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ABSTRACT
We explore the merits of linear-response range-separated time-dependent density-functional theory (TDDFT) for the calculation of pho-
toionization spectra. We consider two variants of range-separated TDDFT, namely, the time-dependent range-separated hybrid (TDRSH)
scheme, which uses a global range-separation parameter, and the time-dependent locally range-separated hybrid (TDLRSH), which uses a
local range-separation parameter, and compare with standard time-dependent local-density approximation (TDLDA) and time-dependent
Hartree–Fock (TDHF). We show how to calculate photoionization spectra with these methods using the Sternheimer approach formulated
in a non-orthogonal B-spline basis set with appropriate frequency-dependent boundary conditions. We illustrate these methods on the pho-
toionization spectrum of the Be atom, focusing, in particular, on the core resonances. Both the TDRSH and TDLRSH photoionization spectra
are found to constitute a large improvement over the TDLDA photoionization spectrum and a more modest improvement over the TDHF
photoionization spectrum.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091073

I. INTRODUCTION

Time-dependent density-functional theory (TDDFT),1 applied
within the adiabatic linear-response formalism,2–4 is a widely used
approach for calculating bound-state excitations in electronic sys-
tems. Less commonly, linear-response TDDFT has also been used
for calculating photoionization spectra (electronic transitions from
bound to continuum states) of atoms and molecules.5–20 These
calculations require an appropriate description of the continuum

states (e.g., using grid-based approaches or B-spline basis sets) and
an accurate enough exchange–correlation potential and associated
response kernel. Semilocal density-functional approximations, such
as the local-density approximation (LDA) or generalized-gradient
approximation (GGA), do not usually provide accurate atomic and
molecular photoionization spectra. These approximations suffer,
indeed, from large self-interaction errors and exponentially decay-
ing exchange–correlation potentials, leading to too low ionization
thresholds and resonances that are either at too low energies or
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completely absent. More satisfactory photoionization spectra are
obtained with asymptotically corrected exchange–correlation poten-
tial approximations7–10,14–16,18 (restoring the correct−1/r long-range
asymptotic decay) and with the more involved exact-exchange
(EXX) potential11 or the localized Hartree–Fock (HF) exchange
potential and its associated kernel.19

An alternative for overcoming the limitations of TDDFT with
semilocal density-functional approximations is given by range-
separated TDDFT approaches,21–28 which, in the simplest variant,
express the long-range part of the exchange potential and kernel
at the HF level, while a semilocal density-functional approximation
is still used for the short-range part of the kernel. Range-separated
TDDFT appropriately describes Rydberg and charge-transfer elec-
tronic excitations and has become widely used in calculations of
bound-state excitations in molecules. In Ref. 29, some of the present
authors started to explore the merits of range-separated TDDFT
for the calculation of photoionization spectra and showed that the
so-called linear-response time-dependent range-separated hybrid
(TDRSH) scheme28,30 provides an adequate photoionization spec-
trum of the He atom. In the present work, we continue the sys-
tematic exploration of linear-response TDRSH for the calculation of
photoionization spectra. We focus on the Be atom, which has a much
richer photoionization spectrum than the He atom since it contains
both core and valence electrons, leading, in particular, to a series
of core resonances (1s → 2p, 1s → 3p, etc.) just below the 1s ion-
ization edge. We also test a new variant, called the linear-response
time-dependent locally range-separated hybrid (TDLRSH) scheme,
in which the range-separation parameter is a position-dependent
function,31–34 which allows for more flexibility in the description of
both valence and core properties.

As in Ref. 29, we use a B-spline basis set for an appropriate
description of the continuum. More specifically, in Ref. 29, we used a
straightforward diagonalization of the linear-response Casida equa-
tions (in the orthogonal occupied/virtual orbital basis) using zero
boundary conditions (ZBCs) at the edge of the support of the last
B-spline function, resulting in a discretization of the continuous
spectrum. Whereas in the case of the He atom the relatively sim-
ple structure of the photoionization spectrum (only one channel)
made it possible to use a simple interpolation scheme for the oscilla-
tor strengths, this approach is not feasible for the more complicated
photoionization spectrum of the Be atom and one would have to use
an artificial broadening to compensate. In this work, we use, instead,
the linear-response Sternheimer approach7,10,17,35–40 (in the non-
orthogonal B-spline basis) using appropriate frequency-dependent
boundary conditions, resulting directly in an adequate representa-
tion of the continuous spectrum without the need for broadening.
This is a much more efficient way of calculating photoionization
spectra over a wide energy window, requiring only a relatively small
computational box.

This paper is organized as follows. In Sec. II, we review the
range-separated hybrid (RSH) and locally range-separated hybrid
(LRSH) schemes and give in some detail the linear-response Stern-
heimer equations, including a nonlocal HF exchange kernel both in
real space and in a general non-orthogonal basis set, which, to the
best of our knowledge, were never given in the literature. We also
discuss how the boundary conditions on a finite domain are imposed
and our specific implementation using a B-spline basis set. In Sec. III,
we give and discuss the results obtained on the Be atom. We explain

how to select an optimal range-separation parameter, we discuss
the photoionization spectra at the TDRSH and TDLRSH level and
compare with linear-response time-dependent local-density approx-
imation (TDLDA) and time-dependent Hartree–Fock (TDHF), and
we analyze the positions and the Fano line shape of the core reso-
nances. Section IV contains our conclusions. Finally, in Appendix A,
we explain in detail how to obtain the appropriate boundary con-
ditions for atoms, and in Appendix B, we compare the present
Sternheimer approach with the straightforward Casida method of
Ref. 29.

II. THEORY AND COMPUTATIONAL METHOD
For simplicity, we consider only the case of a closed-shell

atomic or molecular system and, thus, work on the spin-free
one-electron Hilbert space L2

(R3,C). Unless otherwise indicated,
Hartree atomic units are used in this work.

A. Range-separated hybrid scheme
Let us briefly recall the range-separated hybrid (RSH) scheme.41

The RSH orbitals {φi} and their associated energies {εi} of an N-
electron system are found from the self-consistent Schrödinger-type
equation,

∫
R3

h[γ0](r, r′)φi(r′)dr′ = εiφi(r), (1)

where h[γ0](r, r′) is the nonlocal RSH Hamiltonian depend-
ing on the density matrix γ0(r, r′) = 2∑N/2

i=1 φi(r)φ∗i (r′). The RSH
Hamiltonian has the following form for a generic density matrix γ:

h[γ](r, r′) = T(r, r′) + δ(r − r′)vne(r) + vHxc[γ](r, r′), (2)

where T(r, r′) is the kinetic integral kernel such that
∫R3 T(r, r′)φi(r′)dr′ = −(1/2)∇2φi(r) and vne(r) is the
nuclei–electron potential and vHxc[γ](r, r′) is the Hartree-
exchange–correlation potential. The expression of vHxc[γ](r, r′) is
given by

vHxc[γ](r, r′) = δ(r − r′)vH[ργ](r) + vlr,HF
x [γ](r, r′)

+δ(r − r′)vsr
xc[ργ](r), (3)

containing the local Hartree potential

vH[ργ](r) = ∫
R3
ργ(r′)wee(r, r′)dr′, (4)

written with the density ργ(r) = γ(r, r) and the Coulomb
electron–electron interaction wee(r, r′) = 1/∣r − r′∣, and the
nonlocal long-range (lr) HF exchange potential

vlr,HF
x [γ](r, r′) = −

1
2
γ(r, r′)wlr

ee(r, r′), (5)

written with the long-range electron–electron interaction42

wlr
ee(r, r′) =

erf(μ∣r − r′∣)
∣r − r′∣

(6)
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with μ = μ̃/a0, where a0 = 1 a.u. is the Bohr radius and μ̃ ∈ [0,+∞) is
the adimensional range-separation parameter, and the local comple-
mentary short-range (sr) exchange–correlation potential vsr

xc[ργ](r).
For the latter term, we use in this work the LDA

vsr
xc[ργ](r) =

∂ēsr
xc,UEG(ρ,μ)

∂ρ
∣

ρ=ργ(r)
, (7)

where ēsr
xc,UEG(ρ,μ) is the complementary short-range

exchange–correlation energy density of the uniform-electron
gas (UEG) of density ρ, as parameterized in Ref. 43.

