

. ρλ
2 (r1, r2) = 〈�λ| ρ̂2(r1, r2) |�λ〉

= 〈�λ| ρ̂(r1)ρ̂(r2) |�λ〉 − δ(r1 − r2) 〈�λ| ρ̂(r1) |�λ〉 ,

and the KS pair density .ρ2,KS(r1, r2) simply corresponds to the case .λ = 0, 

. ρ2,KS(r1, r2) = ρλ=0
2 (r1, r2)

= 〈�| ρ̂(r1)ρ̂(r2) |�〉 − δ(r1 − r2) 〈�| ρ̂(r1) |�〉 .

Since the density does not change with . λ, i.e. . 〈�λ| ρ̂(r) |�λ〉 = 〈�| ρ̂(r) |�〉 =
ρ(r), the correlation pair density needed in Eq. (1.236) can thus be expressed as 

.ρλ
2,c(r1, r2) = 〈�λ| ρ̂(r1)ρ̂(r2) |�λ〉 − 〈�| ρ̂(r1)ρ̂(r2) |�〉 . (1.237)
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We would like to calculate .ρλ
2,c(r1, r2) without having to calculate the compli-

cated many-body wave function . �λ. For this, we consider the retarded dynamic 
linear-response function along the adiabatic connection in frequency space (or the 
so-called Lehmann representation) 

.χλ(r1, r2;ω) (1.238) 

=
∑

n �=0

〈�λ| ρ̂(r1) |�λ 
n 〉 〈�λ 

n | ρ̂(r2) |�λ〉
ω − ωλ 

n + i0+ − 〈�λ| ρ̂(r2) |�λ 
n 〉 〈�λ 

n | ρ̂(r1) |�λ〉
ω + ωλ 

n + i0+ , 

where the sums are over all eigenstates .�λ
n of the Hamiltonian . Ĥ λ, i.e. . Ĥ λ |�λ

n 〉 =
Eλ

n |�λ
n 〉, except the ground state .�λ = �λ

0 , and .ωλ
n = Eλ

n − Eλ
0 are the 

corresponding excitation energies. By contour integrating .χλ(r1, r2, ω) around 
the right half .ω-complex plane, we arrive at the (zero-temperature) fluctuation-
dissipation theorem, 

.nλ
2,c(r1, r2) = −

∫ +∞

−∞
dω

2π
[χλ(r1, r2, iω) − χ0(r1, r2, iω)], (1.239) 

which relates ground-state correlations in the time-independent system . ρλ
2,c(r1, r2)

to the linear response of the system due to a time-dependent external perturbation 
.χλ(r1, r2, ω). 

Combining Eqs. (1.236) and (1.239), we finally obtain the exact adiabatic-
connection fluctuation-dissipation (ACFD) formula for the correlation energy [146, 
147] (see, also, Ref. [106]): 

. Ec[ρ] = −1

2

∫ 1

0
dλ

∫ +∞

−∞
dω

2π

∫

R
3×R3

χλ(r1, r2; iω) − χ0(r1, r2; iω)

|r1 − r2| dr1dr2.

(1.240) 

The usefulness of the ACFD formula is due to the fact that there are practical ways 
of directly calculating .χλ(r1, r2;ω) without having to calculate the many-body 
wave function . �λ. In linear-response time-dependent density-functional theory 
(TDDFT), one can find a Dyson-like equation for .χλ(r1, r2;ω), 

.χλ(r1, r2;ω) = χ0(r1, r2;ω) (1.241) 

+
∫

R
3×R3 

χ0(r1, r3; ω)f λ 
Hxc(r3, r4; ω)χλ(r4, r2; ω)dr3dr4, 

where .f λ
Hxc(r3, r4;ω) is the Hartree-exchange-correlation kernel associated to the 

Hamiltonian . Hλ. Here, Eq. (1.241) will be considered as the definition for . f λ
Hxc. In  

principle, the exact correlation energy can be obtained with Eqs. (1.240) and (1.241). 
In practice, however, we need to use an approximation for .f λ

Hxc.
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1.7.3.2 Random-Phase Approximations 

In the direct random-phase approximation (dRPA, also just referred to as RPA, or 
sometimes as time-dependent Hartree), only the Hartree part of the kernel, which is 
linear in . λ and independent from . ω, is retained [146, 148], 

.f
dRPA,λ
Hxc (r1, r2;ω) = f λ

H(r1, r2) = λwee(r1, r2), (1.242) 

where .wee(r1, r2) = 1/|r1 − r2| is the Coulomb interaction, and the corresponding 
dRPA linear-response function then satisfies the equation 

.χdRPA
λ (r1, r2;ω) = χ0(r1, r2;ω) (1.243) 

+ λ
∫

R
3×R3 

χ0(r1, r3; ω)wee(r3, r4)χ
dRPA 
λ (r4, r2; ω)dr3dr4. 

