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Abstract We develop semiclassical approximations for
calculating photoabsorption cross sections beyond the con-
tinuum threshold in quantum many-body systems. These
approximations use the fully quantum-mechanical Wigner
function of the ground state and semiclassical expansions
only for the part of the cross section depending on the con-
tinuum states, thus avoiding the difficult explicit calculation
of the continuum states. Even though the approach is general,
we test it in electronic-structure theory for the photoioniza-
tion cross sections of the hydrogen and helium atoms. The
results suggest that these semiclassical approximations can
be used to obtain good estimates of cross sections at high
energy.

1 Introduction

In many-body quantum systems, the calculation of properties
involving continuum states constitutes a challenge for com-
putational methods. The simplest example is perhaps given
by the photoabsorption cross section beyond the continuum
threshold, corresponding to transitions of the system from a
bound state to continuum states induced by the absorption of a
photon (see, e.g., Refs. [1,2]). In the context of the electronic-
structure theory of atoms and molecules, this property is also
known as the photoionization cross section since it corre-
sponds to the ionization of the system by ejection of one or
more electrons into the continuum (see, e.g., Ref. [3]). Hence,
calculations of photoabsorption/photoionization cross sec-
tions require an appropriate description of excitations to con-
tinuum states and are usually performed with quite sophisti-
cated and computationally expensive approaches, i.e. using
extended basis sets such as B-spline basis sets [4–6] with
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continuum boundary conditions [7–9] or using techniques
involving the complex-energy plane such as complex scaling
[10,11], analytical continuation [12], or integral transforms
[13].

In this work, as a possible alternative to these involved
fully quantum mechanical calculations, we develop semiclas-
sical approximations for calculating photoabsorption cross
sections, based on the Wigner phase-space formulation of
quantum mechanics (see, e.g., Refs. [1,14–16]) or also
known as deformation quantization [17,18]. Wigner-based
semiclassical approximations have been used in nuclear
physics to calculate various quantities (see, e.g., Refs. [1]).
In particular, the full semiclassical Wigner-Kirkwood expan-
sion (in powers of the reduced Planck constant h̄) of the
linear-response function has been determined [19,20]. Here,
we consider semiclassical approximations of the photoab-
sorption cross section using the fully quantum-mechanical
Wigner function of the ground state and semiclassical expan-
sions only for the part depending on the continuum states.
This is motivated by the fact that semiclassical expansions
are expected to work better for continuum states than for
the ground state. Similar semiclassical approximations have
been used in molecular physics to calculate photodissociation
cross sections [21–24] (see, also, Refs. [25,26]), but to the
best our knowledge this type of semiclassical approximations
have never been developed for photoabsorption cross sec-
tions (see, however, Ref. [27] for a Wigner-based approach
of light absorption in solids). As an illustration, we test this
approach in electronic-structure theory for the photoioniza-
tion cross sections of the hydrogen and helium atoms, but it
can be a priori applied to the photoabsorption cross sections
appearing in other fields such as nuclear physics.

The paper is organized as followed. In Sect. 2, we lay
down the general theory for semiclassical approximations
of photoabsorption cross sections for an arbitrary N -particle
system. In Sect. 3, we treat the case of one-particle sys-
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tems with spherical ground states. In Sect. 4, we work out
the specific case of hydrogen-like atoms with a Coulomb
potential, and give results for the hydrogen atom. In Sect. 5,
we treat the case of helium-like atoms, and give results
for the helium atom. Finally, Sect. 6 contains conclusions
and future directions. Hartree atomic units (a.u.), in which
h̄ = m = e = 1/(4πε0) = 1, are used throughout this work.

This work was started together with the late Peter Schuck
who developed semiclassical approximations in nuclear
physics and was eager to extend them to other fields. The
present author is thus very much indebted to Peter Schuck
for having introduced him to these Wigner-based semiclas-
sical techniques and guided him through the early stages of
the present work. The paper is thus dedicated to his memory.

2 General theory for N-particle systems

2.1 Photoabsorption cross section in terms of Wigner
transforms

We consider a non-relativistic N -particle Hamiltonian,

Ĥ = p̂2

2
+ V̂ , (1)

where p̂ = (p̂1, p̂2, . . . , p̂N ) collects all momentum oper-
ators of the individual particles and V̂ is a potential-
energy operator, with eigenstates {|Ψn〉}n∈N and eigenvalues
{En}n∈N

Ĥ |Ψn〉 = En|Ψn〉. (2)