For more flexibility in the description of both valence and core
properties, we will also consider an extension of the RSH scheme,
referred to as the locally range-separated hybrid (LRSH) scheme,
in which the range-separation parameter μ in Eqs. (6) and (7) is
replaced by a function of position r↦ μ(r) (see Refs. 31–34). The
long-range electron–electron interaction in Eq. (6) now becomes33

wlr
ee(r, r′) =

1
2
[

erf(μ(r)∣r − r′∣)
∣r − r′∣

+
erf(μ(r′)∣r − r′∣)

∣r − r′∣
]. (8)

Following Ref. 31, we choose μ(r) as

μ(r) =
μ̃
2
∣∇ρ(r)∣
ρ(r)

, (9)

where again μ̃ ∈ [0,+∞) is the adimensional range-separation para-
meter, and we take ρ(r) as the fixed HF ground-state density
[contrary to Ref. 33, we do not attempt to self-consistently update
the density in Eq. (9) during the iterations of the RSH calculation].
For the hydrogen atom, ρ(r)∝ e−2∣r∣/a0 , and thus, μ(r) = μ̃/a0, i.e.,
the LRSH scheme reduces to the RSH scheme.

For μ̃ = 0, the long-range interaction wlr
ee vanishes and vsr

xc
becomes the usual full-range LDA exchange–correlation poten-
tial, and thus, the RSH and LRSH schemes reduce to standard
Kohn–Sham (KS) LDA. For μ̃→∞, the long-range interaction wlr

ee
becomes the usual Coulomb interaction and vsr

xc vanishes, and thus,
the RSH and LRSH schemes reduce to standard HF. Typically, in
between these two limits, one expect to find an intermediate value of
μ̃, leading to properties more accurate than those given by either KS
LDA or HF.

B. Linear-response Sternheimer equations
in real space

We now formulate the linear response of the RSH or LRSH
scheme using the Sternheimer approach. Even though the Stern-
heimer approach is well known for TDDFT without nonlocal HF
exchange,7,10,17,35–40 we did not find real-space expressions for the
case including nonlocal HF exchange in the literature.

We consider the following time-dependent perturbation poten-
tial:

vext(r, t) = [vext(r)e−iωt
+ vext(r)e+iωt

]eηt , (10)

where vext(r) = r ⋅ E e is the electric-dipole interaction (E is the
amplitude of the electric field and e is its unit polarization vec-
tor), ω ≥ 0 is the frequency, and eηt is an adiabatic switching
factor with a small parameter η > 0 so that vext(r, t → −∞) = 0

(see Refs. 38 and 44 for a discussion about the parameter η).
The time-dependent occupied RSH orbitals {ψi} satisfy the time-
dependent Schrödinger-type equation,

i
∂

∂t
ψi(r, t) = ∫

R3
h[γ(t)](r, r′)ψi(r′, t)dr′ + vext(r, t)ψi(r, t), (11)

where the RSH Hamiltonian is now evaluated at the time-dependent
density matrix γ(r, r′, t) = 2∑N/2

i=1 ψi(r, t)ψ∗i (r′, t). We expand the
time-dependent RSH occupied orbitals to first order in the electric
field E as

ψi(r, t) = (φi(r) + E ψ(1)i (r, t))e−iεit
+O(E 2

), (12)

where φi ≡ ψ(0)i are the zeroth-order (time-independent) orbitals.
Inserting Eq. (12) into Eq. (11) and keeping only first-order terms
lead to the following equation for ψ(1)i :

(i
∂

∂t
+ εi)ψ(1)i (r, t) = ∫

R3
h[γ0](r, r′)ψ(1)i (r

′, t)dr′

+ ∫
R3

v(1)Hxc(r, r′, t)φi(r′)dr′ + v(1)ext (r, t)φi(r),

(13)

where we have introduced v(1)ext (r, t) = vext(r, t)/E and the first-order
change in the Hartree-exchange–correlation potential,

v(1)Hxc(r1, r′1, t) = ∫
R6

fHxc[γ0](r1, r′1; r2, r′2)γ
(1)
(r2, r′2, t)dr2dr′2, (14)

involving the first-order change in the density matrix,

γ(1)(r, r′, t) = 2
N/2

∑

i=1
[ψ(1)i (r, t)φ∗i (r

′
) + φi(r)ψ(1)∗i (r′, t)], (15)

and the Hartree-exchange–correlation kernel,

fHxc[γ0](r1, r′1; r2, r′2) =
δvHxc[γ](r1, r′1)

δγ(r2, r′2)
∣

γ=γ0

. (16)

From Eq. (3), the latter quantity is found to be

fHxc[γ0](r1, r′1; r2, r′2) = δ(r1 − r′1)δ(r2 − r′2) fH(r1, r2)

+ f lr,HF
H (r1, r′1; r2, r′2) + δ(r1 − r′1)

× δ(r2 − r′2) f sr
xc[ργ0](r1, r2), (17)

where fH(r1, r2) = wee(r1, r2) is the Hartree kernel,
f lr,HF

H (r1, r′1; r2, r′2) = −(1/2)δ(r1 − r2)δ(r′1 − r′2)wlr
ee(r1, r′1) is the

non local HF exchange kernel, and f sr
xc[ργ0](r1, r2) is the short-range

exchange–correlation kernel, which for the LDA [Eq. (7)] takes the
local form

f sr
xc[ργ0](r1, r2) = δ(r1 − r2)

∂2ēsr
xc,UEG(ρ,μ)
∂ρ2 ∣

ρ=ργ0 (r1)

. (18)

From the form of the perturbation in Eq. (10), we can write ψ(1)i
as

ψ(1)i (r, t) = [ψ(+)i (r,ω)e−iωt
+ ψ(−)i (r,ω)e+iωt

]eηt , (19)
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which, after insertion into Eq. (13), gives the TDRSH or TDLRSH
Sternheimer equations for ψ(+)i and ψ(−)i , written in a common
form,

(±ω + iη + εi)ψ(±)i (r1,ω) = ∫
R3

h[γ0](r1, r′1)ψ
(±)

i (r′1,ω)dr′1

+ ∫
R9

fHxc[γ0](r1, r′1; r2, r′2)

⋅ γ(±)(r2, r′2,ω)φi(r′1)dr′1dr2dr′2

+ v(1)ext (r1)φi(r1), (20)

where we have introduced v(1)ext (r) = r ⋅ e and

γ(±)(r, r′,ω) = 2
N/2

∑

i=1
[ψ(±)i (r,ω)φ∗i (r

′
) + φi(r)ψ(∓)∗i (r′,ω)]. (21)

As long as η > 0, the solutions ψ(±)i of Eq. (20) are properly square-
integrable for any fixed frequency ω. Note that if we had introduced
ψ(−)∗i (r,ω) in place of ψ(−)i (r,ω) in Eq. (19), such as in Ref. 38,
then we would have obtained an equation similar to Eq. (20) but
with imaginary shifts ±iη.

