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We propose a multiconfigurational hybrid density-functional theory which rigorously combines a
multiconfiguration self-consistent-field calculation with a density-functional approximation based
on a linear decomposition of the electron-electron interaction. This gives a straightforward exten-
sion of the usual hybrid approximations by essentially adding a fraction λ of exact static correlation
in addition to the fraction λ of exact exchange. Test calculations on the cycloaddition reactions of
ozone with ethylene or acetylene and the dissociation of diatomic molecules with the Perdew-Burke-
Ernzerhof and Becke-Lee-Yang-Parr density functionals show that a good value of λ is 0.25, as in the
usual hybrid approximations. The results suggest that the proposed multiconfigurational hybrid ap-
proximations can improve over usual density-functional calculations for situations with strong static
correlation effects. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733672]

I. INTRODUCTION

Density-functional theory (DFT) (Ref. 1) within the
Kohn-Sham (KS) scheme2 is the most widely used method
for electronic-structure calculations in atomic, molecular, and
solid-state systems. With the usual approximate density func-
tionals, such as generalized-gradient approximations (GGA)
and hybrid approximations mixing in a fraction of Hartree-
Fock (HF) exchange, DFT KS generally gives good results
for situations in which the so-called dynamic electron corre-
lation dominates the total correlation energy, but it can yield
severe errors for systems with strong static correlation, i.e.,
with partially filled near-degenerate orbitals (see, e.g., Ref. 3).
It has been argued that the GGA exchange density function-
als actually mimic some static correlation through their self-
interaction error, though in an imperfect manner (see, e.g.,
Refs. 4 and 5). There is often indeed a partial cancellation of
errors between the self-interaction error which tends to give
too low an energy and the neglect of static correlation which
gives too high an energy (see, e.g., Ref. 6). Hybrid approxi-
mations have a smaller self-interaction error and are thus of-
ten worse than pure density functionals for describing systems
with static correlation (see, e.g., Ref. 7).

Several approaches have been proposed to include ex-
plicit static correlation in density-functional theory. Artifi-
cially breaking (space and spin) symmetry by unrestricted KS
calculations is the simplest approach to simulate static cor-
relation (see, e.g., Ref. 8), and it often leads to reasonable
potential energy surfaces but wrong spin densities. Another
possible approach consists in replacing the single KS deter-
minant by an ensemble of determinants or, equivalently, using
fractional occupation numbers for the orbitals,9–22 but a suc-
cessful and general method based on this idea is still lacking.
Configuration-interaction schemes have also been proposed in

a)Electronic mail: kamal.sharkas@etu.upmc.fr.
b)Electronic mail: julien.toulouse@upmc.fr.

which modified Hamiltonian matrix elements include infor-
mation from DFT.23–26 A lot of approaches consist in adding
to the energy of a partially correlated wave function calcula-
tion, including near-degenerate configuration state functions
coupled by the full Coulombic electron-electron interaction,
an energy density functional describing the missing correla-
tion effects.27–62 In these last approaches, one must use a den-
sity functional which depends on the size of the multicon-
figurational expansion, in order to avoid double counting of
correlation between the wave function part of the calculation
and the density functional. Finally, to avoid any double count-
ing of correlation from the beginning, it has been proposed to
decompose the Coulombic electron-electron interaction into
long-range and short-range components, the long-range part
being treated by a method capable of describing static corre-
lation and the short-range part being described by a density-
functional approximation. The methods that have been used
for the long-range part are: configuration interaction,63–69

multiconfigurational self-consistent field (MCSCF),70–72 mul-
tireference perturbation theory,73 constrained-pairing mean-
field theory,74, 75 and density-matrix functional theory.76–78

In this work, we explore the possibility to combine
MCSCF and DFT based on a simple linear decomposition
of the Coulombic electron-electron interaction, in the spirit
of the usual hybrid approximations, and similar to what was
recently done for constructing theoretically justified double-
hybrid approximations.79 This approach gives a straightfor-
ward multiconfigurational extension of the standard hybrid
approximations, and aims at improving their description of
static correlation. After deriving this multiconfigurational hy-
brid density-functional theory, we test this approach on situ-
ations with strong static correlation effects, namely, the cy-
cloaddition reactions of ozone with ethylene or acetylene and
the dissociation of diatomic molecules, and we compare with
other methods, in particular the range-separated multiconfig-
urational hybrid method of Refs. 70–72.
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II. THEORY

Using the formalism of the multideterminant extension
of the KS scheme (see, e.g., Refs. 69, 71, 79, and 80), for
any coupling constant λ, the exact energy can be expressed as
the following minimization over multideterminant wave func-
tions �:

E = min
�

{〈�|T̂ + V̂ext + λŴee|�〉 + Ēλ
Hxc[n�]

}
, (1)

where T̂ is the kinetic energy operator, V̂ext, is a scalar
external potential operator (e.g., nuclei-electron), Ŵee is
the electron-electron interaction operator, and Ēλ

Hxc[n�] is
the complement λ-dependent Hartree-exchange-correlation
density functional evaluated at the density coming from
�. The complement density functional, Ēλ

Hxc[n] = EHxc[n]
− Eλ

Hxc[n], is the difference between the usual KS density
functional EHxc[n] and the λ-dependent density functional
Eλ

Hxc[n] corresponding to the interaction λŴee. The Hartree-
exchange contribution is of first order in the electron-electron
interaction and is thus linear in λ,

Ēλ
Hx[n] = (1 − λ)EHx[n], (2)

where EHx[n] is the usual KS Hartree-exchange density func-
tional. The correlation contribution is obtained by uniform co-
ordinate scaling of the density,81–84

Ēλ
c [n] = Ec[n] − Eλ

c [n]

= Ec[n] − λ2Ec[n1/λ], (3)

where Ec[n] is the usual KS correlation functional, Eλ
c [n]

is the correlation functional corresponding to the interaction
λŴee, and n1/λ(r) = (1/λ)3n(r/λ) is the scaled density.

The theory is so far exact but in practice approximations
must be used for the multideterminant wave function and the
density functionals. In Ref. 79, by restricting the search in
Eq. (1) to single-determinant wave functions �, we defined
the density-scaled one-parameter hybrid (DS1H) approxima-
tion

EDS1H = min
�

{〈�|T̂ + V̂ext + λŴee|�〉

+ (1 − λ)EHx[n�] + Ec[n�] − λ2Ec[n�,1/λ]
}
, (4)

and, by additionally neglecting density scaling in the cor-
relation functional, Ec[n1/λ] ≈ Ec[n], we obtained the one-
parameter hybrid (1H) approximation

E1H = min
�

{〈�|T̂ + V̂ext + λŴee|�〉

+ (1 − λ)EHx[n�] + (1 − λ2)Ec[n�]
}
, (5)

which is similar to the usual one-parameter hybrid
approximations,85, 86 except that the correlation functional is
weighted by a factor of (1 − λ2). Starting from these ref-
erences and applying a second-order Møller-Plesset (MP2)
perturbation theory,80, 87, 88 we also defined the density-
scaled one-parameter double-hybrid (DS1DH) and one-
parameter double-hybrid (1DH) approximations,79 which
are one-parameter versions of the original double-hybrid
approximations.89 These latter also combine HF exchange

and MP2 correlation with a semilocal exchange-correlation
density functional but with two empirical parameters.

Here, we follow a different route and use a MCSCF wave
function in Eq. (1), expanded as a linear combination of con-
figuration state functions �I,

|�〉 =
∑

I

cI |�I 〉, (6)

where the coefficients cI and the orbitals are to be simultane-
ously optimized. With this form of wave function, we obtain
a multiconfigurational density-scaled one-parameter hybrid
(MCDS1H) approximation,

EMCDS1H = min
�

{〈�|T̂ + V̂ext + λŴee|�〉

+ (1 − λ)EHx[n�] + Ec[n�] − λ2Ec[n�,1/λ]
}
,

(7)

and, if density scaling, which is not considered in usual hy-
brid approximations, is neglected, we obtain a multiconfigu-
rational one-parameter hybrid (MC1H) approximation,

EMC1H = min
�

{〈�|T̂ + V̂ext + λŴee|�〉

+ (1 − λ)EHx[n�] + (1 − λ2)Ec[n�]
}
. (8)

Equation (7) is the equivalent of the range-separated multi-
configurational hybrid method of Refs. 70–72, that we will
refer to as MC-srDFT, but for a linear separation of the
electron-electron interaction. Notice that, if we were to use no
approximations for the wave function � and the exchange-
correlation density functional, then Eq. (7) would give the
exact energy, independently of λ. In practice, of course, we
must use approximations, and the energy does depend on λ,
which can then be considered as an empirical parameter to be
optimized.

The present scheme has two advantages over the range-
separated scheme: (a) Only one list of two-electron Coulomb
integrals is needed and it is just multiplied by λ in the MC-
SCF part and by (1 − λ) in the complement Hartree energy,
whereas two lists of two-electron integrals are needed in the
range-separated scheme for the long-range MCSCF part and
for the short-range complement Hartree energy; (b) No new
exchange and correlation density functionals need in principle
to be developed since all the existing approximations devel-
oped for the KS scheme can be reused with a simple scaling,
whereas new short-range density-functional approximations
must be developed in the range-separated scheme.