Denoting by Ethres the continuum threshold energy, the
eigenstates with En < Ethres are bound states and the eigen-
states with En ≥ Ethres are continuum states assumed to
be discretized for simplicity (e.g., obtained by putting the
system in a large finite box with periodic boundary condi-
tions), so that {|Ψn〉}n∈N forms a discrete complete orthonor-
mal basis of the Hilbert space. The linear-response photoab-
sorption cross section, corresponding to transitions between
the ground state |Ψ0〉 and the excited states |Ψn〉, in the
velocity-gauge electric-dipole approximation at frequency ω

is defined as

σ(ω)= 4π2

3cω

∑

μ∈{x,y,z}

∞∑

n=0

|〈Ψ0|P̂μ|Ψn〉|2

×δ(ω − (En − E0)), (3)

where c = 137.036 a.u. is the speed of light, P̂μ = ∑N
i=1 p̂i,μ

is the Cartesian μ-component of the total momentum (or
velocity) operator, and δ is the Dirac delta function. We are
interested in the cross section beyond the continuum thresh-
old, i.e. ω ≥ Ethres − E0. The cross section can be rewritten
as

σ(ω) = 4π2

3cω

∑

μ∈{x,y,z}

∞∑

n=0

〈Ψ0|P̂μ|Ψn〉〈Ψn |δ(ω+E0− Ĥ)P̂μ|Ψ0〉

= 4π2

3cω

∑

μ∈{x,y,z}
〈Ψ0|P̂μδ(ω + E0 − Ĥ)P̂μ|Ψ0〉

= 4π2

3cω
Tr[B̂ ρ̂0], (4)

where we have used the Schrödinger equation [Eq. (2)] and
the completeness relation

∑∞
n=0 |Ψn〉〈Ψn| = 1̂, and we have

introduced the operator

B̂ =
∑

μ∈{x,y,z}
P̂μ Â P̂μ, (5)

with the spectral-density operator Â = δ(ω + E0 − Ĥ) and
the ground-state density-matrix operator

ρ̂0 = |Ψ0〉〈Ψ0|. (6)

In the position representation, the cross section takes the
form

σ(ω) = 4π2

3cω

∫

R6N
drdr′B(r, r′)ρ0(r′, r), (7)

where r = (r1, r2, . . . , rN ) ∈ R
3N and r′ =(r′

1, r
′
2, . . . , r

′
N )

∈ R
3N are position vectors of the N particles, and B(r, r′) =

〈r|B̂|r′〉 and ρ0(r′, r) = 〈r′|ρ̂0|r〉 = Ψ0(r
′)Ψ ∗

0 (r). We now
introduce the Wigner (or Weyl) transforms/representations
of the operators B̂ and ρ̂0 (see, e.g., Refs. [1,28])

[B̂]W(q,p) ≡ BW(q,p)

=
∫

R3N
ds e−ip·s〈q + s/2|B̂|q − s/2〉, (8)

[ρ̂0]W(q,p) ≡ ρ0,W(q,p)

=
∫

R3N
ds e−ip·s〈q + s/2|ρ̂0|q − s/2〉, (9)

where q = (r + r′)/2 ∈ R
3N is the average position vec-

tor, s = r − r′ ∈ R
3N is the relative position vector, and

p = (p1,p2, . . . ,pN ) ∈ R
3N is the conjugate momentum

vector of s. The Wigner transformation preserves the trace of
a product of operators, so we have

σ(ω) = 4π2

3cω

∫

R6N

dqdp
(2π)3N BW(q,p)ρ0,W(q,p). (10)

We have thus put the photoabsorption cross section in the
form of a phase-space integral. So far, everything is exact.
We will assume that we know the Wigner function of the
ground state ρ0,W(q,p), and we will now use a semiclassical
expansion approximation for BW(q,p).
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2.2 Semiclassical expansion approximation

A convenient formula for calculating Wigner transforms and
their semiclassical expansions is the following expression for
the Wigner transform of the product of two operators Ĉ and
D̂, also known as Groenewold’s formula or Moyal product
or star product (see Ref. [1]),

[Ĉ D̂]W(q,p) = CW(q,p)e(i h̄/2)
↔
ΛDW(q,p), (11)

where
↔
Λ = ←∇q · →∇p − ←∇p · →∇q is the Poisson bracket dif-

ferential operator (the arrows indicate on which side act the
nabla operators) and the reduced Planck constant h̄ = 1 a.u.
is kept to keep track of orders in h̄. Expanding Eq. (11) in
powers of h̄ generates a semiclassical expansion.