The photoexcitation/photoionization cross section can, then,
be calculated as38

σ(ω) = lim
η→0+

4πω
c

Im[α(ω + iη)], (22)

where c = 137.036 a.u. is the speed of light and α(ω) is the spherically
averaged dipole polarizability given by

α(ω + iη) = −
1
3 ∑

a∈{x,y,z}
∫

R3
(r ⋅ ua) ρ(+)(r,ω)dr, (23)

where ua is the unit vector along the direction a and ρ(+)
(r,ω)

= γ(+)
(r, r,ω) is the Fourier component of the first-order density at

frequency ω + iη of the first-order change of the density [Eq. (21)].
Note that, most often, in the derivation of the Sternheimer

equations,7,36–38 ψ(±)i are, in fact, defined so that they are orthog-
onal to φi, which leads to adding the projector operator onto the
space orthogonal to φi acting on the last two terms in Eq. (20). While
this is probably a good choice for numerical calculations, it is not
mandatory for the theoretical derivation, as discussed in Ref. 38, and
in any case, it leads to the same observable quantities, such as the
polarizability in Eq. (23).

C. Boundary conditions on a finite domain
It is instructive to consider the behavior of Eq. (20) far away

from the atom or molecule. In this case, since the potential and ker-
nel terms, as well as the occupied orbitals, all go to zero at infinity,
the equation reduces to

(εi ± ω + iη −
1
2
∇

2
)ψ(±)i (r,ω) ≈ 0. (24)

In the limit η→ 0+, this equation means that the TDRSH or
TDLRSH ionization energy from the occupied orbital i is equal to
−εi, which is also the bare RSH or LRSH ionization energy from

orbital i. When εi ± ω < 0 (below the ionization threshold), the solu-
tions decay exponentially fast at infinity. When εi ± ω > 0 (above the
ionization threshold), they are oscillatory (behaving like free out-
going waves). As shown in Appendix A for the case of atoms, this
analysis can be refined to take into account the presence of the effec-
tive long-range Coulomb potential and find the exact asymptotic
behavior of ψ(±)i .

Let us, then, consider the case where the numerical computa-
tion is truncated to a bounded spatial domain Ω ⊂ R3. Using zero
(Dirichlet) boundary conditions for ψ(±)i on the boundary ∂Ω is
clearly not appropriate when εi ± ω > 0 and, indeed, will artificially
discretize the electronic continuum, in turn discretizing the pho-
toionization spectrum. Instead, following the general philosophy of
the Dirichlet-to-Neumann approach (see, e.g., Refs. 45 and 46), we
can use frequency-dependent boundary conditions that give accu-
rate results even for a relatively small domain and η = 0. For this, we
just need to analytically find an approximation ψ̄(±)i of ψ(±)i , which
is valid outside ofΩ, and, then, require the normal derivative of ψ(±)i

on the interior of ∂Ω to match the normal derivative of ψ̄(±)i on the
exterior of ∂Ω, which yields a nonlocal Robin boundary condition
of the form

∀r ∈ ∂Ω, n(r)⋅∇ψ(±)i (r,ω) = ∫
∂Ω

Ki(r, r′;±ω)ψ(±)i (r′,ω)dr′,
(25)

where n(r) is the outward normal vector to the surface ∂Ω at point r.
In the case of atoms, the Dirichlet-to-Neumann kernel K i(r, r′;±ω)
reduces to a simple local radial form (see Appendix A).

D. Linear-response Sternheimer equations
in a basis set

Let us now introduce a finite (non-orthogonal) basis set
{χν}ν=1,...,M ⊂ H1

(Ω,C) (where H1 is the first-order Sobolev space)
made of M basis functions (whose behavior on ∂Ω is arbitrary) to
expand the occupied orbitals,

φj(r) =
M

∑

ν=1
cjνχν(r), (26)

and their first-order changes,

ψ(±)j (r,ω) =
M

∑

ν=1
c(±)jν (ω)χν(r), (27)

where cjν and c(±)jν (ω) are the (generally complex-valued) coef-
ficients labeled with the composite index jν ≡ ( j, ν) ∈ [[1, N/2]]
× [[1, M]]. Integrating Eq. (20) against a basis function χ∗μ and using
the expansions of Eqs. (26) and (27) directly lead to the basis-set
Sternheimer equations in the following block matrix form:

⎛

⎜

⎝

Λ(ω) B

B∗ Λ(−ω)∗
⎞

⎟

⎠

⎛

⎜

⎝

c(+)(ω)

c(−)(ω)∗
⎞

⎟

⎠

= −

⎛

⎜

⎝

V

V∗
⎞

⎟

⎠

, (28)

which must be solved at each given frequency ω for c(+)
(ω) and

c(−)
(ω)∗, which are the column vectors of components c(+)jν (ω) and
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c(−)jν (ω)
∗, respectively. In Eq. (28), V is the column vector of com-

ponents Viμ = e ⋅∑M
ν=1dμ,νciν, where dμ,ν = ∫Ωχ

∗
μ (r)rχν(r)dr are the

dipole-moment integrals, andΛ(±ω) and B are square matrices with
elements

Λiμ,jν(±ω) = δi,j(hi,μ,ν(±ω) − (εi ± ω + iη)Sμ,ν)

+ 2
M

∑

λ=1

M

∑

σ=1
ciσc∗jλFμ,λ,σ,ν (29)

and

Biμ,jν = 2
M

∑

λ=1

M

∑

σ=1
ciσcjλFμ,ν,σ,λ. (30)

In Eq. (29), Sμ,ν = ∫Ωχ
∗
μ (r)χν(r)dr are the overlap integrals over the

basis functions, and hi,μ,ν(±ω) are the matrix elements of the RSH or
LRSH Hamiltonian,

hi,μ,ν(±ω) = ti,μ,ν(±ω) + vμ,ν +
M

∑

λ=1

M

∑

σ=1
Pσ,λ

× (wμ,λ,ν,σ −
1
2

wlr
μ,λ,σ,ν) + vsr

μ,ν, (31)

where ti,μ,ν(±ω) are the kinetic integrals, including the boundary
condition [see Eq. (35)], vμ,ν = ∫Ωχ

∗
μ (r)vne(r)χν(r)dr are the

nuclei–electron integrals, Pσ,λ = 2∑N/2
i=1 ciσc∗iλ are the elements of the

density matrix, wμ,λ,ν,σ = ∫Ω2χ∗μ (r1)χ∗λ (r2)wee(r1, r2)χν(r1)χσ(r2)

× dr1dr2 and wlr
μ,λ,σ,ν = ∫Ω2χ∗μ (r1)χ∗λ (r2)wlr

ee(r1, r2)χσ(r1)χν(r2)dr1dr2
are the Coulombic and long-range two-electron integrals, respec-
tively, and vsr

μ,ν = ∫Ωχ
∗
μ (r)vsr

xc(r)χν(r)dr are the short-range
exchange–correlation potential integrals. In Eqs. (29) and (30),
Fμ,λ,σ,ν are the matrix elements of the Hartree-exchange–correlation
kernel fHxc[γ0],

Fμ,λ,σ,ν = ∫
Ω4
χ∗μ (r1)χ∗λ (r2) fHxc[γ0](r1, r′1; r2, r′2) χσ(r

′
1)

× χν(r′2) dr1dr′1dr2dr′2

= wμ,λ,σ,ν −
1
2

wlr
μ,λ,ν,σ + f sr

μ,λ,σ,ν, (32)

where f sr
μ,λ,σ,ν = ∫Ω2χ∗μ (r1)χ∗λ (r2) f sr

xc[ργ0](r1, r2)χσ(r1)χν(r2)dr1dr2
are the short-range exchange–correlation kernel integrals.

To obtain the expression of the kinetic integrals, we start from
the kinetic contribution in Eq. (20), projected onto the basis function
χ∗μ , and perform an integration by parts,

−
1
2∫Ω

χ∗μ (r)∇
2ψ(±)i (r,ω)dr =

1
2∫Ω
∇χ∗μ (r) ⋅ ∇ψ

(±)

i (r,ω)dr

−
1
2∫∂Ω

χ∗μ (r) n(r)

⋅∇ψ(±)i (r,ω)dr. (33)

Using the boundary condition in Eq. (25), the surface term can, then,
be expressed as

−
1
2∫∂Ω

χ∗μ (r) n(r)⋅∇ψ(±)i (r,ω)dr

= −
1
2∫∂Ω2

χ∗μ (r)Ki(r, r′;±ω)ψ(±)i (r′,ω)drdr′. (34)

After expanding ψ(±)i in the basis set, we, thus, obtain the expression
of the kinetic integrals,

ti,μ,ν(±ω) =
1
2∫Ω
∇χ∗μ (r) ⋅ ∇χν(r)dr

−
1
2∫∂Ω2

χ∗μ (r)Ki(r, r′;±ω)χν(r′)drdr′. (35)

In the limit of a complete basis set, this correctly imposes Eq. (25)
on ψ(±)i .

