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We extend the previously proposed one-parameter double-hybrid density-functional theory [K.
Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-
gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct sev-
eral variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-
Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and
reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the den-
sity and of the kinetic energy density in the correlation functional, and improves over both stan-
dard Kohn-Sham TPSS and second-order Møller-Plesset calculations. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4865963]

I. INTRODUCTION

The double-hybrid (DH) approximations1 have become
one of the most accurate approximations for electronic-
structure calculations within density-functional theory (DFT).
They consist in mixing Hartree-Fock (HF) exchange with
a semilocal exchange density functional and second-order
Møller-Plesset (MP2) correlation with a semilocal correlation
density functional:

EDH
xc = axE

HF
x + (1 − ax)Ex[n]

+ (1 − ac)Ec[n] + acE
MP2
c , (1)

where the first three terms are calculated in a self-consistent
hybrid Kohn-Sham (KS) calculation, and the last MP2 term
is usually evaluated with the previously obtained orbitals
and added a posteriori (see, however, Ref. 2 for a double-
hybrid scheme with orbitals optimized in the presence of
the MP2 correlation term). The two empirical parameters ax

and ac are usually determined by fitting to a thermochem-
istry database. A variety of such double hybrids have been
constructed with different ax and ac parameters and various
density functionals.1, 3–8 Double-hybrid approximations with
more parameters have also been proposed.9–15 The so-called
multicoefficient correlation methods combining HF, DFT, and
MP2 energies can also be considered to be a form of double-
hybrid approximation.16–19

Recently, Sharkas et al.20 provided a rigorous theoretical
justification for double hybrids based on the adiabatic con-
nection formalism and which lead to a density-scaled one-
parameter double-hybrid (DS1DH) approximation
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EDS1DH,λ
xc = λEHF

x + (1 − λ)Ex[n]

+Ec[n] − λ2Ec[n1/λ] + λ2EMP2
c , (2)

where Ec[n1/λ] is the usual correlation energy func-
tional evaluated at the scaled (squeezed) density n1/λ(r)
= (1/λ)3n(r/λ). In this class of double hybrids only one in-
dependent empirical parameter λ is needed instead of the
two parameters ax and ac. The connection with the original
double-hybrid approximations can be made by neglecting the
density scaling

Ec[n1/λ] ≈ Ec[n], (3)

which leads to the one-parameter double-hybrid (1DH)
approximation20

E1DH,λ
xc = λEHF

x + (1 − λ)Ex[n]

+ (1 − λ2)Ec[n] + λ2EMP2
c , (4)

corresponding to the standard double-hybrid approximation
of Eq. (1) with parameters ax = λ and ac = λ2. DS1DH
and 1DH approximations have been constructed using the
Perdew-Burke-Ernzerhof (PBE)21 and the Becke-Lee-Yang-
Parr (BLYP)22, 23 exchange-correlation density functionals,
and it was found that when neglecting density scaling the ac-
curacy on atomization energies largely deteriorates for PBE
but in fact improves for BLYP (see, also, Ref. 24 for a
1DH approximation based on the modified Perdew-Wang25

exchange functional and the Perdew-Wang-9126 correlation
functional). By appealing to the high-density limit of the cor-
relation functional, Toulouse et al.27 argued that a more sensi-
ble approximation to the density-scaled correlation functional
is

Ec[n1/λ] ≈ (1 − λ)EMP2
c + λEc[n], (5)
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leading to the linearly scaled one-parameter double-hybrid
(LS1DH) approximation

ELS1DH,λ
xc = λEHF

x + (1 − λ)Ex[n]

+ (1 − λ3)Ec[n] + λ3EMP2
c , (6)

which works reasonably well for PBE and corresponds to the
form used for the PBE0-DH28 and PBE0-229 double hybrids.
Finally, note that Fromager and co-workers30, 31 explored the
theoretical basis of the two-parameter double-hybrid approx-
imations and proposed new double-hybrid schemes.

The vast majority of all these double hybrids have
been applied with generalized-gradient approximation (GGA)
density functionals. Only recently, Goerigk and Grimme7

proposed two-parameter double-hybrid schemes based on
meta-GGA density functionals. In these schemes, the
opposite-spin MP2 correlation energy is combined with a re-
fitted Tao-Perdew-Staroverov-Scuseria (TPSS)32 meta-GGA
exchange-correlation functional, or with a refitted Perdew-
Wang26 GGA exchange functional and a refitted Becke-
95 (B95)33 meta-GGA correlation functional. Kozuch and
Martin13, 15 also tested numerous spin-component-scaled dou-
ble hybrids, with four or more optimized parameters, includ-
ing the B95 meta-GGA correlation functional and the TPSS,
B98,34 BMK,35 τHCTH36 meta-GGA exchange-correlation
functionals.