By repeatedly applying this formula, we can write
BW(q,p) as

BW(q,p) =
∑

μ∈{x,y,z}
PμAWPμ − h̄2

4
Pμ

↔
Λ(AW

↔
ΛPμ),

(12)

where AW ≡ AW(q,p) is the Wigner transform of the oper-
ator Â. We have used the fact that the Wigner transform of
total momentum operator P̂μ is the total momentum vari-
able Pμ = ∑N

i=1 pi,μ, i.e. [P̂μ]W = Pμ, and we have used
the fact that the antisymmetry of the Poisson bracket differ-

ential operator
↔
Λ implies that Pμ

↔
ΛAW = −AW

↔
ΛPμ and

Pμ

↔
ΛPμ = 0. Note that there is no higher-order terms in

Eq. (12) since acting twice with
↔
Λ on Pμ gives zero. The last

term in Eq. (12) is

Pμ

↔
Λ(AW

↔
ΛPμ) = −∇pPμ · ∇q(∇qAW · ∇pPμ)

= −
N∑

i=1

N∑

j=1

∂2AW

∂qi,μ∂q j,μ
. (13)

We thus obtain the following exact expression for BW(q,p)

BW(q,p)

=
N∑

i=1

N∑

j=1

∑

μ∈{x,y,z}

[
pi,μ p j,μAW(q,p) + h̄2

4

∂2AW(q,p)

∂qi,μ∂q j,μ

]
,

= P2AW(q,p) + h̄2

4
D2AW(q,p), (14)

where we have introduced the total momentum vector P =∑N
i=1 pi and the differential operator D = ∑N

i=1 ∇qi .
It remains to find an expression for AW(q,p), i.e. the

Wigner transform of the operator Â = δ(ω + E0 − Ĥ).
This Wigner transform cannot be calculated exactly but we
can write its second-order semiclassical expansion

AW(q,p) = A(0)
W (q,p) + h̄2A(2)

W (q,p) + O(h̄4), (15)

where the zeroth-order term is

A(0)
W (q,p) = δ(ω + E0 − H(q,p)) , (16)

where H(q,p) = p2/2 + V (q) is the classical Hamiltonian,
and the second-order correction is obtained from Eq. (13.43)
of Ref. [1] (by differentiating with respect to λsc and correct-
ing the minus sign in front of δ′′ into a plus sign) (see also
Refs. [29–32])

A(2)
W (q,p) = 1

8

[
−∇2

qV (q) δ′′ (ω + E0 − H(q,p))

+1

3

(
(∇qV (q))2 + (p · ∇q)

2V (q)
)

×δ′′′ (ω + E0 − H(q,p))

]
. (17)

We thus obtain the second-order semiclassical expansion for
BW(q,p)

BW(q,p) = B(0)
W (q,p) + h̄2B(2)

W (q,p) + O(h̄4), (18)

with

B(0)
W (q,p) = P2A(0)

W (q,p), (19)

and

B(2)
W (q,p) = 1

4
D2A(0)

W (q,p) + P2A(2)
W (q,p). (20)

The expression of D2A(0)
W (q,p) is obtained directly from

Eq. (16)

D2A(0)
W (q,p) = −

(
D2V (q)

)
δ′(ω + E0 − H(q,p))

+ (DV (q))2 δ′′(ω + E0 − H(q,p)) .

(21)

Finally, we obtain the second-order semiclassical expansion
of the photoabsorption cross section [Eq. (10)]

σ(ω) = σ (0)(ω) + σ (2)(ω) + · · · , (22)

with the zeroth-order cross section

σ (0)(ω) = 4π2

3cω

∫

R6N

dqdp
(2π)3N B(0)

W (q,p)ρ0,W(q,p)

= 4π2

3cω

∫

R6N

dqdp
(2π)3N P2

×δ (ω + E0 − H(q,p)) ρ0,W(q,p), (23)

and the second-order correction

σ (2)(ω) = 4π2

3cω

∫

R6N

dqdp
(2π)3N B(2)

W (q,p)ρ0,W(q,p). (24)

We will write the latter term as a sum of three contributions

σ (2)(ω) = σ (2a)(ω) + σ (2b)(ω) + σ (2c)(ω), (25)
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where σ (2a)(ω) is the contribution coming from the δ′ func-
tion in Eq. (21)

σ (2a)(ω) = − π2

3cω

∫

R6N

dqdp
(2π)3N

(
D2V (q)

)

×δ′(ω + E0 − H(q,p)) ρ0,W(q,p), (26)

σ (2b)(ω) is the contribution coming from the δ′′ function in
Eqs. (17) and (21)

σ (2b)(ω) = π2

3cω

∫

R6N

dqdp
(2π)3N

[
(DV (q))2 − P2

2
∇2
qV (q)

]

×δ′′(ω + E0 − H(q,p)) ρ0,W(q,p), (27)

and σ (2c)(ω) is the contribution coming from the δ′′′ function
in Eq. (17)

σ (2c)(ω) = π2

18cω

∫

R6N

dqdp
(2π)3N P2

×
(
(∇qV (q))2 + (p · ∇q)

2V (q)
)

× δ′′′(ω + E0 − H(q,p)) ρ0,W(q,p). (28)

We have thus arrived at an approximation to the photoab-
sorption cross section that only requires to know the ground-
state Wigner function ρ0,W(q,p) but does not require the
calculation of the continuum states. Note that Eq. (22) is
not a full expansion in powers of h̄ since we do not expand
ρ0,W(q,p) in powers of h̄.