To see this, it is instructive to consider the simplified prob-
lem of solving the one-dimensional differential equation −ψ′(x)
+ V(x)ψ(x) = F(x) on the interval (−1, 1), for some real-valued
potential V and source term F, and boundary conditions ψ′(±1)
= K±ψ(±1). Solving this problem is equivalent to requiring that ψ
satisfies the variational equation ∫

1
−1χ
′
(x)ψ′(x)dx − [χ(1)K+ψ(1)

− χ(−1)K−ψ(−1)] + ∫
1
−1χ(x)V(x)ψ(x)dx = ∫

1
−1χ(x)F(x)dx for all

χ ∈ H1
(−1, 1). Choosing for χ a function that is zero on (−1, 1 − 1/n)

and ramps up linearly to 1 at x → 1, we obtain by passing to the limit
n→∞ in the variational equation that ψ′(1) = K+ψ(1). Similarly,
we can choose the function χ so that ψ′(−1) = K−ψ(−1).

The Sternheimer matrix equations in Eq. (28) have essen-
tially the same form as the well-known TDDFT Casida equations3,47

except that the latter are normally written in the orthogonal basis of
the occupied and virtual orbitals, whereas the present Sternheimer
matrix equations are written in an arbitrary non-orthogonal basis
set.

Finally, in the basis set, the dipole polarizability takes the form

α(ω + iη) = −
1
3 ∑

a∈{x,y,z}

M

∑

μ=1

M

∑

ν=1
(P(+)μ,ν (ω)dν,μ + P(−)μ,ν (ω)

∗d∗ν,μ) ⋅ ua,

(36)

where P(±)μ,ν (ω) = 2∑N/2
i=1 c(±)iμ (ω)c

∗
iν.

E. B-spline basis set for atoms
We specialize now in the case of atoms with radial ground-state

densities. Spherical symmetry permits to write the occupied orbitals
as

φi(r) =
Ri(r)

r
Ymi
ℓi
(θ,ϕ), (37)

with radial functions Ri and spherical harmonics Ymi
ℓi

. For a dipole

interaction with a z-polarized electric field, i.e., v(1)ext = r ⋅ uz , the
corresponding first-order orbital changes are of the form

ψ(±)i (r,ω) = ∑
ℓ∈Li

R(±)i,ℓ (r,ω)
r

Ymi
ℓ (θ,ϕ) (38)

with Li = {ℓi − 1, ℓi + 1} for ℓi ≥ 1 and Li = {ℓi + 1} for ℓi = 0.
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We expand the radial functions in a basis set of Ms B-spline
functions48,49

{Bν}ν=1,...,Ms of order ks,

Ri(r) =
Ms

∑

ν=1
ciνBν(r), (39)

R(±)i,ℓ (r,ω) =
Ms

∑

ν=1
c(±)iν,ℓ (ω)Bν(r). (40)

To completely define a basis of B-spline functions, a non-decreasing
sequence of Ms + ks knot points {rp}p=1,...,Ms+ks (some knot points
are possibly coincident) must be given. The B-spline function Bν(r)
is non-zero only on the supporting interval [rν, rν+ks] (contain-
ing ks + 1 consecutive knot points) and is a piecewise function
composed of polynomials of degree ks − 1 (one polynomial in
between two consecutive non-coincident knot points) with contin-
uous first ks −m − 1 derivatives across each knot of multiplicity m.
We have followed the standard choice of taking the first and the last
knots to be ks-fold degenerate, i.e., r1 = r2 = ⋅ ⋅ ⋅ = rks = rmin = 0 and
rMs+1 = rMs+2 = ⋅ ⋅ ⋅ = rMs+ks = rmax, while the multiplicity of the other
knots is unity. We, thus, need ks ≥ 3 in order to have basis func-
tions with at least C1 regularity. The spatial grid spacing was chosen
to be constant in the whole radial space between two consecutive
non-coincident points and is given by Δr = rmax/(Ms − ks + 1).

At r = 0, the appropriate boundary conditions are Ri(r = 0) = 0
and R(±)i,ℓ (r = 0,ω) = 0, which can be easily imposed by removing
the first B-spline function, which is the only one non-vanishing at
r = 0. At r = rmax, for the occupied orbitals, which decay exponen-
tially fast at infinity, we can also use zero boundary conditions, i.e.,
Ri(r = rmax) = 0, which can be imposed by just removing the last B-
spline function in the ground-state calculation. For the first-order
orbital changes R(±)i,ℓ , as shown in Appendix A, the radial symmetry
simplifies the nonlocal boundary condition in Eq. (25) to the local
Robin boundary condition,

dR(±)i,ℓ (r,ω)
dr

RRRRRRRRRRRRr=rmax

= bi,ℓ(±ω)R
(±)

i,ℓ (rmax),

and the kinetic integrals [Eq. (35)] for R(±)i,ℓ become

ti,ℓ,μ,ν(±ω) =
1
2∫

rmax

0

dBμ(r)
dr

dBν(r)
dr

dr

+
1
2∫

rmax

0
Bμ(r)

ℓ(ℓ + 1)
r2 Bν(r)dr

−δμ,Msδν,Ms

bi,ℓ(±ω)
2

BMs(rmax)
2, (41)

where we have used the fact that only the last B-spline basis func-
tion is non-zero at rmax. The complex-valued function bi,ℓ is given in
Eqs. (A11)–(A13). In this way, the boundary condition is imposed
without modification of the basis set. This method is somewhat sim-
pler than the procedure to impose boundary conditions described in
Refs. 7 and 35, but conceptually similar to the procedure described
in Refs. 12 and 17 for grid-based TDDFT and in Refs. 50–53 in the
context of the R-matrix method.

F. Further computational details
We apply the present theory to the Be atom (N = 4) in the

ground-state configuration 1s22s2. We use Ms = 50 B-spline basis
functions of order ks = 8 and a maximal radius of rmax = 25 bohrs.
The occupied orbitals are of symmetry s (ℓi = 0, mi = 0), and the
perturbed orbitals are of symmetry pz (ℓ = 1).

Radial integrals over B-spline functions are calculated using
a Gauss–Legendre quadrature.49 We use the integration-cell algo-
rithm54 to calculate the Coulomb two-electron integrals and an
extension of it29 for the long-range two-electron integrals. For the
case of LRSH, having a position-dependent range-separation para-
meter in the long-range two-electron integrals does not introduce
any complications since the integration-cell algorithm uses a Gaus-
sian quadrature. Thanks to the locality of the B-spline basis func-
tions, the construction of the matrices Λ(ω) and B in Eq. (28) scales
as O(N2M2

s ), instead of the straightforward scaling O(N2M4
) that

would be obtained for an arbitrary basis set. The Sternheimer equa-
tions are usually solved iteratively.7,36,38 However, we found that the
simple iterative scheme of Ref. 7 starting from the bare response,
i.e., fHxc[γ0] = 0, works well for TDLDA but often does not con-
verge for TDHF because the bare HF response is too bad for an
approximation to the TDHF response. Although this could be cured
with more sophisticated iterative methods, on this simple system, we
found it expedient to simply solve Eq. (28) using a standard dense
lower-upper (LU)-decomposition linear solver.