In this work, we reexamine the theoretical basis of
double-hybrid approximations using meta-GGA functionals,
and we construct one-parameter double hybrids using the
TPSS meta-GGA functional. While the 1DH and LS1DH
schemes can be readily applied with a meta-GGA functional,
the DS1DH scheme requires an extension of the density scal-
ing to the non-interacting kinetic energy density τ (r) that is
used in the TPSS functional. We then assess the accuracy of
these one-parameter meta-GGA double hybrids on test sets of
atomization energies and reaction barrier heights.

II. DOUBLE-HYBRID META-GGA APPROXIMATIONS

In addition to the explicit dependence on the density n(r),
its gradient ∇n(r), and possibly its Laplacian ∇2n(r), a meta-
GGA density functional also generally depends on the non-
interacting positive kinetic energy density τ (r) which can be
seen as an implicit functional of the density (for simplicity, we
only write the equations for the spin-unpolarized case; the ex-
tension to the general spin-polarized case is straightforward):

τ [n](r) = 〈�[n]|τ̂ (r)|�[n]〉 = 1

2

occ∑
i

|∇rφi[n](r)|2 , (7)

where the positive kinetic energy density operator τ̂ (r)
= (1/2)

∑
σ=↑,↓ ∇r ψ̂†

σ (r) · ∇r ψ̂σ (r) has been introduced

(with the creation and annihilation field operators ψ̂†
σ (r) and

ψ̂σ (r)), �[n] is the (KS) single-determinant wave function
minimizing the kinetic energy 〈�|T̂ |�〉 and giving the den-
sity n, and φi[n](r) are the associated (KS) spin-orbitals.

Defining the scaled non-interacting kinetic energy den-
sity τ γ as the non-interacting kinetic energy density corre-
sponding the scaled density nγ (r) = γ 3n(γ r) (where γ is an

arbitrary positive scaling factor), one can show

τγ [n](r) ≡ τ [nγ ](r) = 1

2

occ∑
i

|∇rφi[nγ ](r)|2

= γ 3

2

occ∑
i

|∇rφi[n](γ r)|2

= γ 5

2

occ∑
i

|∇γ rφi[n](γ r)|2

= γ 5τ [n](γ r), (8)

where the scaling relation φi[nγ ](r) = γ 3/2φi[n](γ r) has
been used. The scaling relation on τ [n](r) is consistent with
the well-known quadratic scaling of the non-interacting ki-
netic energy Ts[nγ ] = γ 2Ts[n] where Ts[n] = ∫

τ [n](r)dr.37

Furthermore, this scaling relation can easily be verified for
one-electron systems with the von Weizsäcker kinetic energy
density, τW (r) = (1/8) |∇rn(r)|2 /n(r), and for the uniform
electron gas, τ unif = (3/10)(3π2)2/3n5/3.

Working with τ [n](r) as an implicit functional of the den-
sity in a self-consistent KS calculation requires to use the opti-
mized effective potential approach to calculate the functional
derivative of the exchange-correlation energy Exc[n] with re-
spect to the density n,38 which is computationally impracti-
cal. The standard practice39–45 is to consider the exchange-
correlation energy as an explicit functional of both n and
τ , Exc[n, τ ]. Following this practice, we define a density-
scaled one-parameter hybrid (DS1H) approximation with a
τ -dependent functional as

EDS1H,λ = min
�

{〈�|T̂ + V̂ext + λŴee|�〉

+ Ēλ
H[n�] + Ēλ

xc[n�, τ�]
}
, (9)

where � is a single-determinant wave function, T̂ is the
kinetic energy operator, V̂ext is the external (e.g., electron-
nucleus) potential operator, Ŵee is the Coulomb electron-
electron interaction operator, Ēλ

H[n�] and Ēλ
xc[n�, τ�] are

the complement Hartree and exchange-correlation function-
als evaluated at the density and kinetic energy density of �,
n�(r) = 〈�|n̂(r)|�〉 and τ�(r) = 〈�|τ̂ (r)|�〉. The comple-
ment Hartree and exchange functionals are linear with respect
to λ:

Ēλ
H[n] = (1 − λ)EH[n], (10)

Ēλ
x [n, τ ] = (1 − λ)Ex[n, τ ], (11)

where EH[n] and Ex[n, τ ] are the usual KS Hartree and ex-
change functionals. The complement correlation functional is
obtained via the extension of uniform coordinate scaling of
the density46–49 to the kinetic energy density

Ēλ
c [n, τ ] = Ec[n, τ ] − Eλ

c [n, τ ]

= Ec[n, τ ] − λ2Ec[n1/λ, τ1/λ], (12)

where Ec[n, τ ] is the usual KS correlation functional, Eλ
c [n, τ ]

is the correlation functional corresponding to the interac-
tion λŴee, n1/λ(r) = (1/λ)3n(r/λ) is the scaled density, and
τ1/λ(r) = (1/λ)5τ (r/λ) is the scaled kinetic energy density.