Equations (7) and (8) can be seen as straightforward
multiconfigurational extensions of the usual hybrid approx-
imations. Indeed, the expectation value of λŴee over the
MCSCF wave function � not only introduces a fraction λ of
exact exchange, but also a fraction of exact static correlation.
Defined in the ideal limit of reference energy levels that are
degenerate, the static correlation energy is linear with respect
to the electron-electron interaction, and thus we can consider
that the expectation value of λŴee introduces a linear frac-
tion λ of static correlation. By contrast, the dynamic correla-
tion energy starts at quadratic order in the electron-electron
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interaction, so that, for sufficiently small λ, it is justified
to neglect it in the wave function expectation value. More-
over, for sufficiently small λ, the weight (1 − λ2) is close
to 1 and thus Eq. (8) includes a nearly complete approxi-
mate correlation energy functional that is often thought of
as correctly describing dynamic correlation. Of course, if the
multiconfigurational hybrid approximations of Eqs. (7) or (8)
are to be accurate, the fraction (1 − λ) of static correla-
tion energy not treated by MCSCF must be accounted for by
the density functional, possibly through a compensation with
the self-interaction error of the scaled exchange functional
(1 − λ)Ex[n].

III. COMPUTATIONAL DETAILS

The calculations have been performed with a devel-
opment version of the DALTON 2011 program,92 in which
the MCDS1H and MC1H approximations have been im-
plemented in the same way as that for the MC-srDFT
method,70, 71, 93 using the direct restricted-step second-order
MCSCF algorithm of Jensen and co-workers.94–99 For Ex[n]
and Ec[n], we use two GGA exchange-correlation density
functionals, Perdew-Burke-Ernzerhof (PBE) (Ref. 100) and
Becke-Lee-Yang-Parr (BLYP),101, 102 without spin-density de-
pendence. For implementing the density-scaled correlation
functionals in the MCSCF algorithm, we need the scaling re-
lations for the energy density, and its first- and second-order
derivatives that we give in Appendix A. The computational
cost of the method is essentially the same as for a standard
MCSCF calculation, with a small extra cost due to the DFT
contribution.

A good value for the empirical parameter λ in
Eqs. (7) and (8) is determined on the O3ADD6 benchmark
set103, 104 for the 1,3-dipolar cycloaddition reactions of ozone
(O3) with ethylene (C2H4) or acetylene (C2H2).90, 105, 106 For
these two reactions, there are three stationary points along
the reaction coordinate: the van der Waals complex, the tran-
sition state, and the cycloadduct (primary ozonide), all in a
closed-shell spin-singlet state. The O3ADD6 set consists of
the six energies of these stationary points of the two reac-
tions, calculated relative to the energy of the separated reac-
tants, and without zero-point vibrational energy correction.
Accurate calculations of these energies are difficult and re-
quire to handle the subtle balance between static and dynamic
correlation effects along the reaction coordinate. The ozone
reactant, the van der Waals complex, and the transition state
have a strong multiconfigurational character corresponding to
the HOMO → LUMO double excitation in ozone. In the cy-
cloadduct, and to a less extent in the transition state, the sta-
bilization of the ozone HOMO and the destabilization of the
ozone LUMO greatly reduce this multiconfigurational char-
acter. In addition, there are small near-degeneracy correlation
effects due to the π and π* orbitals of the reactive π bond
of ethylene and acetylene. For each separate reactant, a com-
plete active space wave function with 2 electrons in 2 orbitals
[CAS(2,2)] wave function is chosen, the active space corre-
sponding to the HOMO and LUMO orbitals for ozone, and
to the HOMO (π ) and LUMO (π*) orbitals of the reactive
π bond for ethylene and acetylene. For the van der Waals

complex, the transition state, and the cycloadduct, a CAS(4,4)
wave function is consistently chosen, the active space corre-
sponding to the orbitals that connect to the ones chosen for the
reactants in the dissociation limit. We use the aug-cc-pVTZ
basis set107, 108 and the fixed geometries of Ref. 90 optimized
using the hybrid meta-GGA exchange-correlation functional
M05109 with the 6-311+G(2df,2p) basis set.110, 111 The ref-
erence values for the energies are from Ref. 90 and were
obtained from extensive coupled-cluster calculations extrap-
olated to the complete basis set limit.90, 105 We calculate the
mean absolute error (MAE) over the six values as a function
of the parameter λ. We compare the MCDS1H and MC1H
approximations with (a) some non-hybrid methods: HF, MC-
SCF, MP2,112 multireference MP2 (MRMP2),90, 113 PBE,100

and BLYP;101, 102 (b) some single-hybrid approximations:
PBE0,114, 115 B1LYP,116 and B3LYP;117, 118 (c) some double-
hybrid approximations: DS1DH-PBE,79 1DH-BLYP,79 and
B2-PLYP,89 all applied in a spin-restricted formalism. We also
compare with the range-separated MC-srPBE multiconfigu-
rational hybrid approximation70–72 using the short-range PBE
exchange-correlation functional of Ref. 119 and the value of
the range-separation parameter μ = 0.40 bohr−1 which was
previously determined in Ref. 71.