Having a non-zero imaginary-shift parameter η is necessary to
obtain a non-zero absorption cross section for bound states.38 How-
ever, it is not necessary for the continuum part of the spectrum.
Indeed, the imaginary part of the dipole polarizability involved in
the photoionization cross section in Eq. (22) is not zero in any case
due to the complex-valued function b introduced when imposing the
boundary condition in Eq. (41). Moreover, since we are interested in
obtaining the precise line shape of the core resonances, we use η = 0
to avoid artificially broadening these resonances.

As shown in Appendix A, the use of the accurate bound-
ary conditions in Eq. (41) is essential to obtain a photoionization
cross section without spurious oscillations even with the relatively
small rmax that we use. Moreover, in Appendix B, we show that the
present Sternheimer approach with appropriate boundary condi-
tions is far superior than the straightforward Casida method with
a zero boundary condition of Ref. 29.

III. RESULTS AND DISCUSSION
We now show and discuss the results on the Be atom.

A. Orbital energies
Figure 1 shows the RSH and LRSH 1s and 2s orbital energies as

a function of the adimensional range-separation parameter μ̃. Also
indicated are the opposite of the experimental ionization potential
(IP) (9.323 eV) and of the 1s ionization edge (123.64 eV),55 as well as
the KS exact exchange (EXX) 1s and 2s orbital energies (112.24 and
8.422 eV)56 and the exact KS 1s orbital energy (122.29 eV).57

For μ̃ = 0, both RSH and LRSH reduce to the standard KS
scheme. If we were to use the exact exchange–correlation poten-
tial, assuming that it exists (it can be rigorously defined within the
Moreau–Yosida regularization of KS density-functional theory58),
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FIG. 1. RSH and LRSH 1s and 2s orbital energies of the Be atom as a function
of the adimensional range-separation parameter μ̃. As references, the opposite of
the experimental IP (9.323 eV) and of the 1s ionization edge (123.64 eV)55 is indi-
cated, as well as the KS EXX 1s and 2s orbital energies (112.24 and 8.422 eV)56

and the exact KS 1s orbital energy (122.29 eV).57

the exact KS 2s orbital energy would be exactly the opposite of the
experimental IP. The exact KS 1s orbital energy is not equal to the
opposite of the experimental 1s ionization edge but can be consid-
ered as an approximation to it.57 Here, due to the use of the LDA
for the exchange–correlation potential, the 1s and 2s orbital ener-
gies at μ̃ = 0 are too high by 17.4 and 3.7 eV, respectively. Too high
orbital energies are often attributed to the self-interaction error of
the LDA. We see, however, that even KS EXX (which is without self-
interaction error) gives 1s and 2s orbital energies that are too high
by 10.1 and 0.9 eV, respectively, with respect to exact KS. The lat-
ter errors are, of course, due to the missing KS correlation potential.
For μ̃→∞, both RSH and LRSH reduce to standard HF. In com-
parison with the experimental values, the HF 2s orbital energy is too
high by 0.9 eV and the HF 1s orbital energy is too low by 5.2 eV.
In the context of Green-function theory, the latter errors are due
to the missing correlation self-energy contribution. Interestingly, we
see that KS EXX and HF give nearly identical 2s orbital energies.
Recalling the fact that KS EXX and HF are identical for two electrons
in a single orbital, this likely means that the two valence electrons can
be considered as nearly independent of the core electrons for calcu-
lating the 2s orbital energy. By contrast, the KS EXX and HF give
quite different 1s orbital energies, differing by as much as 16.5 eV.
This must mean that the valence electrons cannot be neglected in
the mean-field potential for calculating the 1s orbital energy.

For μ̃ ≠ 0, even if we were to use the exact short-range
exchange–correlation potential, assuming that we can rigorously
define such a quantity, the RSH and LRSH 2s orbital energies would
not be exactly equal to the opposite of the experimental IP since
long-range correlation effects are missing in the RSH and LRSH
schemes. In addition, the RSH and LRSH 1s orbital energies with
the exact short-range exchange–correlation potential should not be
expected to be exactly equal to the opposite of the experimental 1s
ionization edge. However, with the present approximate RSH or

LRSH potentials and kernels, we know that the RSH or LRSH ioniza-
tion energy from each occupied orbital i is the opposite of the orbital
energy, −εi, and is identical to the TDRSH or TDLRSH ionization
energy from this orbital i [see Eq. (24)]. In order to obtain correct
ionization energies in TDRSH or TDLRSH, we can, thus, choose the
adimensional range-separation parameter μ̃ so that the opposite of
the RSH or LRSH occupied orbital energies is as close as possible
to the experimental ionization energies. This is the idea behind the
so-called optimally tuned range-separated hybrids.24,59,60 Since for
μ̃ ≳ 0.4 the RSH and LRSH 2s orbital energies are not very sensitive
to the value of μ̃ and since we are mostly interested in this work in
the photoionization spectrum near the 1s ionization edge, we decide
to adjust the value of μ̃ so that the RSH and LRSH 1s orbital energies
are equal to opposite of the experimental 1s ionization edge. This
gives μ̃RSH = 1.608 for RSH and μ̃LRSH = 0.478 for LRSH.

Since the range-separation parameter μ represents an inverse
electron–electron distance [see Eq. (6)], for general atoms, we
expect the parameter μ̃RSH optimized for the 1s RSH orbital
energy to be approximately proportional to the nuclear charge
Z, i.e., μ̃RSH ≈ O(Z). In contrast, since for a 1s orbital we have
∣∇ρ∣/ρ ≈ O(Z), we expect the LRSH optimal parameter μ̃LRSH to be
roughly independent of Z [see Eq. (9)].

In Sec. III B, we show the TDRSH and TDLRSH photoion-
ization spectra using the optimal adimensional range-separation
parameters μ̃ as determined above. Note that although we fit the sin-
gle parameter μ̃ to adjust the position of the 1s ionization edge, we
make predictions for the whole photoionization spectrum.

B. Photoionization spectrum
Figure 2 reports the photoionization cross section calculated

by TDLDA, TDHF, TDRSH, and TDLRSH (using the optimal adi-
mensional range-separation parameters determined in Sec. III A).
We will just comment on the main features of these spectra with-
out trying to compare with experimental spectra.61–65 Indeed, the
experimental spectra display many more peaks and structures due
to double and higher excitations, which are not taken into account
in the level of theory that we use.

The TDLDA photoionization spectrum starts at a too low ion-
ization threshold (the same value as the opposite of the LDA 2s
orbital energy) and the cross section is zero at the threshold, just
like for the He atom.29 There is a large peak just above the TDLDA
threshold, roughly in the energy range that should correspond to
the 2s → 3p transition, followed by a minimum where the cross
section vanishes, which is reminiscent of the well-known Cooper
minimum66,67 (the present minimum may originate from the fact
that the 2s orbital has a radial node; see, e.g., Ref. 68). We have
verified that this minimum is not present in the bare LDA photoion-
ization spectrum and appears when the Hartree kernel is taken into
account. The TDLDA 1s ionization edge occurs at a much too low
energy, in fact, exactly the same value as the opposite of LDA 1s
orbital, which means that the Hartree-exchange–correlation kernel
does not affect this value. The TDLDA photoionization spectrum
contains only the first 1s→ 2p core resonance, the other core single-
excited resonances (1s→ 3p, 1s→ 4p, etc.) having dissolved into the
continuum beyond the 1s ionization edge, due to the exponentially
decaying exchange–correlation LDA potential.
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FIG. 2. Photoionization cross section of the Be atom calculated by (a) TDLDA and TDHF and by (b) TDRSH and TDLRSH (using the optimal adimensional range-separation
parameters determined in Sec. III A, i.e., μ̃RSH = 1.608 for TDRSH and μ̃LRSH = 0.478 for TDLRSH). The vertical dashed lines correspond to the experimental IP (9.323 eV)
and the 1s ionization edge (123.64 eV).55

The TDHF photoionization spectrum starts at a slightly too low
ionization threshold (again the same value as the opposite of the
HF orbital 2s energy), and the cross section is very small but not
zero (about 0.07 Mb) at the threshold (not shown). The TDHF 1s
ionization edge occurs at a too high energy, again the same value
as the opposite of HF 1s orbital, which means that the HF ker-
nel does not affect this value. In contrast to TDLDA, the TDHF
photoionization spectrum contains not only the 1s → 2p core res-
onance but also a series of single-excited core resonances to Rydberg
states (1s → 3p, 1s → 4p, etc.) converging toward the 1s ioniza-
tion edge. We note that our TDHF photoionization spectrum is
in good agreement with previous non-relativistic and relativistic
TDHF calculations69–71 (note that linear-response TDHF is also
called random-phase approximation with exchange).