084107-3 Souvi, Sharkas, and Toulouse J. Chem. Phys. 140, 084107 (2014)

The minimizing single-determinant wave function �λ

in Eq. (9) is calculated by the self-consistent eigenvalue
equation:(

T̂ + V̂ext + λV̂ HF
Hx [�λ] + V̂ λ

H [n�λ ] + V̂ λ
xc[n�λ, τ�λ ]

) |�λ〉
= Eλ

0 |�λ〉, (13)

where V̂ HF
Hx is the nonlocal HF potential operator, V̂ λ

H is the
complement local Hartree potential operator, and V̂ λ

xc is the
complement exchange-correlation potential operator

V̂ λ
xc[n, τ ] =

∫
δĒλ

xc[n, τ ]

δn(r)
n̂(r)dr +

∫
δĒλ

xc[n, τ ]

δτ (r)
τ̂ (r)dr,

(14)
where n̂(r) = ∑

σ=↑,↓ ψ̂†
σ (r)ψ̂σ (r) is the density operator

and the second term in Eq. (14) corresponds to a non-
multiplicative “potential” operator.

The nonlinear Rayleigh-Schrödinger perturbation theory
of Refs. 20 and 50–52 can readily be extended to start with
the DS1H reference of Eq. (9) with a τ -dependent functional
(details are given in the supplementary material53). For the
second-order energy correction, due to Brillouin’s theorem,
only double excitations contribute and consequently the non-
linear terms of the perturbation theory vanish since they in-
volve expectation values of the one-electron operators n̂(r)
and τ̂ (r) between determinants differing by two spin orbitals.
The second-order energy correction to be added to the DS1H
energy has thus a standard MP2 form

Eλ,(2) = λ2
∑
i<j

a<b

|〈ij ||ab〉|2
εi + εj − εa − εb

= λ2EMP2
c , (15)

where i, j and a, b refer to occupied and virtual DS1H spin-
orbitals, respectively, with associated orbital eigenvalues εk,
and 〈ij||ab〉 are the antisymmetrized two-electron integrals.
The DS1DH exchange-correlation energy for a τ -dependent
functional is thus (dropping from now on the explicit depen-
dence on �λ)

EDS1DH,λ
xc = λEHF

x + (1 − λ)Ex[n, τ ]

+Ec[n, τ ] − λ2Ec[n1/λ, τ1/λ] + λ2EMP2
c . (16)

Neglecting the scaling in the correlation functional, Ec[n1/λ,
τ 1/λ] ≈ Ec[n, τ ], gives the 1DH exchange-correlation
energy

E1DH,λ
xc = λEHF

x + (1 − λ)Ex[n, τ ]

+ (1 − λ2)Ec[n, τ ] + λ2EMP2
c , (17)

and using the approximate scaling Ec[n1/λ, τ1/λ]
≈ (1 − λ)EMP2

c + λEc[n, τ ] gives the LS1DH exchange-
correlation energy

ELS1DH,λ
xc = λEHF

x + (1 − λ)Ex[n, τ ]

+ (1 − λ3)Ec[n, τ ] + λ3EMP2
c . (18)

We apply these double-hybrid schemes with the TPSS
exchange-correlation functional and refer to them as DS1DH-
TPSS, 1DH-TPSS, and LS1DH-TPSS.

III. COMPUTATIONAL DETAILS

Calculations have been performed with a development
version of the MOLPRO program,55 in which the DS1DH-
TPSS, 1DH-TPSS, and LS1DH-TPSS approximations have
been implemented. The scaling relations for the scaled
exchange-correlation energy and its derivatives for a general
meta-GGA functional are given in the Appendix. The em-
pirical parameter λ is optimized on the AE6 and BH6 test
sets.56 The AE6 set is a small representative benchmark set
of six atomization energies consisting of SiH4, S2, SiO, C3H4