3 Theory for one-particle systems with spherical
ground states

We now apply the general theory of the previous section to the
case of one-particle systems (N = 1) with spherical ground
states. The phase-space variables are now q ≡ q1 ∈ R

3 and
p ≡ p1 ∈ R

3, and the classical Hamiltonian is

H(q,p) = p2

2
+ V (q), (29)

where p = ||p|| and q = ||q||, and V (q) is a central poten-
tial. This case encompasses not only one-electron atoms but
also many-electron atoms within a mean-field approxima-
tion with a spherical local potential such as Kohn-Sham
density-functional theory. The ground-state Wigner function
then depends only on q, p, and q · p, i.e. ρ0,W(q,p) ≡
ρ0,W(q, p,q · p).

3.1 Zeroth-order semiclassical approximation

The zeroth-order photoabsorption cross section [Eq. (23)]
simplifies to

σ (0)(ω) = 4π2

3cω

∫

R6

dqdp
(2π)3 p2δ(ω + E0 − p2/2 − V (q))

×ρ0,W(q, p,q · p), (30)

which gives, after performing the integrals in spherical coor-
dinates,

σ (0)(ω) = 4π

3cω

∫ ∞

0
dq q2

[
θ(E)(2E)3/2

×ρ̃0,W

(
q,

√
2E

)]

E=ω+E0−V (q)
, (31)

where we have introduced the spherically averaged Wigner
function ρ̃0,W(q, p) = ∫ 1

−1 dx ρ0,W(q, p, qpx) and made
the change of variables E = p2/2 before applying the delta
function. In Eq. (31), θ is the Heaviside step function.

3.2 Second-order semiclassical approximation

Using ∇2
qV (q) = V ′′(q) + (2/q)V ′(q), (∇qV (q))2 =

V ′(q)2, and (p ·∇q)
2V (q) = V ′′(q)(q ·p/q)2 +V ′(q)(p2 −

(q ·p/q)2)/q, we can obtain the different contributions to the
second-order semiclassical correction of the photoabsorption
cross section. The first contribution in Eq. (26) is

σ (2a)(ω) = − π2

3cω

∫

R6

dqdp
(2π)3

(
V ′′(q) + (2/q)V ′(q)

)

×δ′(ω + E0 − p2/2 − V (q)
)
ρ0,W(q, p, q · p),

(32)

which gives

σ (2a)(ω) = − 4π

12cω

∫ ∞

0
dq q2 (

V ′′(q) + (2/q)V ′(q)
)

×
[
θ(E)

d

dE
ρ̃1,W

(
q,

√
2E

)]

E=ω+E0−V (q)

,

(33)

where we have introduced ρ̃1,W(q, p) = pρ̃0,W(q, p).
Similarly, the second contribution in Eq. (27) is

σ (2b)(ω) = π2

3cω

×
∫

R6

dqdp
(2π)3

[
V ′(q)2− p2

2

(
V ′′(q)+(2/q)V ′(q)

)]

×δ′′(ω+E0− p2/2 − V (q)
)
ρ0,W(q, p, q · p),

(34)

which gives

σ (2b)(ω)= 4π

12cω

∫ ∞

0
dq q2

[
θ(E)

(
V ′(q)2 d2

dE2 ρ̃1,W

(
q,

√
2E

)

−1

2

(
V ′′(q) + (2/q)V ′(q)

)

× d2

dE2 ρ̃3,W

(
q,

√
2E

) )]

E=ω+E0−V (q)

, (35)
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where we have introduced ρ̃3,W(q, p) = p3ρ̃0,W(q, p).
Finally, the third contribution in Eq. (28) is

σ (2c)(ω) = π2

18cω

∫

R6

dqdp
(2π)3 p2

×
(
V ′(q)2 + V ′′(q)(q · p/q)2

+V ′(q)(p2 − (q · p/q)2)/q
)

×δ′′′(ω + E0 − p2/2 − V (q)
)

×ρ0,W(q, p,q · p), (36)

which gives

σ (2c)(ω)

= π

18cω

∫ ∞

0
dq q2

[
θ(E)

(
V ′(q)2 d3

dE3 ρ̃3,W

(
q,

√
2E

)

+ (
V ′′(q) − (1/q)V ′(q)

) d3

dE3 τ̃5,W

(
q,

√
2E

)

+(1/q)V ′(q)
d3

dE3 ρ̃5,W

(
q,

√
2E

) )]

E=ω+E0−V (q)

,(37)

where we have introduced τ̃0,W(q, p) = ∫ 1
−1 dx x2ρ0,W

(q, p, qpx), ρ̃5,W(q, p) = p5ρ̃0,W(q, p), and τ̃5,W(q, p) =
p5τ̃0,W(q, p).