The TDRSH and TDLRSH photoionization spectra (using the
optimal adimensional range-separation parameters determined in
Sec. III A) display roughly the same features. They both start at a

slightly too low ionization threshold. In both cases, the 1s ionization
edge is positioned at the exact value as expected since it corresponds
to the opposite of the 1s orbital energy, which has been adjusted
at the exact value by tuning the adimensional range-separation
parameter. Similar to TDHF, both the TDRSH and TDLRSH pho-
toionization spectra display a series of core resonances, the TDLRSH
resonances being systematically at higher energies than the TDRSH
resonances. In comparison to TDRSH, TDLRSH gives smaller cross
sections in the 2s continuum region (near 20 eV) and larger cross
sections in the 1s continuum region (above the 1s ionization edge).

C. Core resonances
The core resonances (1s→ 2p, 1s→ 3p, etc.) are sharp Feshbach

resonances, which can be understood as bound states embedded in
a continuum turned into quasi-bound states with finite lifetimes due
to electron–electron interactions. Figure 3 shows the first 1s → 2p

FIG. 3. Core resonance 1s → 2p of the Be atom calculated by (a) TDLDA, (b) TDHF, (c) TDRSH, and (d) TDLRSH (using the optimal adimensional range-separation
parameters determined in Sec. III A, i.e., μ̃RSH = 1.608 for TDRSH and μ̃LRSH = 0.478 for TDLRSH). The dashed lines are fits using Eq. (42) with the parameters given in
Table I.
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resonance obtained with TDLDA, TDHF, TDRSH, and TDLRSH. In
all cases, the cross section follows a characteristic asymmetric Fano
line shape, which can be fitted to the analytical expression7,77

σ = σ0(1 + aϵ)[ρ2 (q + ϵ)2

1 + ϵ2 − ρ
2
+ 1] (42)

with

ϵ =
ω − ER

Γ/2
. (43)

Here, ER is the resonance energy, Γ is the resonance width (or inverse
lifetime), q is the asymmetry Fano parameter, σ0 is the total back-
ground cross section, a is a coefficient for the total background
linear drift, and ρ2 is the ratio between the background cross section
for transitions to continuum states that interact with the discrete
resonant state and the total background cross section. The fitted
parameters for the 1s → 2p and 1s → 3p resonances are given in
Table I. For the fitting procedure, the cross section at the resonance
energy σ(ER)was included in the data as the asymmetry parameter q
is very sensitive to the value of the cross section at the peak. Further-
more, we have verified that, for each resonance, the complex energy

ωR = ER − iΓ/2 is a solution of the non-Hermitian linear-response
equation [Eq. (28)] without external perturbation,

⎛

⎜

⎝

Λ(ωR) B

B∗ Λ(−ωR)
∗

⎞

⎟

⎠

⎛

⎜

⎝

c(+)R

c(−)∗R

⎞

⎟

⎠

=

⎛

⎜

⎝

0

0

⎞

⎟

⎠

, (44)

with the ωR-dependent kinetic integrals in Eq. (41), which impose
the boundary condition in Eq. (A9). For complex ωR with
Im[ωR] < 0, this is, indeed, a Siegert-type boundary condition select-
ing resonant states that exponentially diverge at infinite distance
(see, e.g., Refs. 78 and 79).

As references, we have included in Table I the experimental
resonance energies,72 as well as accurate results obtained with the
R-matrix method,73,74 the saddle-point complex-rotation (SPCR)
method,75 and the complex-scaled multireference configuration-
interaction (CMRCI) method.76 These three theoretical methods are
all essentially configuration-interaction-type approaches, including
many electronic configurations, where the description of continuum
states is done by using proper boundary conditions in the R-matrix
method or bypassed using complex scaling in the SPCR and CMRCI
methods. In addition, we note that reference 1s → 2p and 1s → 3p
resonance cross-section profiles obtained with the SPCR method can
be found in Fig. 2 of Ref. 75.

TABLE I. Resonance energy ER, resonance width Γ, Fano asymmetric parameter q, total background cross section σ0, background ratio parameter ρ2, background linear drift
a, and maximum value of the cross section at the resonance energy σ(ER) for the 1s→ 2p and 1s→ 3p core resonances of the Be atom calculated by TDLDA, TDHF, TDRSH,
and TDLRSH (using the optimal adimensional range-separation parameters determined in Sec. III A, i.e., μ̃RSH = 1.608 for TDRSH and μ̃LRSH = 0.478 for TDLRSH). In some
cases, the background linear drift a was fixed to exactly zero in order to obtain convergence. As references, we also report experimental values72 and accurate results from
R-matrix,73,74 SPCR,75 and CMRCI76 calculations.

ER (eV) Γ (meV) q σ0 (Mb) ρ2 a σ(ER) (Mb)

Resonance 1s→ 2p (configuration 1s2s22p 1P)

TDLDA 103.0 2.347 228.3 0.081 0.998 −7.73 ⋅ 10−5 4.22 ⋅ 103

TDHF 118.3 0.211 −1239.4 0.081 0.995 0 1.22 ⋅ 105

TDRSH 113.3 0.171 2059.1 0.111 0.941 0 5.23 ⋅ 104

TDLRSH 114.8 0.079 −1797.2 0.087 1.000 −7.33 ⋅ 10−7 2.78 ⋅ 105

R-matrixa 115.7
R-matrixb 115.6 44
SPCRc 115.5 37
CMRCId 115.5 48
Experimente 115.5

Resonance 1s→ 3p (configuration 1s2s23p 1P)

TDHF 126.4 0.022 −1279.4 0.069 1.000 5.77 ⋅ 10−7 1.14 ⋅ 105

TDRSH 121.3 0.052 802.7 0.071 1.000 −1.35 ⋅ 10−6 4.60 ⋅ 104

TDLRSH 121.4 0.011 −1791.6 0.076 1.000 −2.15 ⋅ 10−8 2.43 ⋅ 105

R-matrixa 121.5
SPCRc 121.4 50
Experimente 121.4
aFrom Ref. 73.
bFrom Ref. 74.
cFrom Ref. 75.
dFrom Ref. 76.
eFrom Ref. 72.
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FIG. 4. (a)–(c) Resonance energy ER, width Γ, and Fano asymmetric parameter q for the 1s→ 2p core resonance of the Be atom calculated by TDRSH and TDLRSH as a
function of the adimensional range-separation parameter μ̃.

The TDLDA 1s → 2p resonance occurs at a much too low
energy (by 12.5 eV), stemming from the fact that the LDA 1s orbital
energy is at a too high energy, as discussed in Sec. III A. The TDHF
1s → 2p and 1s → 3p resonances occur at too high energies (by 2.8
and 5.0 eV), which are consistent with the fact that the HF 1s orbital
energy is at a too low energy. The positions of the TDHF resonances
(118.3 and 126.4 eV) turn out to be in almost perfect agreement with
the values obtained by TDHF calculations using a fairly small Slater
basis set,80 showing that the determination of only the positions of
these resonances does not, in fact, require a large basis set capa-
ble of describing continuum states. For comparison, we point out
that linear-response time-dependent exact exchange (TDEXX) gives
much too low 1s → 2p and 1s → 3p resonance positions, estimated
at about 109 and 111 eV, respectively81 (see also Ref. 11 for EXX
results). Both TDRSH and TDLRSH give more accurate 1s → 2p
and 1s → 3p resonance positions than TDLDA and TDHF, slightly
underestimated by 2.2 and 0.1 eV for TDRSH and by 0.7 and 0.03 eV
for TDLRSH.