We also test the MCDS1H and MC1H approximations
by computing the potential energy curves, the five diatomic
molecules H2, Li2, C2, N2, and F2, using in each case a full-
valence CAS wave function and the cc-pVTZ basis set.107

IV. RESULTS

A. O3ADD6 database

Figure 1 shows the MAEs for the O3ADD6 set as func-
tions of the parameter λ for the MCDS1H and MC1H ap-
proximations with the BLYP and PBE exchange-correlation
density functionals. For λ = 0, the MCDS1H and MC1H ap-
proximations reduce to a standard KS calculation with the
corresponding approximate density functional. For λ = 1,
they reduce to a standard MCSCF calculation. Contrary to
what was found for the calculation of atomization energies
using double-hybrid approximations,79 here neglecting den-
sity scaling in the correlation functional makes little differ-
ence. Toward the λ = 1 end of the curves, the MCDS1H
and MC1H approximations inherit the inaccuracy of MCSCF
which neglects dynamic correlation. The MAE curves of the
MCDS1H-BLYP and MC1H-BLYP approximations display a
marked minimum at an intermediate value of λ, thus improv-
ing upon both the standard BLYP and MCSCF calculations.
The minimum is reached at λ = 0.25 for MCDS1H-BLYP and
at λ = 0.30 for MC1H-BLYP, with MAEs below 2 kcal/mol.
For the MCDS1H-PBE and MC1H-PBE approximations, the
MAE curves have a plateau around λ = 0.25 with a MAE of
about 3 kcal/mol, which is again smaller than both the stan-
dard PBE and MCSCF calculations. In view of these results,
we choose the value λ = 0.25 in all MCDS1H and MC1H
approximations. It is a conservative choice since it gives the
same fraction of exact exchange as the one usually advocated
in the usual single-hybrid approximations.120

Table I reports the energies of the van der Waals com-
plex, the transition state, and the cycloadduct of the two
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FIG. 1. MAEs of O3ADD6 set as functions of the parameter λ for the MC1H and MCDS1H approximations with the BLYP (left) and PBE (right) exchange-
correlation density functionals. All calculations were carried out with the aug-cc-pVTZ basis set.

reactions of the O3ADD6 set, relative to the separated reac-
tants, calculated with the MCDS1H and MC1H approxima-
tions at λ = 0.25. For comparison, we also report results for
various non-hybrid and other hybrid methods.

During the early stages of the two reactions, a weakly
bound van der Waals complex is formed which lies in a shal-
low minimum (−1.90 kcal/mol for C2H2 and −1.94 kcal/mol

for C2H4) below the reactants. The MCDS1H and MC1H ap-
proximations give significantly underestimated well depths,
which are still in improvement over standard MCSCF but not
over standard KS calculations with the corresponding func-
tionals. The range-separated MC-srPBE method does also
not perform better than KS PBE for these van der Waals
systems. A better description of the long-range dispersion

TABLE I. Energies of the van der Waals (vdW) complex, the transition state (TS), and the cycloadduct (primary ozonide), relative to the separated reactants,
and the corresponding MAEs (in kcal/mol) for the addition of ozone with acetylene or ethylene (O3ADD6 set), calculated by several methods. For the DS1DH-
PBE and 1DH-BLYP double-hybrid approximations, we use the value λ = 0.65 which was previously optimized in Ref. 79. For the MCDS1H and MC1H
multiconfigurational hybrid approximations, we use a value of λ = 0.25 which roughly minimizes the MAE according to Fig. 1. For the range-separated MC-
srPBE multiconfigurational hybrid approximation, we use the value of the range-separation parameter μ = 0.40 bohr−1 which was previously determined in
Ref. 71. For the multiconfigurational methods, a CAS(4,4) wave function is chosen for the van der Waals complex, the transition state, and the cycloadduct,
and a CAS(2,2) wave function for each separate reactant. All calculations were carried out with the aug-cc-pVTZ basis set. All calculations were done for
M05/6-311+G(2df,2p) geometries, except for the MRMP2 results which are for CCSD(T)/cc-pVTZ geometries.