4 Hydrogen-like atoms

In this section, we consider hydrogen-like atoms, i.e. one
electron in the Coulomb potential V (q) = −Z/q. The
ground state energy is E0 = −Z2/2 and the ionization
threshold Ethres = 0. Beyond the ionization threshold, the
photoabsorption cross section is usually called photoioniza-
tion cross section.

4.1 Expression of the photoionization cross section

The Wigner function of the ground state of the hydrogen
atom (Z = 1) has been given in Ref. [33] in the form of a
one-dimensional integral that, with the help of the software
Mathematica [34], we write here as 1

ρZ=1
0,W (q, p,q · p) =

∫ 1

0
du f (q, p,q · p, u), (38)

where

f (q, p,q · p, u)

= 16e2iq·p(2u−1)−2qg(p,u)

× (1 − u)u
(
3 + 6qg(p, u) + 4q2g(p, u)2

)

g(p, u)5
, (39)

1 Note that we needed to multiply the Wigner function of Ref. [33] by
4 × (2π)3 to match the present definition.

with g(p, u) = √
1 + 4p2(1 − u)u. Here, u is not a physical

variable but a disentanglement variable introduced to be able
to perform the integration over s in Eq. (9). From this, we
easily obtain the spherically averaged Wigner function as

ρ̃Z=1
0,W (q, p) =

∫ 1

0
du f̃ (q, p, u), (40)

where

f̃ (q, p, u) = 16e−2qg(p,u) sin (2qp(2u − 1))

× (1 − u)u
(
3 + 6qg(p, u) + 4q2g(p, u)2

)

qp(2u − 1)g(p, u)5
.

(41)

The ground-state Wigner function for a hydrogen-like atom
with arbitrary nuclear charge Z can then be simply obtained
from scaling: ρZ

0,W (q, p,q · p) = ρZ=1
0,W (Zq, p/Z ,q · p)

and ρ̃Z
0,W (q, p) = ρ̃Z=1

0,W (Zq, p/Z).
The zeroth-order semiclassical photoionization cross sec-

tion [Eq. (31)] thus takes the form

σ (0)(ω) = 4π

3cω

∫ 1

0
du

∫ ∞

0
dq q2(2(ω + E0 + Z/q))3/2

× f̃
(
Zq,

√
2(ω + E0 + Z/q)/Z , u

)
, (42)

and is calculated by performing a double numerical integra-
tion over q and u with the software Mathematica [34].

The terms involving the Laplacian of the Coulomb poten-
tial, ∇2

qV (q) = 4π Zδ(q), do not contribute to the second-
order semiclassical correction to the photoionization cross
section. Thus, the first contribution [Eq. (33)] vanishes

σ (2a)(ω) = 0, (43)

and the second contribution [Eq. (35)] simplifies to, using
V ′(q) = Z/q2,

σ (2b)(ω) = π Z3

3cω

∫ ∞

0
dq

1

q2

×
[

d2

dE2 ρ̃1,W

(
Zq,

√
2E/Z

)]

E=E(ω,q)

, (44)

where E(ω, q) = ω + E0 + Z/q. Finally, using V ′′(q) =
−2Z/q3, the third contribution [Eq. (37)] takes the form

σ (2c)(ω) = π

18cω

∫ ∞

0
dq

[
Z5

q2

d3

dE3 ρ̃3,W

(
Zq,

√
2E/Z

)

−3Z6

q

d3

dE3 τ̃5,W

(
Zq,

√
2E/Z

)

+ Z6

q

d3

dE3 ρ̃5,W

(
Zq,

√
2E/Z

) ]

E=E(ω,q)

.

(45)

Using the software Mathematica [34], the quantity

ρ̃1,W

(
q,

√
2E

)
, ρ̃3,W

(
q,

√
2E

)
, ρ̃5,W

(
q,

√
2E

)
, and
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Fig. 1 Photoionization cross section of the hydrogen atom (Z =
1). The exact cross section σexact(ω) [Eq. (46)] is compared with
the zeroth-order semiclassical approximation σ (0)(ω) [Eq. (42)],
the partial second-order semiclassical approximation σ (0+2b)(ω) =
σ (0)(ω) + σ (2b)(ω) [Eqs. (42) and (44)], the full second-order semi-
classical approximation σ (0+2)(ω) = σ (0)(ω) + σ (2b)(ω) + σ (2c)(ω)

[Eqs. (42), (44), and (45)], and the Padé approximant σPadé(ω) [Eq. (48)]

τ̃5,W

(
q,

√
2E

)
, and their derivatives with respect to E

are obtained as one-dimensional integrals over u similar to
Eq. (40).