The resonance widths Γ and Fano asymmetric parameters q,
which determined the shape of the resonances, are very sensitive to
the method employed. All the present TDDFT/TDHF-type meth-
ods give much too small resonance widths Γ, by about one to three
orders of magnitude. This must be due to the neglect of double
electronic excitations. Indeed, it is known72,75 that the 1s → np res-
onance (for n = 2, 3) in the Be atom predominantly decays through
the Auger process 1s2s2np 1P→ 1s2np+ e, the last configuration cor-
responding to a double excitation with respect to the ground-state
configuration 1s22s2. Thus, we cannot expect the present meth-
ods to give physical resonance widths for the Be atom. Among the
present methods, TDLDA gives a 1s→ 2p resonance with the largest
width Γ and a positive Fano parameter q. We note that a similar
resonance shape is also obtained when employing more accurate
asymptotically corrected exchange–correlation potentials8,11 or the
EXX potential and its adiabatic kernel.11,81 TDHF gives a sharper
1s→ 2p resonance with a width Γ an order of magnitude smaller and
a large negative Fano parameter q. The TDHF 1s→ 3p resonance is
even sharper. We note that the shape of the TDHF resonances that
we obtain is in agreement with previous relativistic TDHF calcu-
lations.71 TDRSH gives quite sharp resonances with large positive
Fano parameters q. TDLRSH gives even sharper resonances with
large negative Fano parameters q.

Finally, Fig. 4 shows how the resonance energy ER, width Γ, and
Fano asymmetry parameter q of the 1s→ 2p resonance calculated by
TDRSH and TDLRSH vary with the adimensional range-separation
parameter μ̃, going from the TDLDA limit (μ̃ = 0) to the TDHF limit
(μ̃→∞). For both TDRSH and TDLRSH, the resonance energy
increases with μ̃, until it saturates at the TDHF value. For both
TDRSH and TDLRSH, the resonance width does not vary monoton-
ically with μ̃. In particular, there is a value of μ̃ (around μ̃ ≈ 2.5 and
0.2 for TDRSH and TDLRSH, respectively), for which the resonance
width vanishes. Within the Fano model analysis,82 it means that the
coupling between the discrete state corresponding to the resonance
and the continuum states vanishes. In this case, the resonance state
becomes a truly bound state (with infinite lifetime) embedded in the
continuum. At the same critical value of μ̃, the Fano parameter q
jumps from a large positive value to a large negative value. Again,
within the Fano model analysis, this may be interpreted as a change
of sign of the coupling between the discrete state and the continuum
states.

IV. CONCLUSION
In this work, we have continued the systematic exploration

of linear-response range-separated TDDFT for the calculation of
photoionization spectra. We have considered two variants of range-
separated TDDFT, namely, TDRSH, which uses a global range-
separation parameter, and TDLRSH, which uses a local range-
separation parameter, and compared with standard TDLDA and
TDHF. We have shown how to calculate photoionization spectra
with these methods using the Sternheimer approach formulated in
a non-orthogonal B-spline basis set and using appropriate boundary
conditions. We have illustrated these methods on the photoioniza-
tion spectrum of the Be atom, focusing, in particular, on the core
resonances.

When the adimensional range-separation parameter is adjusted
on the 1s ionization edge, both the TDRSH and TDLRSH photoion-
ization spectra constitute a large improvement over the TDLDA
photoionization spectrum and a more modest improvement over
the TDHF photoionization spectrum. In particular, TDRSH and
TDLRSH improve the accuracy of core resonance energies, with
a slightly greater accuracy in favor of TDLRSH. Neither TDRSH
nor TDLRSH compete in terms of accuracy with sophisticated
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configuration-interaction-type approaches, such as the R-matrix,
SPCR, or CMRCI methods, in particular, for calculating resonance
widths. However, TDRSH and TDLRSH have the advantage of being
much simpler methods that can potentially be applied to large
molecular systems.

In future works, the TDRSH and TDLRSH methods, as well as
possibly other range-separated TDDFT variants, could be improved
by adding the effect of the double excitations through a frequency-
dependent long-range correlation kernel.83 In addition, the Stern-
heimer formulation of these methods should be extended to open-
shell atomic systems and, in a second step, to arbitrary molecular
systems. This last goal requires to implement general nonlocal Robin
boundary conditions. Finally, in order to calculate nonlinear opti-
cal properties, a time-propagation version of the present approach
could be designed by generalizing the boundary conditions to the
time domain.
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APPENDIX A: BOUNDARY CONDITIONS FOR ATOMS

In this appendix, we explain how we impose appropriate
boundary conditions at r = rmax for atoms.

We first need to study the large-r asymptotic behaviors of the
radial solutions R(±)i,ℓ [Eq. (38)] of the Sternheimer equations. For

sufficiently large r, R(±)i,ℓ behaves as

R(±)i,ℓ (r,ω) ∼
r→∞

R(±)i,ℓ (r,ω), (A1)

where R(±)i,ℓ are radial asymptotic solutions of the Sternheimer
equations [Eq. (20)], which satisfy hydrogen-like Schrödinger
equations,

(−
1
2

d2

dr2 +
ℓ(ℓ + 1)

2r2 −
Zeff

r
)R(±)i,ℓ (r,ω)

= (εi ± ω + iη)R(±)i,ℓ (r,ω) (A2)

with effective charge Zeff = Z −N + ζ. In the expression of Zeff, the
nucleus charge Z and the electron number N come, of course,
from the nucleus–electron potential vne and the Hartree potential
vH, respectively, in the RSH Hamiltonian h[γ0]. The contribution ζ

comes from the long-range HF exchange kernel f lr,HF
x , and we have

ζ = 1 for a non-zero range-separation parameter, i.e., μ̃ ≠ 0 for the
RSH/LRSH scheme. In the LDA limit (μ̃ = 0), we have ζ = 0. For
ω ≥ 0, the general solution of Eq. (A2) may be written as

R(±)i,ℓ (r,ω) = c1 fi,ℓ(r,±ω) + c2gi,ℓ(r,±ω), (A3)

where c1 and c2 are two arbitrary complex-valued coefficients and
the functions fi,ℓ and gi,ℓ are defined as follows for a general
frequency variable z ∈ C:

fi,ℓ(r, z) = Fℓ(−Zeff/ki(z), ki(z)r), (A4)

gi,ℓ(r, z) = Gℓ(−Zeff/ki(z), ki(z)r), (A5)

where Fℓ and Gℓ are the regular and irregular Coulomb functions84

and ki(z) =
√

2(εi + z + iη) is the complex-valued momentum. The
asymptotic behavior of the Coulomb functions is given as

fi,ℓ(r, z) ∼
r→∞

sin θi,ℓ(r, z), (A6)

gi,ℓ(r, z) ∼
r→∞

cos θi,ℓ(r, z) (A7)

with

θi,ℓ(r, z) = ki(z)r +
Zeff

ki(z)
ln(2ki(z)r) −

1
2
ℓπ + σi,ℓ(z), (A8)

and σi,ℓ(z) = arg Γ(ℓ + 1 − iZeff/ki(z)). As r →∞, θi,ℓ(r,±ω)
∼ ki(±ω)r, and due to the fact that Im[ki(±ω)] > 0 (for η > 0), we
see that the general solution R(±)i,ℓ in Eq. (A3) R(±)i,ℓ does not diverge
as r →∞ only for the coefficient ratio c1/c2 = i, so we have

R(±)i,ℓ (r,ω) = c2[i fi,ℓ(r,±ω) + gi,ℓ(r,±ω)], (A9)

and then, R(±)i,ℓ (r,ω) ∼
r→∞

c2 exp(i θi,ℓ(r,±ω)).
We can, thus, impose a Robin boundary condition for the radial

part R(±)i,ℓ of the solutions of the Sternheimer equations [Eq. (20)] at
r = rmax of the form

d ln R(±)i,ℓ (r,ω)
dr

RRRRRRRRRRRRr=rmax

= bi,ℓ(±ω) (A10)

with bi,ℓ(±ω) = d ln R(±)i,ℓ (r,ω)/dr∣r=rmax . Even though this expres-

sion of bi,ℓ(±ω) works for both R(+)i,ℓ and R(−)i,ℓ and for any ω, it
is insightful to further look at the physical content of the asymp-
totic behavior of R(+)i,ℓ and R(−)i,ℓ , separately, in the limit η→ 0+.