O3 + C2H2 → O3 + C2H4 →

Method vdW TS Cycloadduct vdW TS Cycloadduct MAE

HF 0.68 23.08 − 87.12 1.90 17.91 − 82.58 14.18
MCSCF 0.69 27.54 − 77.25 1.32 22.13 − 68.06 11.46
MP2 − 3.18 1.13 − 54.81 − 4.01 − 5.74 − 51.18 5.67
MRMP2a − 2.16 8.77 − 48.19 − 2.09 3.43 − 43.32 5.16
PBE − 1.71 − 1.66 − 62.44 − 2.50 − 4.77 − 51.45 4.23
BLYP − 0.57 2.21 − 53.98 − 1.29 − 1.55 − 43.19 6.03

Single-hybrid approximations
PBE0 − 1.26 1.65 − 74.00 − 1.55 − 1.74 − 64.74 5.00
B1LYP − 0.60 4.78 − 66.56 − 0.83 0.71 − 57.47 1.85
B3LYP − 0.67 3.81 − 65.10 − 1.01 − 0.12 − 55.64 2.06

Double-hybrid approximations
DS1DH-PBE − 2.08 3.47 − 61.21 − 2.54 − 1.81 − 54.90 2.51
1DH-BLYP − 1.92 4.42 − 58.37 − 2.37 − 1.14 − 52.12 3.12
B2-PLYPb − 1.47 5.00 − 60.18 − 1.81 − 0.13 − 53.05 2.42

Multiconfigurational hybrid approximations
MC-srPBE − 0.93 4.12 − 72.73 − 0.87 0.71 − 65.53 4.27
MCDS1H-PBE − 1.06 3.88 − 70.41 − 1.22 0.30 − 60.71 3.11
MC1H-PBE − 1.08 3.66 − 70.97 − 1.25 0.13 − 61.26 3.35
MCDS1H-BLYP 0.28 7.94 − 62.47 0.26 3.78 − 52.86 1.77
MC1H-BLYP − 0.36 6.74 − 63.76 − 0.47 2.57 − 54.21 1.30
Best estimatea − 1.90 7.74 − 63.80 − 1.94 3.37 − 57.15

aFrom Ref. 90.
bPerformed with the GAUSSIAN 09 program.91
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FIG. 2. Potential energy curves of H2 calculated by HF, MCSCF, and several methods based on the PBE (left) or BLYP (right) exchange-correlation density
functionals. For the MCDS1H and MC1H multiconfigurational hybrid approximations, we use a value of λ = 0.25. For the range-separated MC-srPBE mul-
ticonfigurational hybrid approximation, we use a value of the range-separation parameter of μ = 0.40 bohr−1. For all multiconfigurational methods, we use a
full-valence CAS wave function. The basis set is cc-pVTZ basis. The accurate curve is from Ref. 28.

correlation would indeed require inclusion of perturbation
corrections on top of the active space.73 As expected, the
double-hybrid approximations, which include second-order
perturbation corrections, tend to perform better for these van
der Waals complexes. The best performance is achieved with
MRMP2 which is able to correctly describe both multicon-
figurational effects and dispersion correlations. However, one
should keep in mind that the methods MP2, MRMP2, and the
double hybrids are most likely less converged with respect to
the basis size than the other methods.

The activation barriers of the transition states are under-
estimated (or not present at all) in KS PBE and BLYP calcu-
lations, and to a less extent with the single-hybrid and double-
hybrid approximations, while they are largely overestimated
in MCSCF. Note that here, contrary to the common case,
MCSCF gives higher activation barriers than HF because the
ozone reactant has more static correlation than the transi-
tion state. The MCDS1H and MC1H approximations give an
improvement of about 5 kcal/mol over the KS calculations
with the corresponding functionals. The range-separated MC-
srPBE method gives activation barriers which are slightly bet-
ter than the ones given by MCDS1H-PBE and MC1H-PBE,
but largely worse than the ones given by MCDS1H-BLYP
and MC1H-BLYP. The values obtained with MCDS1H-BLYP
and MC1H-BLYP, as well as with MRMP2, are all within
1 kcal/mol of the best estimates.

The reaction energies of the formation of the cy-
cloadducts are overestimated in MCSCF and underestimated
in MRMP2 (by about 15 kcal/mol). Zhao et al. observed
that even using a large (14,14) active space does not im-
prove the MRMP2 reaction energy.90 All the hybrid methods
give more reasonable reaction energies. In particular, MC1H-
BLYP gives reaction energies within less than 3 kcal/mol of
the best estimates.