4.2 Results and discussion

The photoionization cross section of the hydrogen-like atom
is known exactly (see, e.g., Refs. [35,36])

σexact(ω) = 32π2Z6

3cω4

e−4n′(ω) arccot n′(ω)

1 − e−2πn′(ω)
, (46)

where n′(ω) = Z/
√

2(ω + E0).
In Fig. 1, we compare the exact cross section of the

hydrogen atom (Z = 1) with the zeroth-order semiclas-
sical approximation σ (0)(ω) [Eq. (42)], the partial second-
order semiclassical approximation σ (0+2b)(ω) = σ (0)(ω) +
σ (2b)(ω) [Eqs. (42) and (44)], and the full second-order semi-
classical approximation σ (0+2)(ω) = σ (0)(ω) + σ (2b)(ω) +
σ (2c)(ω) [Eqs. (42), (44), and (45)]. While the cross sec-
tion σ (0+2b)(ω) is a significant improvement over the zeroth-
order cross section σ (0)(ω), the addition of the contribution
σ (2c)(ω) has almost no effect.

As expected, the semiclassical approximation becomes
more accurate as ω increases. The exact asymptotic behavior
of the cross section of the hydrogen atom for large ω is [37]

σexact(ω) ∼
ω→∞

16π
√

2

3cω7/2 ≈ 0.172

ω7/2 . (47)

Numerically, we find limω→∞ ω7/2σ (0)(ω) ≈ 0.11 and
limω→∞ ω7/2σ (0+2)(ω) ≈ 0.17. So, σ (0)(ω) has the cor-

Fig. 2 Photoionization cross section of the hydrogen atom. The exact
cross section σexact(ω) [Eq. (46)] is compared with the zeroth-order
semiclassical approximation σ (0)(ω) where the Coulomb potential
V (q) has been neglected in BW(q,p)

rect behavior in 1/ω7/2 but not the correct prefactor, while
σ (0+2)(ω) has the correct prefactor.

To improve the accuracy at small ω, one may resum
the semiclassical expansion in Eq. (22) using a [0/1] Padé
approximant

σPadé(ω) = σ (0)(ω)

1 − σ (2)(ω)/σ (0)(ω)
, (48)

which is also plotted in Fig. 1. We see that the Padé approx-
imant is quite effective indeed to improve the accuracy at
small ω.

Finally, Fig. 2 shows the effect of neglecting the Coulomb
potential V (q) in BW(q,p), equivalent to using the free-
particle plane-wave continuum states. This changes com-
pletely the shape of the spectrum. In particular, the cross
section is now zero at the ionization threshold, in accordance
with the Wigner-threshold law [38,39] which predicts this
behavior for potentials lacking a long-range attractive −1/q
Coulomb tail. The obtained spectrum has in fact a similar
shape as the one obtained in Hartree-Fock [40] whose con-
tinuum states only see an exponentially decaying effective
potential.

5 Helium-like atoms

In this section, we consider helium-like atoms, i.e. N = 2
electrons. The phase-space variables are now q ≡ (q1,q2) ∈
R

6 and p ≡ (p1,p2) ∈ R
6, and the classical Hamiltonian is

H(q,p) = p2
1

2
+ p2

2

2
+ V (q1,q2), (49)

where pi = ||pi || and qi = ||qi ||, and the potential is
V (q1,q2) = −Z/q1 − Z/q2 + 1/||q1 − q2||.
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5.1 Wigner function of the ground state

As an approximation to the exact ground-state wave func-
tion, we consider the Hartree-Fock (HF) wave function,
Φ(q1,q2) = φ(q1)φ(q2), where φ is the HF 1 s orbital.
The associated Wigner function can be factorized as

ρHF,W(q1,q2,p1,p2)

= ρφ,W(q1, p1,q1 · p1)ρφ,W(q2, p2,q2 · p2), (50)

where ρφ,W(q, p,q · p) is the Wigner function associated
with the 1 s orbital φ

ρφ,W(q, p,q · p) =
∫

R3
ds e−ip·sφ(q − s/2)φ(q + s/2).

(51)

As usual in quantum chemistry, the orbital φ is expanded
on M Gaussian basis functions χi (q) = (2αi/π)3/4e−αi q2

,
where αi are fixed exponents,

φ(q) =
M∑

i=1

ciχi (q), (52)

and ci are coefficients found by solving the HF self-consistent
equation. Following Ref. [41], the corresponding Wigner
function is easily obtained as

ρφ,W(q, p,q · p) =
M∑

i=1

M∑

j=1

ci c j Pi, j (q, p,q · p), (53)

where

Pi, j (q, p, q · p) =
∫

R3
ds e−ip·sχi (q − s/2)χ j (q + s/2).