With regard to R(+)i,ℓ , for ω ≥ −εi, we have ki(ω) = Re[ki(ω)]
=

√

2(εi + ω), and the asymptotic solution R(+)i,ℓ is an outgoing
spherical wave. In this case, the explicit expression of bi,ℓ(ω) that
we use is given by

bi,ℓ(ω) =
i d fi,ℓ(r,ω)/dr + dgi,ℓ(r,ω)/dr

i fi,ℓ(r,ω) + gi,ℓ(r,ω)
∣

r=rmax

if ω ≥ −εi.

(A11)
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For ω < −εi, we have ki(ω) = i Im[ki(ω)] = i
√

−2(εi + ω), and the
asymptotic solution R(+)i,ℓ decays exponentially. Instead of using
Eq. (A11), we can more simply use

bi,ℓ(ω) = 0 if ω < −εi, (A12)

which corresponds to imposing the Neumann boundary con-
dition at r = rmax. Similarly, for R(−)i,ℓ , since we always have
εi − ω < 0 (because εi < 0 for occupied orbitals), we have ki(−ω) = i
Im[ki(−ω)] = i

√

−2(εi − ω); thus, the asymptotic solution R(−)i,ℓ
decays exponentially, and we can use again

bi,ℓ(−ω) = 0. (A13)

For a neutral system, such as the Be atom, we have Zeff = 1
for the TDHF method, and using the exact Coulomb-wave (ECW)
boundary condition in Eq. (A9) for ω ≥ −εi proves crucial to obtain
converged results with a modest maximal radius rmax. To show this,
we compare in Fig. 5 two alternative types of boundary conditions
for the same maximal radius of rmax = 25 bohrs. First, we can keep
the correct long-range behavior but make the asymptotic approx-
imation in Eqs. (A6)–(A8) valid for ki(ω)r ≫ 1, resulting in the
approximate Coulomb-wave (ACW) boundary condition,

R(+)i,ACW(r,ω) = c2 exp[i(ki(ω)r +
Zeff

ki(ω)
ln(2ki(ω)r))]. (A14)

At the scale of the plot, the part of the spectrum corresponding to the
2s ionization is barely affected, but this creates oscillations beyond
the 1s ionization edge. A more drastic approximation is to further
ignore the Coulomb potential, i.e., setting Zeff = 0. In this case, we
get the plane wave (PW) boundary condition,

R(+)i,PW(r,ω) = c2 exp(iki(ω)r). (A15)

This creates strong and rapid oscillations near both ionization
thresholds. However, far from the ionization thresholds, the effect
is less pronounced. In particular, the 1s → 2p resonance is still
well reproduced. This is because this resonance results from the
interaction of a bound state with continuum states at a relatively
large energy, which behave almost like plane waves. This can be
understood from Eq. (A8), which implies that the plane wave
approximation is reasonable when

ki(ω)2rmax ≫ Zeff ln(2ki(ω)rmax), (A16)

i.e., when the wavelength of the outgoing wave is small compared
to
√

rmax/Zeff. In both cases, these oscillations can be reduced by
either increasing the computational box size rmax or by using a non-
zero broadening factor η. The former increases the computational
effort, while the latter may lead to a loss of features in the spectrum.
The use of the exact Coulomb-wave boundary condition removes
these oscillations without the need of increasing rmax or using a
non-zero η.

In the case of TDLDA, we use the boundary condition in
Eq. (A9) with Zeff = 0, giving a free spherical outgoing wave (the
Coulomb functions reduce to the Riccati–Bessel functions). This is a

FIG. 5. TDHF photoionization cross section of the Be atom calculated with dif-
ferent boundary conditions: plane wave [Eq. (A15)], approximate Coulomb wave
[Eq. (A14)], and exact Coulomb wave [Eq. (A9)].

better boundary condition than using the plane wave approximation
in Eq. (A15), the latter giving slight oscillations for TDLDA.

Finally, we use the boundary condition in Eq. (A9) with
Zeff = erf(μrmax) for TDRSH and with Zeff = erf(μ(rmax)rmax) for
TDLRSH, which goes smoothly from Zeff = 0 for μ≪ 1/rmax or
μ(rmax)≪ 1/rmax to Zeff = 1 for μ≫ 1/rmax or μ(rmax)≫ 1/rmax.

APPENDIX B: COMPARISON WITH THE CASIDA
APPROACH WITH ZERO BOUNDARY CONDITION

In this appendix, we compare the present Sternheimer method
with an appropriate boundary condition with the straightforward
Casida method using the zero boundary condition used in Ref. 29.

In the Casida method of Ref. 29, one diagonalizes the linear-
response equations in the orthogonal occupied/virtual orbital basis
using a zero boundary condition at r = rmax. One obtains a dis-
crete set of excitation energies ωn and oscillator strengths fn. The
photoionization spectrum is, then, approximated as a set of cross
sections at frequencies ωn ≥ IP,

σn =
2π2

c
f̃n, (B1)

where the renormalized oscillator strengths f̃ n = ρDOS(ωn) fn take
into account the density of states (DOS) ρDOS(ωn) at the excita-
tion energy ωn, which is estimated by finite differences as ρDOS(ωn)

= 2/(ωn+1 − ωn−1).
Figure 6 reports the TDHF photoionization cross section for

the He and Be atoms calculated with the present Sternheimer
method with the exact Coulomb-wave boundary condition and cal-
culated with the Casida method with the zero boundary condition.
In all cases, we use the same computational parameters: Ms = 50 B-
spline basis functions and a maximal radius of rmax = 25 bohrs. For
the He atom, we see that the Casida method works correctly. How-
ever, for the Be atom, for the current computational parameters, the
Casida method is only able to give the low-energy part of the spec-
trum corresponding to the 2s ionization and is completely unable
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FIG. 6. TDHF photoionization cross section of the (a) He atom and (b) Be atom calculated with the present Sternheimer method with the exact Coulomb-wave (ECW)
boundary condition and calculated with the Casida method with the zero boundary condition (ZBC) of Ref. 29.

to reproduce the core resonances and the spectrum beyond the 1s
ionization edge.

This is easily understood from the structure of the excitation
spectrum in both cases. In the He atom, there is only one occupied
orbital (1s). The finite computational domain yields a regular sam-
pling of the continuum states in momentum space and, therefore,
in energy space. The excitations energies ωn are regularly spaced,
and so the renormalization scheme above is able to yield a smooth
curve. In the Be atom, however, beyond the 1s ionization thresh-
old, the cross section contains contributions from two channels (1s
and 2s); as a result, the excitation energies ωn are irregularly spaced
(being the superposition of two regularly spaced set of energies), and
the two distinct densities of states cannot be approximated by finite
differences. The renormalization scheme is also unable to account
for resonances, which originate from a hybridization of bound and
continuum states. This clearly demonstrates the superior efficacy
of the present Sternheimer method with an appropriate boundary
condition, which reproduces all these features.
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