If we accept to look more closely to the MAE val-
ues in spite of the limited statistics, we see that MC1H-
BLYP gives overall the smallest MAE with 1.30 kcal/mol.

The multiconfigurational hybrid MCDS1H-PBE involving the
PBE exchange-correlation functional gives a larger MAE of
3.11 kcal/mol, but turns out to perform better on average than
the range-separated MC-srPBE method which gives a MAE
of 4.27 kcal/mol. Neglecting density scaling in the correlation
functional of multiconfigurational hybrids seems slightly fa-
vorable for BLYP and slightly unfavorable for PBE. This is in
line with what was found for double-hybrid approximations,79

although the MP2 correlation part made it much more sensi-
tive to the neglect of the density scaling. Even if the effect of
neglecting density scaling is systematic in giving more neg-
ative complement correlation energies Ēλ

c [n] for all density
functionals, its effect on the MAE depends more on fortuitous
compensation of errors for the approximate functional used.

B. Dissociation of diatomic molecules

We now turn to the calculation of potential energy curves
of diatomic molecules. This is a harder problem since static
correlation effects are dominant at dissociation. For the mul-
ticonfigurational hybrids, we report here only the curves of
MCDS1H for PBE and of MC1H for BLYP according to the
results of Sec. IV A, but the differences between the curves
of MCDS1H and MC1H for both BLYP and PBE are in fact
very small for these diatomic molecules.

Figure 2 shows the potential energy curve of H2 cal-
culated by hybrid approximations using the PBE and BLYP
density functionals. Around the equilibrium internuclear dis-
tance, all DFT-based method, including MCDS1H-PBE and
MC1H-BLYP, are accurate, which means that they properly
describe dynamic correlation. At large distances, the single-
hybrid approximations (PBE0, B1LYP, and B3LYP), which
include a fraction of HF exchange energy, give less accu-
rate potential energy curves than non-hybrid KS calcula-
tions (PBE and BLYP). By inclusion of a fraction of ex-
act static correlation energy, the multiconfigurational hybrids
(MCDS1H-PBE, MC-srPBE, and MC1H-BLYP) correct this
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FIG. 3. Potential energy curves of Li2, C2, N2, and F2 calculated with MCSCF and several methods based on the PBE (left) or BLYP (right) exchange-
correlation density functionals. For the MCDS1H and MC1H multiconfigurational hybrid approximations, we use a value of λ = 0.25. For the range-separated
MC-srPBE multiconfigurational hybrid approximation, we use a value of the range-separation parameter of μ = 0.40 bohr−1. For all multiconfigurational
methods, we use a full-valence CAS wave function. The basis set is cc-pVTZ basis. The accurate curves are from Ref. 28.
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behavior and give potential energy curves that correctly satu-
rate beyond a distance of about 5 bohr, as the MCSCF curve
does. This point is explained by a detailed analysis of the
asymptotic expansion of the potential energy curves in a min-
imal basis in Appendix B. However, the MCDS1H-PBE, MC-
srPBE, and MC1H-BLYP methods still display significant
errors on the energy of the separated atoms due to the density-
functional approximations. Indeed, as in restricted KS (RKS)
calculations, the density functionals used in the multiconfig-
urational hybrids depend only on the total density and do
not give accurate energies in the limit of separated atoms of
open-shell character. In an unrestricted KS calculation, the
energy at dissociation can be improved by breaking the spin
symmetry and therefore introducing a fictitious spin density
which helps to describe the separated atoms. In our present
implementation of the multiconfigurational hybrids, the spin
symmetry is imposed on the MCSCF wave function so that
there is no fictitious spin density to be used in the density
functionals.

Figure 3 shows the potential energy curves of Li2, C2,
N2, and F2. The results are similar to that for H2. Around the
equilibrium distance, the MCDS1H-PBE and MC1H-BLYP
curves are similar to the standard hybrid or non-hybrid KS
calculations. At large distances, the single-hybrid approxi-
mations give a spurious increase of the energy, whereas the
MCDS1H-PBE and MC1H-BLYP curves correctly saturate.
The MC1H-BLYP approximation gives good total energies,
but again a significant error remains at dissociation, espe-
cially for N2. The DS1DH-PBE and MC-srPBE approxima-
tion gives curves of very similar shape.

V. CONCLUSIONS

We have presented a multiconfigurational hybrid density-
functional theory which rigorously combines MCSCF and
DFT based on a linear decomposition of the electron-electron
interaction. It is a straightforward extension of the usual hy-
brid approximations by essentially adding a fraction λ of
exact static correlation in addition to the fraction λ of ex-
act exchange. Any existing approximate exchange-correlation
density functional can be used in this scheme by using a sim-
ple scaling relation with λ. Test calculations on the cycload-
dition reactions of ozone with ethylene or acetylene and the
dissociation of diatomic molecules with the PBE and BLYP
density functionals show that a good value of λ is 0.25, as in
the usual hybrid approximations.