(propyne), C2H2O2 (glyoxal), and C4H8 (cyclobutane). The
BH6 set is a small representative benchmark set of forward
and reverse hydrogen barrier heights of three reactions, OH
+ CH4 → CH3 + H2O, H + OH → O + H2, and H + H2S
→ HS + H2. All the calculations for the AE6 and BH6 sets
were performed at the optimized QCISD/MG3 geometries57

using the Dunning cc-pVQZ basis set.58, 59 The performance
of the best double hybrid is then checked on the larger bench-
mark set of 49 atomization energies of Ref. 54 (G2-1 test
set60, 61 except for the six molecules containing Li, Be, and
Na) at MP2(full)/6-31G∗ geometries using the Dunning cc-
pVQZ basis set. Core electrons are kept frozen in all our MP2
calculations. Spin-restricted calculations are performed for all
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FIG. 1. MAEs for the AE6 (left) and BH6 (right) test sets as functions of the parameter λ for the DS1DH, 1DH, and LS1DH approximations with the TPSS
exchange-correlation density functional. All calculations were carried out with the cc-pVQZ basis set.
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the closed-shell systems, and spin-unrestricted calculations
for all the open-shell systems.

IV. RESULTS AND DISCUSSION

In Figure 1, we plot the mean absolute errors (MAEs) for
the AE6 and BH6 test sets as functions of the parameter λ for
the DS1DH-TPSS, 1DH-TPSS, and LS1DH-TPSS approxi-
mations. The MAEs and mean errors (MEs) of the double hy-
brids based on the TPSS functional at the optimal values of
λ which minimize the MAEs on the AE6 and BH6 sets are
also reported in Table I, and compared to those obtained with
standard BLYP, PBE, TPSS, and MP2, as well as with other
double-hybrid approximations based on the BLYP and PBE
functionals.

For λ = 0, all these double hybrids reduce to a stan-
dard KS calculation with the TPSS functional, while for λ

= 1 they all reduce to a standard MP2 calculation. For the
AE6 set, DS1DH-TPSS gives by far the smallest MAE with
0.91 kcal/mol at the optimal value of λ = 0.70. LS1DH-TPSS
gives a larger MAE of 3.28 kcal/mol for an optimal value of
λ = 0.85, and 1DH-TPSS gives a yet larger MAE of 5.74
kcal/mol for an optimal value of λ = 0.05, providing virtually
no improvement over the TPSS KS calculation at λ = 0. For
the BH6 set, the three double-hybrid approximations are very
similar for the entire range of λ, indicating that the scaling
in the correlation functional contribution is not as crucial for
barrier heights as for atomization energies. The MAE minima
are 0.59 kcal/mol at λ = 0.75, 0.74 kcal/mol at λ = 0.78, and
0.96 kcal/mol at λ = 0.78 for DS1DH-TPSS, 1DH-TPSS, and
LS1DH-TPSS, respectively.

Neglecting the scaling of the density and of the kinetic
energy density in the TPSS correlation functional, Ec[n1/λ,
τ 1/λ] ≈ Ec[n, τ ], i.e., going from DS1DH-TPSS to 1DH-

TABLE I. MAEs and MEs (in kcal/mol) on the AE6 and BH6 test sets for
several methods. For the double-hybrid DS1DH, 1DH, and LS1DH approxi-
mations, the results are for the optimal values of λ which minimize the MAEs
of the AE6 and BH6 sets, separately. All calculations were carried out with
the cc-pVQZ basis set.

AE6 BH6

Method λ MAE ME λ MAE ME

BLYPa 6.52 − 1.18 8.10 − 8.10
PBEa 15.5 12.4 9.61 − 9.61
TPSS 5.79 3.78 8.41 − 8.41
MP2a 6.86 4.17 3.32 3.11
DS1DH-BLYPa λ = 0.80 4.73 − 2.52 λ = 0.65 0.60 0.24
1DH-BLYPa λ = 0.55 1.46 0.07 λ = 0.75 0.80 − 0.18
B2-PLYPa 1.39 − 1.09 2.21 − 2.21
DS1DH-PBEa λ = 0.65 3.78 1.30 λ = 0.80 1.32 0.48
1DH-PBEa λ = 0.55b 8.64b 7.06b λ = 0.80 1.42 0.12
LS1DH-PBEc λ = 0.75 3.59 0.23 λ = 0.70 0.73 − 0.20
DS1DH-TPSS λ = 0.70 0.91 0.07 λ = 0.75 0.59 − 0.14
1DH-TPSS λ = 0.05 5.74 2.37 λ = 0.78 0.74 − 0.28
LS1DH-TPSS λ = 0.85 3.28 2.21 λ = 0.78 0.96 0.13

aData from Ref. 20.
bThis is a local minimum. The global minimum is for λ = 1.0, i.e., MP2.
cData from Ref. 27.