= 23 (
βi, jγi, j

)3/4
e−γi, j q2

e−βi, j p2
e−2iτi, jq·p,

(54)

with βi, j = 1/(αi + α j ), γi, j = 4αiα jβi, j , τi, j = (αi −
α j )βi, j . The Wigner function can be rewritten as

ρφ,W(q, p,q · p) =
M∑

i=1

c2
i fi,i (q, p)

+
M∑

i=1

M∑

j=i+1

ci c j fi, j (q, p,q · p),

(55)

where

fi,i (q, p) = Pi,i (q, p,q · p) = 23e−2αi q2
e−p2/(2αi ), (56)

and

fi, j (q, p,q · p) = Pi, j (q, p,q · p) + Pj,i (q, p,q · p)

= 24(βi, jγi, j )
3/4e−γi, j q2

×e−βi, j p2
cos(2τi, jq · p). (57)

5.2 Expression of the photoionization cross section

5.2.1 Zeroth-order contribution

Using the HF Wigner function in Eq. (50) and the corre-
sponding exact HF ground-state energy EHF

0 = −2.861680
a.u. (giving an ionization threshold of Ethres − EHF

0 =
0.861680 a.u.), the zeroth-order photoionization cross sec-
tion in Eq. (23) becomes

σ (0)(ω) = 4π2

3cω

∫

R12

dq1dq2dp1dp2

(2π)6 (p2
1 + p2

2 + 2p1 · p2)

×δ(ω + EHF
0 − p2

1/2 − p2
2/2 − V (q1,q2))

×ρφ,W(q1, p1,q1 · p1)ρφ,W(q2, p2,q2 · p2).

(58)

Using spherical coordinates for p1 and p2, and integrating
over the angles, we get

σ (0)(ω) = 4π2

3cω(2π)4

∫

R6
dq1dq2

×
∫ ∞

0
dp1

∫ ∞

0
dp2 p

2
1 p

2
2(p

2
1 + p2

2)

×δ(ω + EHF
0 − p2

1/2 − p2
2/2 − V (q1,q2))

×ρ̃φ,W(q1, p1)ρ̃φ,W(q2, p2). (59)

where ρ̃φ,W(q, p) = ∫ 1
−1 dxρφ,W(q, p, qpx), and we have

used that the fact the integral over the angles of the term
involving p1 · p2 vanishes because ρφ,W(q, p, qpx) is an
even function of x . Using polar coordinates p1 = η cos ϕ and
p2 = η sin ϕ, and making the change of variables E = η2/2
before applying the delta function, we find

σ (0)(ω) = 2

3cω

∫ ∞

0
dq1

∫ ∞

0
dq2

∫ 1

−1
dx

∫ π/2

0
dϕq2

1q
2
2 (cos ϕ)2(sin ϕ)2

×
[
θ(E)(2E)3ρ̃φ,W(q1,

√
2E cos ϕ)

×ρ̃φ,W(q2,
√

2E sin ϕ)

]

E=E(ω,q1,q2,x)

, (60)

where

E(ω, q1, q2, x) = ω + EHF
0 + Z

q1
+ Z

q2

− 1√
q2

1 + q2
2 − 2q1q2x

. (61)
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5.2.2 Second-order contribution

Similarly to hydrogen-like atoms, the Laplacian-like terms,
D2V (q) and ∇2

qV (q), should not contribute to the second-

order photoionization cross section. Thus,σ (2a)(ω) [Eq. (26)]
is zero and σ (2b)(ω) [Eq. (27)] simplifies to

σ (2b)(ω) = π2

3cω

∫

R12

dq1dq2dp1dp2

(2π)6 (DV (q1,q2))
2

×δ′′(ω + EHF
0 − p2

1/2 − p2
2/2 − V (q1,q2))

×ρφ,W(q1, p1,q1 · p1)ρφ,W(q2, p2,q2 · p2),

(62)

where DV (q1,q2) = Z(q1/q3
1 + q2/q3

2 ). Using spherical
coordinates for p1 and p2, we get

σ (2b)(ω) = π2

3cω(2π)4

∫

R6
dq1dq2

∫ ∞

0
dp1

∫ ∞

0
dp2 p2

1 p
2
2

× (DV (q1,q2))
2 δ′′(ω + EHF

0 − p2
1/2

−p2
2/2 − V (q1,q2))

×ρ̃φ,W(q1, p1)ρ̃φ,W(q2, p2). (63)

Using now polar coordinates p1 = η cos ϕ and p2 = η sin ϕ,
and making the change of variables E = η2/2, we find

σ (2b)(ω) = Z2

6cω

∫ ∞

0
dq1

∫ ∞

0
dq2

∫ 1

−1
dx

×
∫ π/2

0
dϕ (cos ϕ)2(sin ϕ)2

×
(
q2

1

q2
2

+ q2
2

q2
1

+ 2x

)

×
[
θ(E)

d2

dE2

(
(2E)2ρ̃φ,W(q1,

√
2E cos ϕ)

×ρ̃φ,W(q2,
√

2E sin ϕ)
)]

E=E(ω,q1,q2,x)

. (64)

Based on the results obtained for the hydrogen atom, we
expect the last second-order contribution σ (2c)(ω) [Eq. (28)]
to be small and so we will not attempt to calculate it.