The physical contents of this approximation can be seen by iterating Eq. (1.243), 
which generates an infinite series, 

. χdRPA
λ (r1, r2;ω) = χ0(r1, r2;ω)

+ λ

∫

R
3×R3

χ0(r1, r3;ω)wee(r3, r4)χ0(r4, r2;ω)dr3dr4

+ λ2
∫

R
3×R3×R3×R3

χ0(r1, r3;ω)wee(r3, r4)χ0(r4, r5;ω)wee(r5, r6)

χ0(r6, r2;ω)dr3dr4dr5dr6

+ · · · ,

which, after plugging it into Eq. (1.240), leads to the dRPA correlation energy as the 
following perturbation expansion10 

. EdRPA
c [ρ] (1.244) 

= −1 

2

∫ 1 

0 
dλ

∫ +∞ 

−∞ 

dω 
2π

[
λ

∫

R
3×R3×R3×R3 

χ0(r1, r3; iω)χ0(r4, r2; iω) 
|r1 − r2| |r3 − r4| dr1dr2dr3dr4 

+ λ2
∫

R
3×R3×R3×R3×R3×R3 

χ0(r1, r3; iω)χ0(r4, r5; iω)χ0(r6, r2; iω) 
|r1 − r2| |r3 − r4| |r5 − r6| 

dr1dr2dr3dr4dr5dr6 + · · ·
]
.

10 Using the operator viewpoint, the series in Eq. (1.244) can be formally summed in the form 
.EdRPA

c [ρ] = 1/(4π)
∫ +∞
−∞ dω Tr[ln(1 − χ0(iω)wee) + χ0(iω)wee] (see, e.g., Ref. [178]). 
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Using now the Lehmann representation [Eq. (1.238)] of the KS dynamic linear-
response function in terms of the KS orbitals and their energies, 

. χ0(r1, r2;ω) =
∑

σ∈{↑,↓}

Nσ∑

i=1

∑

a�Nσ +1

[
ϕ∗

iσ (r1)ϕaσ (r1)ϕ
∗
aσ (r2)ϕiσ (r2)

ω − (εaσ − εiσ ) + i0+

− ϕ∗
iσ (r2)ϕaσ (r2)ϕ

∗
aσ (r1)ϕiσ (r1)

ω + (εaσ − εiσ ) + i0+

]
,

(1.245) 

one can obtain, after quite some work, 

. EdRPA
c [ρ] = −1

2

N∑

i=1

N∑

j=1

∑

a�N+1

∑

b�N+1

|〈φiφj |φaφb〉|2
εa + εb − εi − εj

+
N∑

i=1

N∑

j=1

N∑

k=1

∑

a�N+1

∑

b�N+1

∑

c�N+1

〈φiφj |φaφb〉〈φjφk|φbφc〉〈φkφi |φcφa〉
(εa + εb − εi − εj )(εa + εc − εi − εk)

+ · · ·.

(1.246) 

The dRPA correlation energy is the sum of all the direct terms (i.e., no exchange 
terms) of the perturbation expansion up to infinite order. In the language of 
diagrammatic perturbation theory, we say that the dRPA correlation energy is 
the sum of all direct ring diagrams. Of course, Eq. (1.246) is not the way to 
calculate the dRPA correlation energy in practice. This is done by solving the 
Dyson equation [Eq. (1.243)] without explicitly expanding in powers of . λ, e.g.  
using matrix equations from linear-response TDDFT [72, 261] or coupled-cluster 
theory [219, 262]. 

Most dRPA correlation energy (combined with the EXX energy) calculations 
are done in a non-self-consistent way, but self-consistent OEP dRPA calculations 
have also been performed [26, 112]. One of the main advantage of dRPA is that 
it accounts for long-range dispersion interactions [46–48]. However, it shows large 
self-interaction errors. To overcome the latter drawback and improve the general 
accuracy, one can add exchange and beyond terms in various ways (see, e.g., 
Refs. [7, 14, 15, 39, 58, 88, 101, 110, 111, 114–116, 120, 178, 257, 261]). This 
remains an active area of research. For reviews on random-phase approximations, 
the reader may consult Refs. [37, 61, 208]. 
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