TABLE II. Atomization energies (in kcal/mol) of the 49 molecules of the set
of Ref. 54 (G2-1 test set except for the six molecules containing Li, Be, and
Na). The calculated values were obtained using the functional TPSS and the
double hybrids DS1DH-TPSS (with λ = 0.725) and B2-PLYP with the cc-
pVQZ basis set and MP2(full)/6-31G∗ geometries. The zero-point energies
are removed in the reference values. For each method, the value with the
largest error is indicated in boldface.

Molecule TPSS
DS1DH-

TPSS B2-PLYPa Referenceb

CH 86.16 81.79 83.70 84.00
CH2 (3B1) 197.58 192.21 190.57 190.07
CH2 (1A1) 180.14 176.42 178.84 181.51
CH3 313.08 307.41 307.90 307.65
CH4 424.24 418.78 419.19 420.11
NH 90.06 81.87 84.89 83.67
NH2 187.57 179.47 183.94 181.90
NH3 299.39 293.93 297.69 297.90
OH 106.17 105.07 106.43 106.60
OH2 227.61 229.70 229.81 232.55
FH 137.73 139.98 139.00 141.05
SiH2 (1A1) 155.34 149.73 151.77 151.79
SiH2 (3B1) 140.29 133.77 131.78 131.05
SiH3 235.86 227.23 226.67 227.37
SiH4 332.36 322.33 321.95 322.40
PH2 160.61 150.92 154.80 153.20
PH3 248.32 237.11 240.73 242.55
SH2 183.95 180.31 180.58 182.74
ClH 105.42 105.72 105.01 106.50
HCCH 403.17 404.25 404.45 405.39
H2CCH2 566.27 561.66 562.15 563.47
H3CCH3 717.01 710.97 710.22 712.80
CN 180.61 173.89 179.61 180.58
HCN 312.39 311.53 314.12 313.20
CO 253.19 258.75 258.28 259.31
HCO 281.80 279.94 280.62 278.39
H2CO 375.03 373.44 373.56 373.73
H3COH 513.26 510.78 510.38 512.90
N2 226.73 224.84 229.24 228.46
H2NNH2 443.05 432.05 438.77 438.60
NO 156.29 151.51 155.04 155.22
O2 126.48 121.49 122.71 119.99
HOOH 268.05 264.63 265.44 268.57
F2 45.36 36.46 36.29 38.20
CO2 388.56 392.98 391.23 389.14
Si2 75.69 72.62 70.58 71.99
P2 114.84 110.56 115.84 117.09
S2 106.79 101.91 102.27 101.67
Cl2 58.36 56.97 55.48 57.97
SiO 184.87 190.16 190.82 192.08
SC 167.49 169.02 168.86 171.31
SO 127.99 124.31 125.33 125.00
ClO 69.45 59.78 62.70 64.49
ClF 64.48 60.38 59.85 61.36
Si2H6 545.77 531.14 529.02 530.81
CH3Cl 396.93 394.41 392.62 394.64
CH3SH 476.80 471.71 470.71 473.84
HOCl 164.67 162.66 162.27 164.36
SO2 252.11 254.27 251.10 257.86

MAE 3.9 2.3 1.6
ME 2.2 −1.7 −1.0

aData from Ref. 20.
bFrom Ref. 54.
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TPSS, largely deteriorates the accuracy of atomization en-
ergies. A similar deterioration is obtained when neglecting
the scaling of the density in the PBE correlation functional,
whereas a large improvement of atomization energies is ob-
served when neglecting the scaling of the density in the LYP
correlation functional (see Table I and Ref. 20). These differ-
ent behaviors between the PBE and TPSS correlation func-
tionals on the one hand and the LYP correlation functional on
the other hand may be related to the observation on atoms
with non-degenerate KS systems that PBE and TPSS are
more accurate than LYP for the high-density limit (or weak-
interaction limit), E(2)

c = limλ→0 Ec[n1/λ] .62–65

Contrary to most other double hybrids, the DS1DH-TPSS
double-hybrid approximation gives very close optimal values
of λ on the AE6 and BH6 sets, i.e., λ = 0.70 and λ = 0.75.
For general applications, we propose to use the value of
λ = 0.725 for this double hybrid when using the cc-pVQZ
basis set.

Finally, in Table II, we compare DS1DH-TPSS (with the
optimal parameter λ = 0.725) with TPSS and the standard
double hybrid B2-PLYP1 on the larger set of 49 atomization
energies of Ref. 54. With MAEs of 3.9 and 2.3 kcal/mol for
TPSS and DS1DH-TPSS, respectively, it is clear that the im-
provement in accuracy brought by DS1DH-TPSS over TPSS
observed on the small AE6 set remains (although smaller) for
this larger set. DS1DH-TPSS is however slightly less accurate
on average on this set than B2-PLYP (MAE of 1.6 kcal/mol).