Interestingly, the results seem to indicate that the present
approach based on a simple linear decomposition of the
electron-electron interaction is at least as good as the range-
separated multiconfigurational hybrid method of Refs. 70–72
for including static correlation in DFT, at least with the ap-
proximate density functionals used here. Of course, with
better short-range density-functional approximations (in par-
ticular, we do not have a short-range version of the LYP cor-
relation functional for comparison), the conclusion could be
different. Also, one should note that hybrid approaches com-
bining perturbation theory with DFT based on a linear decom-
position of the interaction79 do not have the advantages of the
range-separated hybrid approaches for fast basis-size conver-

gence and explicit inclusion of long-range van der Waals in-
teractions. For MCSCF, however, basis set convergence is not
so much an issue.

The present results suggest that the proposed multicon-
figurational hybrid approximations can improve over usual
DFT approximations for situations with strong static correla-
tion effects. It remains however to assess the performance of
this multiconfigurational hybrid method on a larger variety of
systems. Future work includes adding the dependence on the
spin density in the functionals to be able to properly handle
open-shell systems, and possibly other additional variables
such as the on-top pair density as an alternative to the spin
density for improving the accuracy of closed-shell systems.121
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APPENDIX A: SCALING RELATIONS FOR THE
DERIVATIVES OF THE DENSITY-SCALED
CORRELATION FUNCTIONAL

We give the scaling relations for the density-scaled cor-
relation functional Eλ

c [n] = λ2Ec[n1/λ] and its derivatives in
the case of GGA. Starting from a standard GGA density func-
tional written as

Ec,GGA[n] =
∫

ec (n(r), |∇n(r)|) dr, (A1)

where |∇n(r)| is the norm of the density gradient, the corre-
sponding scaled functional is

Eλ
c,GGA[n] =

∫
eλ
c (n(r), |∇n(r)|) dr, (A2)

where the energy density is obtained by scaling relation (see
Ref. 79)

eλ
c (n(r), |∇n(r)|) = λ5ec

(
n(r)

λ3
,
|∇n(r)|

λ4

)
. (A3)

The first-order derivatives of the energy density are

∂eλ
c

∂n
(n(r), |∇n(r)|) = λ2 ∂ec

∂n

(
n(r)

λ3
,
|∇n(r)|

λ4

)
(A4)

and

∂eλ
c

∂ |∇n| (n(r), |∇n(r)|) = λ
∂ec

∂ |∇n|
(

n(r)

λ3
,
|∇n(r)|

λ4

)
.

(A5)

The second-order derivatives are

∂2eλ
c

∂n2
(n(r), |∇n(r)|) = 1

λ

∂2ec

∂n2

(
n(r)

λ3
,
|∇n(r)|

λ4

)
, (A6)
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∂2eλ
c

∂ |∇n|2 (n(r), |∇n(r)|)

= 1

λ3

∂2ec

∂ |∇n|2
(

n(r)

λ3
,
|∇n(r)|

λ4

)
, (A7)

and

∂2eλ
c

∂n∂ |∇n| (n(r), |∇n(r)|)

= 1

λ2

∂2ec

∂n∂ |∇n|
(

n(r)

λ3
,
|∇n(r)|

λ4

)
. (A8)

APPENDIX B: ASYMPTOTIC EXPANSION
OF THE POTENTIAL ENERGY CURVE OF H2

We consider the H2 molecule in a Slater minimal basis,
with a basis function a localized on the left atom and a ba-
sis function b localized on the right atom, both basis func-
tions being identical with exponent ζ = 1. In the large in-
ternuclear distance R limit, the two molecular orbitals are
1 = (a + b)/

√
2 and 2 = (a − b)/

√
2. The total restricted

Hartree-Fock (RHF) energy writes

ERHF = 2h11 + J11 + 1

R
, (B1)

where h11 = t11 + v11 is the sum of the kinetic integral
t11 = (1|t̂ |1) and the nuclei-electron integral v11 = (1|v̂ne|1),
J11 = (11|11) is the Coulomb two-electron integral, and 1/R
is the nuclear repulsion energy. By expanding the molecular
orbital 1 into the localized functions a and b, and using the
symmetry between a and b, it is easy to find the large R be-
havior of all these terms

t11 = (a|t̂ |a) + (a|t̂ |b) = 1

2
+ O(e−R) (B2)

and

v11 = (a|v̂ne|a) + (a|v̂ne|b) = −1 − 1

R
+ O(e−R) (B3)

and

J11 = (aa|aa)