5.3 Results and discussion

We performed a HF calculation with the uncontracted Gaus-
sian cc-pVDZ basis set [42,43] (containing M = 4 s Gaus-
sian basis functions) to obtain the 1 s HF occupied orbital
of the helium atom (Z = 2). The exponents αi are 38.36,
5.77, 1.24, 0.2976, and the corresponding coefficients ci
are 0.02380882, 0.15489122, 0.46998667, 0.51302690. We
then calculated by numerical integration with the software
Mathematica [34] the zeroth-order semiclassical cross sec-
tion σ (0)(ω) [Eq. (60)] and the partial second-order cor-
rection σ (2b)(ω) [Eq. (64)]. The numerical integration for

Fig. 3 Photoionization cross section of the helium atom (Z = 2).
The reference TDHF cross section σTDHF(ω) [9,40] is compared with
the zeroth-order semiclassical cross section σ (0)(ω) [Eq. (60)] and
the partial second-order semiclassical cross sections σ (0+2b)(ω) =
σ (0)(ω)+σ (2b)(ω) [Eqs. (60) and (64)]. Also reported are the approxi-
mate zeroth-order and partial second-order semiclassical cross sections
σ (0),noV12(ω) and σ (0+2b),noV12(ω) = σ (0),noV12(ω) + σ (2b),noV12(ω)

[Eqs. (60) and (64)] in which the two-electron Coulomb interaction
V12(q1,q2) = 1/||q1 − q2|| has been neglected

σ (2b)(ω) turned out to be delicate and requires a somewhat
costly local-adaptive algorithm. For this reason, we also
considered the approximation (refer to as “noV12”) con-
sisting in neglecting the two-electron Coulomb interaction
V12(q1,q2) = 1/||q1 − q2|| in the expression of V (q1,q2).
This is done simply by replacing E(ω, q1, q2, x) in Eqs. (60)
and (64) by EnoV12(ω, q1, q2) = ω + EHF

0 + Z/q1 + Z/q2.
This eliminates the numerical integration over the variable
x and makes the remaining numerical integration easier to
perform. The resulting zeroth-order and partial second-order
semiclassical cross sections are designated by σ (0),noV12(ω)

and σ (0+2b),noV12(ω), respectively.
Figure 3 reports these photoionization cross sections for

the helium atom. As reference, we use the linear-response
time-dependent Hartree-Fock (TDHF) cross section calcu-
lated with a B-spline basis set [9,40]. Similarly to the
case of the hydrogen atom, the zeroth-order cross section
σ (0)(ω) is always too small but improves at ω increases.
The partial second-order cross section σ (0+2b)(ω) consti-
tutes an improvement over σ (0)(ω) and is accurate at high
energy. The approximate partial second-order cross section
σ (0+2b),noV12(ω) is significantly less accurate at high energy,
showing that one should avoid neglecting the two-electron
Coulomb interaction.

6 Conclusions and future directions

In this work, we have developed semiclassical approxima-
tions for calculating photoabsorption/photoionization cross
sections. The approximations only require to have the Wigner
function of the ground state and bypass the need to explic-
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itly calculate the continuum states. Examples in electronic-
structure theory on the hydrogen and helium atoms suggest
that these approximations can be used to obtain good esti-
mates of photoabsorption/photoionization cross sections at
high energy.

However, at least two limitations remain. First, we do not
have any a priori estimates of the errors made by these semi-
classical approximations. Second, it seems difficult to extend
the present calculations done by deterministic numerical inte-
gration to a larger number of particles. Regarding the lat-
ter point, a possible strategy to treat general systems would
be to calculate the 6N -dimensional phase-space integrals by
Monte Carlo sampling of the Wigner function [44]. The func-
tions to average in Eq. (23) and in Eqs. (26)–(28) are singular
(they contain the Dirac delta function and its derivatives) but
the Monte Carlo techniques developed in Refs. [45–47] could
be used to efficiently calculate these averages.

More generally, the type of Wigner-based semiclassical
approximations developed in the present work could be use-
ful in quantum many-body theory to calculate efficiently the
contribution of the high-lying continuum states to various
quantities such as second-order or coupled-cluster correla-
tion energies [48,49] which are known to converge slowly
with the size of the one-particle basis set for a two-particle
interaction with a hard short-range part such as the Coulomb
interaction [50,51].

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: The data presented
in this work can be reproduced from the given formulas. If needed, the
data is available from the author upon reasonable request.]
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