V. CONCLUSIONS

We have constructed one-parameter double-hybrid
approximations using the TPSS meta-GGA exchange-
correlation functional and tested them on test sets of atom-
ization energies and reaction barrier heights. We have shown
that neglecting the scaling of the density and of the kinetic
energy density in the correlation functional largely deteri-
orates the accuracy on atomization energies, in contrast to
what was previously found for double hybrids based on the
BLYP functional. We thus propose the density-scaled double-
hybrid DS1DH-TPSS approximation with a fraction of HF
exchange of λ = 0.725 as a viable meta-GGA double hybrid
for thermochemistry calculations, improving over both stan-
dard KS TPSS and MP2 calculations. We hope that this work
will lead to more investigations of meta-GGA double hybrids
with minimal empiricism. Possible extensions of this work
include introducing meta-GGA functionals in multiconfigura-
tional hybrids66 or in Coulomb-attenuated double hybrids.67
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APPENDIX: SCALING RELATIONS FOR A META-GGA
CORRELATION ENERGY FUNCTIONAL AND ITS
DERIVATIVES

We give the expressions for the scaled meta-GGA corre-
lation functional Eλ

c [n, τ ] = λ2Ec[n1/λ, τ1/λ] and its deriva-

tives (see, also, Refs. 20 and 66). Starting from a standard
meta-GGA density functional, depending on the density n(r),
the square of the density gradient |∇rn(r)|2, the Laplacian of
the density ∇2

rn(r), and/or the non-interacting kinetic energy
density τ (r)

Ec[n, τ ] =
∫

ec

(
n(r), |∇rn(r)|2 ,∇2

rn(r), τ (r)
)
dr, (A1)

the corresponding scaled functional is written as

Eλ
c [n, τ ] =

∫
eλ
c

(
n(r), |∇rn(r)|2 ,∇2

rn(r), τ (r)
)
dr, (A2)

where the energy density is obtained by the scaling relation

eλ
c = λ5ec

(
n(r)

λ3
,
|∇rn(r)|2

λ8
,
∇2

rn(r)

λ5
,
τ (r)

λ5

)
. (A3)

The first-order derivatives of the energy density are

∂eλ
c

∂n
= λ2 ∂ec

∂n

(
n(r)

λ3
,
|∇rn(r)|2

λ8
,
∇2

rn(r)

λ5
,
τ (r)

λ5

)
, (A4)

∂eλ
c

∂ |∇n|2 = 1

λ3

∂ec

∂ |∇n|2
(

n(r)

λ3
,
|∇rn(r)|2

λ8
,
∇2

rn(r)

λ5
,
τ (r)

λ5

)
,

(A5)

∂eλ
c

∂|∇2n| = ∂ec

∂
∣∣∇2n

∣∣
(

n(r)

λ3
,
|∇rn(r)|2

λ8
,
∇2

rn(r)

λ5
,
τ (r)

λ5

)
,

(A6)
and

∂eλ
c

∂τ
= ∂ec

∂τ

(
n(r)

λ3
,
|∇rn(r)|2

λ8
,
∇2

rn(r)

λ5
,
τ (r)

λ5

)
. (A7)

The same scaling relations apply for spin-dependent function-
als Ec[n↑, n↓, τ↑, τ↓].

1S. Grimme, J. Chem. Phys. 124, 034108 (2006).
2R. Peverati and M. Head-Gordon, J. Chem. Phys. 139, 024110 (2013).
3T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 8, 4398 (2006).
4D. C. Graham, A. S. Menon, L. Goerigk, S. Grimme, and L. Radom, J.
Phys. Chem. A 113, 9861 (2009).

5A. Tarnopolsky, A. Karton, R. Sertchook, D. Vuzman, and J. M. L. Martin,
J. Phys. Chem. A 112, 3 (2008).

6A. Karton, A. Tarnopolsky, J.-F. Lamère, G. C. Schatz, and J. M. L. Martin,
J. Phys. Chem. A 112, 12868 (2008).

7L. Goerigk and S. Grimme, J. Chem. Theory Comput. 7, 291 (2011).
8F. Yu, Int. J. Quantum Chem. 113, 2355 (2013).
9Y. Zhang, X. Xu, and W. A. Goddard III, Proc. Natl. Acad. Sci. U.S.A. 106,
4963 (2009).

10I. Y. Zhang, Y. Luo, and X. Xu, J. Chem. Phys. 132, 194105 (2010).
11S. Kozuch, D. Gruzman, and J. M. L. Martin, J. Phys. Chem. C 114, 20801

(2010).
12I. Y. Zhang, X. Xu, Y. Jung, and W. A. Goddard III, Proc. Natl. Acad. Sci.