2
+ (aa|bb)

2
+ 2(aa|ab) + (ab|ab)

= 5

16
+ 1

2R
+ O(e−R), (B4)

where O(e−R) stands for exponentially decaying terms in R.
For the values of the integrals, see Ref. 122. Adding all the
pieces together, it leads to the following asymptotic expansion
of the total RHF energy:

ERHF = −11

16
− 1

2R
+ O(e−R). (B5)

At dissociation, the RHF wave function contains 50% of the
incorrect ionic contribution H+...H−, which is responsible for
too high an energy and for the spurious electrostatic attraction
term −1/2R.

The full configuration-interaction (FCI) correlation en-
ergy in this basis is found by diagonalizing the 2 × 2

Hamiltonian matrix, leading to

EFCI
c = 1

2

(
E2 − ERHF −

√
(E2 − ERHF)2 + 4K2

12

)
,

(B6)
where E2 = 2h22 + J22 + 1/R is the energy of the double-
excited determinant, and K12 = (12|12) is the exchange two-
electron integral. The asymptotic behavior of E2 is exactly
the same as the one of ERHF, so that E2 − ERHF vanishes
exponentially when R → ∞ and the asymptotic behavior
of EFCI

c is determined by K12 only: EFCI
c = −K12 + O(e−R).

The asymptotic behavior of K12 is

K12 = (aa|aa)

2
− (aa|bb)

2
= 5

16
− 1

2R
+ O(e−R),

(B7)

giving for the correlation energy

EFCI
c = − 5

16
+ 1

2R
+ O(e−R). (B8)

Adding the asymptotic expansions of Eqs. (B5) and (B8) gives
the asymptotic expansion of the total FCI energy in this basis

EFCI = −1 + O(e−R), (B9)

which implies that the FCI potential energy curve saturates
quickly at large internuclear distance.

In RKS density-functional theory, the total energy writes

ERKS = 2h11 + 2J11 + Ex + Ec + 1

R
, (B10)

where Ex and Ec are the exchange and correlation energies. At
large R, it behaves as

ERKS = −3

8
+ Ex + Ec + O(e−R). (B11)

With local or semilocal density-functional approximations, Ex

and Ec go exponentially to constants when R → ∞, so that
the asymptotic expansion of ERKS does not contain a spurious
term in 1/R.

Single-hybrid approximations introduces a fraction λ of
RHF exchange which have the following asymptotic expan-
sion:

ERHF
x = −J11 = − 5

16
− 1

2R
+ O(e−R), (B12)

and therefore introduce a wrong −λ/2R term in the total en-
ergy,

Ehybrid = −3

8
− 5λ

16
+ (1 − λ)Ex + Ec − λ

2R
+ O(e−R).

(B13)
Single-hybrid approximations thus deteriorate the large R be-
havior of local or semilocal density-functional approxima-
tions (see Fig. 2). The multiconfigurational hybrid approxima-
tions introduced in this work correct this behavior by adding
a fraction of the FCI correlation energy which, in the limit of
large R, is just λEFCI

c , the linearity in λ being a signature of
static correlation. For example, the MC1H approximation has
the following asymptotic expansion:

EMC1H = −3

8
− 5λ

8
+ (1 − λ)Ex + (1 − λ2)Ec + O(e−R),

(B14)
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with no longer any spurious 1/R term, and thus improves the
large R behavior (see Fig. 2). It is a typical example where
exact exchange and static correlation must be considered
together.

For range-separated density-functional theory, the
situation is similar. Range-separated single-hybrid
approximations80, 123–126 include some long-range RHF
exchange and their asymptotic expansions display a wrong
−1/2R term, just as RHF. Their behavior for large R is in
fact worse than that of usual single-hybrid approximations
since the −1/2R term is not weighted by λ. However, the
range-separated CI-srDFT (Refs. 66 and 67) or MC-srDFT
(Ref. 70–72) methods add some exact long-range correlation
energy which removes this wrong −1/2R term.

Note that other forms of single-hybrid approximations
which do not use RHF exchange at long range127, 128 allow
one to avoid a wrong −1/2R term in the large R limit. Sym-
metry breaking is another way to avoid a wrong asymptotic
−1/2R term since the unrestricted Hartree-Fock exchange en-
ergy does not contain such a term.

The fact that local or semilocal approximations for Ex

and Ec do not introduce 1/R terms is in agreement with the
usual conviction that approximate GGA exchange functionals
not only represent exchange, but also static correlation, while
approximate GGA correlation functionals represent dynamic
correlation only.4
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