U.S.A. 108, 19896 (2011).
13S. Kozuch and J. M. L. Martin, Phys. Chem. Chem. Phys. 13, 20104 (2011).
14I. Y. Zhang, N. Q. Su, E. A. G. Brémond, and C. Adamo, J. Chem. Phys.

136, 174103 (2012).
15S. Kozuch and J. M. L. Martin, J. Comput. Chem. 34, 2327 (2013).
16Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 4786 (2004).
17Y. Zhao, B. J. Lynch, and D. G. Truhlar, Phys. Chem. Chem. Phys. 7, 43

(2005).
18J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 5, 808

(2009).
19J. C. Sancho-García and A. J. Pérez-Jiménez, J. Chem. Phys. 131, 084108

(2009).
20K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011).

http://dx.doi.org/10.1063/1.2148954
http://dx.doi.org/10.1063/1.4812689
http://dx.doi.org/10.1039/b608478h
http://dx.doi.org/10.1021/jp9042864
http://dx.doi.org/10.1021/jp9042864
http://dx.doi.org/10.1021/jp710179r
http://dx.doi.org/10.1021/jp801805p
http://dx.doi.org/10.1021/ct100466k
http://dx.doi.org/10.1002/qua.24460
http://dx.doi.org/10.1073/pnas.0901093106
http://dx.doi.org/10.1063/1.3424845
http://dx.doi.org/10.1021/jp1070852
http://dx.doi.org/10.1073/pnas.1115123108
http://dx.doi.org/10.1073/pnas.1115123108
http://dx.doi.org/10.1039/c1cp22592h
http://dx.doi.org/10.1063/1.3703893
http://dx.doi.org/10.1002/jcc.23391
http://dx.doi.org/10.1021/jp049253v
http://dx.doi.org/10.1039/b416937a
http://dx.doi.org/10.1021/ct800568m
http://dx.doi.org/10.1063/1.3212881
http://dx.doi.org/10.1063/1.3544215


084107-6 Souvi, Sharkas, and Toulouse J. Chem. Phys. 140, 084107 (2014)

21J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996).

22A. D. Becke, Phys. Rev. A 38, 3098 (1988).
23C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
24M. Alipour, J. Phys. Chem. A 117, 2884 (2013).
25C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).
26J. P. Perdew, in Electronic Structure of Solids ’91, edited by P. Ziesche and

H. Eschrig (Akademie Verlag, Berlin, 1991).
27J. Toulouse, K. Sharkas, E. Brémond, and C. Adamo, J. Chem. Phys. 135,

101102 (2011).
28E. Brémond and C. Adamo, J. Chem. Phys. 135, 024106 (2011).
29J.-D. Chai and S.-P. Mao, Chem. Phys. Lett. 538, 121 (2012).
30E. Fromager, J. Chem. Phys. 135, 244106 (2011).
31Y. Cornaton, O. Franck, A. M. Teale, and E. Fromager, Mol. Phys. 111,

1275 (2013).
32J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett.

91, 146401 (2003).
33A. D. Becke, J. Chem. Phys. 104, 1040 (1996).
34A. D. Becke, J. Chem. Phys. 109, 2092 (1998).
35A. D. Boese and J. M. L. Martin, J. Chem. Phys. 121, 3405 (2004).
36A. D. Boese and N. C. Handy, J. Chem. Phys. 116, 9559 (2002).
37L. J. Sham, Phys. Rev. A 1, 969 (1970).
38A. V. Arbuznikov and M. Kaupp, Chem. Phys. Lett. 381, 495 (2003).
39R. Neumann, R. H. Nobes, and N. C. Handy, Mol. Phys. 87, 1 (1996).
40R. Neumann and N. C. Handy, Chem. Phys. Lett. 252, 19 (1996).
41C. Adamo, M. Ernzerhof, and G. E. Scuseria, J. Chem. Phys. 112, 2643

(2000).
42A. V. Arbuznikov, M. Kaupp, V. G. Malkin, R. Reviakine, and O. L.

Malkina, Phys. Chem. Chem. Phys. 4, 5467 (2002).
43F. Furche and J. P. Perdew, J. Chem. Phys. 124, 044103 (2006).
44J. Sun, M. Marsman, G. I. Csonka, A. Ruzsinszky, P. Hao, Y.-S. Kim, and

G. K. J. P. Perdew, Phys. Rev. B 84, 035117 (2011).
45F. Zahariev, S. S. Leang, and M. S. Gordon, J. Chem. Phys. 138, 244108

(2013).
46M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).

47M. Levy, W. Yang, and R. G. Parr, J. Chem. Phys. 83, 2334 (1985).
48M. Levy, Phys. Rev. A 43, 4637 (1991).
49M. Levy and J. P. Perdew, Phys. Rev. B 48, 11638 (1993).
50J. G. Ángyán, I. C. Gerber, A. Savin, and J. Toulouse, Phys. Rev. A 72,

012510 (2005).
51E. Fromager and H. J. A. Jensen, Phys. Rev. A 78, 022504 (2008).
52J. G. Ángyán, Phys. Rev. A 78, 022510 (2008).
53See supplementary material at http://dx.doi.org/10.1063/1.4865963

for details on the extension of the perturbation theory of Ref. 50 to
meta-GGA functionals.

54P. L. Fast, J. Corchado, M. L. Sanchez, and D. G. Truhlar, J. Phys. Chem.
A 103, 3139 (1999).

55H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al.,
MOLPRO, version 2012.1, a package of ab initio programs, 2012, see
http://www.molpro.net.

56B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A 107, 8996 (2003).
57The geometries are available in the Minnesota Databases for Chemistry and

Solid-State Physics at http://comp.chem.umn.edu/db/.
58T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
59D. Woon and T. Dunning, J. Chem. Phys. 98, 1358 (1993).
60L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem.

Phys. 94, 7221 (1991).
61L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem.

Phys. 106, 1063 (1997).
62S. Ivanov and M. Levy, J. Phys. Chem. A 102, 3151 (1998).
63V. N. Staroverov, G. E. Scuseria, J. P. Perdew, J. Tao, and E. R. Davidson,

Phys. Rev. A 70, 012502 (2004).
64T. K. Whittingham and K. Burke, J. Chem. Phys. 122, 134108 (2005).
65V. N. Staroverov, G. E. Scuseria, J. P. Perdew, E. R. Davidson, and

J. Katriel, Phys. Rev. A 74, 044501 (2006).
66K. Sharkas, A. Savin, H. J. A. Jensen, and J. Toulouse, J. Chem. Phys. 137,

044104 (2012).
67Y. Cornaton and E. Fromager, “Double hybrid density-functional theory

using the Coulomb-attenuating method,” Int. J. Quantum Chem. (to be
published) [e-print arXiv:1312.0409].

http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1021/jp4016596
http://dx.doi.org/10.1063/1.475428
http://dx.doi.org/10.1063/1.3640019
http://dx.doi.org/10.1063/1.3604569
http://dx.doi.org/10.1016/j.cplett.2012.04.045
http://dx.doi.org/10.1063/1.3671384
http://dx.doi.org/10.1080/00268976.2013.783640
http://dx.doi.org/10.1103/PhysRevLett.91.146401
http://dx.doi.org/10.1063/1.470829
http://dx.doi.org/10.1063/1.476722
http://dx.doi.org/10.1063/1.1774975
http://dx.doi.org/10.1063/1.1476309
http://dx.doi.org/10.1103/PhysRevA.1.969
http://dx.doi.org/10.1016/j.cplett.2003.10.009
http://dx.doi.org/10.1080/00268979600100011
http://dx.doi.org/10.1016/S0009-2614(96)00181-9
http://dx.doi.org/10.1063/1.480838
http://dx.doi.org/10.1039/b207171a
http://dx.doi.org/10.1063/1.2162161
http://dx.doi.org/10.1103/PhysRevB.84.035117
http://dx.doi.org/10.1063/1.4811270
http://dx.doi.org/10.1103/PhysRevA.32.2010
http://dx.doi.org/10.1063/1.449326
http://dx.doi.org/10.1103/PhysRevA.43.4637
http://dx.doi.org/10.1103/PhysRevB.48.11638
http://dx.doi.org/10.1103/PhysRevA.72.012510
http://dx.doi.org/10.1103/PhysRevA.78.022504
http://dx.doi.org/10.1103/PhysRevA.78.022510
http://dx.doi.org/10.1063/1.4865963
http://dx.doi.org/10.1021/jp9900382
http://dx.doi.org/10.1021/jp9900382
http://www.molpro.net
http://dx.doi.org/10.1021/jp035287b
http://comp.chem.umn.edu/db/
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1063/1.464303
http://dx.doi.org/10.1063/1.460205
http://dx.doi.org/10.1063/1.460205
http://dx.doi.org/10.1063/1.473182
http://dx.doi.org/10.1063/1.473182
http://dx.doi.org/10.1021/jp9731415
http://dx.doi.org/10.1103/PhysRevA.70.012502
http://dx.doi.org/10.1063/1.1872832
http://dx.doi.org/10.1103/PhysRevA.74.044501
http://dx.doi.org/10.1063/1.4733672
http://arxiv.org/abs/1312.0409

