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Calculating excitation energies by extrapolation along adiabatic connections
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In this paper, an alternative method to range-separated linear-response time-dependent density-functional
theory and perturbation theory is proposed to improve the estimation of the energies of a physical system from
the energies of a partially interacting system. Starting from the analysis of the Taylor expansion of the energies
of the partially interacting system around the physical system, we use an extrapolation scheme to improve the
estimation of the energies of the physical system at an intermediate point of the range-separated or linear adiabatic
connection where either the electron–electron interaction is scaled or only the long-range part of the Coulomb
interaction is included. The extrapolation scheme is first applied to the range-separated energies of the helium
and beryllium atoms and of the hydrogen molecule at its equilibrium and stretched geometries. It improves
significantly the convergence rate of the energies toward their exact limit with respect to the range-separation
parameter. The range-separated extrapolation scheme is compared with a similar approach for the linear adiabatic
connection, highlighting the relative strengths and weaknesses of each approach.
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I. INTRODUCTION

The calculation of excitation energies in density-functional
theory (DFT) is nowadays mostly done by means of linear
response theory in the time-dependent framework. Linear-
response time-dependent DFT (TDDFT) [1] exhibits an
excellent price-performance ratio and is, within the usual adia-
batic semilocal approximations, very successful at describing
excitations to low-lying valence states. However, these ap-
proximations introduce several limitations, especially for the
treatment of static correlation [2], Rydberg and charge-transfer
excitations [3,4], and double or multiple excitations [5].

Time-dependent theory is, however, not mandatory for
calculating excitation energies, as stated by the Hohenberg-
Kohn theorem [6]. Indeed, several time-independent DFT
approaches for calculating excitation energies exist and are
currently being developed. These include ensemble DFT
[7–12], Delta Self-Consistent Field (�SCF) [13–17] and
related methods [18–21], or perturbation theory [22–25] along
the standard adiabatic connection using the noninteracting
Kohn-Sham (KS) Hamiltonian as the zero-order Hamiltonian.

Range-separated DFT constitutes an alternative to standard
KS DFT [6,26] where the physical electronic Hamiltonian
is replaced not by an effective noninteracting Hamiltonian
but by a partially interacting Hamiltonian that incorporates
the long-range part only of the electron-electron interaction
[27–31]. This partially interacting Hamiltonian corresponds
to an intermediate point along a range-separated adiabatic
connection, which links the KS Hamiltonian to the physical
Hamiltonian by progressively switching on the long-range
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part of the two-electron interaction, while simultaneously
modifying the one-electron potential so as to maintain a
constant ground-state density.

In range-separated time-dependent DFT, the excitation en-
ergies of the long-range interacting Hamiltonian act as starting
approximations to the excitation energies of the physical sys-
tem and are corrected using a short-range density-functional
kernel, in the same manner as the KS excitation energies
act as starting approximations in linear-response TDDFT.
Several such range-separated linear-response schemes have
been developed, in which the short-range part is described
by an approximate adiabatic semilocal density-functional
kernel and the long-range linear-response part is treated at
the Hartree-Fock [32–35], multiconfiguration self-consistent
field (MCSCF) [34,35], second-order polarization-propagator
approximation (SOPPA) [35], or density-matrix functional
theory (DMFT) [36] level.

Within the time-independent framework, a standard method
for improving upon the excitation energies of the partially
interacting Hamiltonian would be to use perturbation the-
ory. However, given that perturbation theory in its standard
Rayleigh-Schrödinger based formulation does not keep the
ground-state density constant at each order in the perturbation,
it has not led to a systematic improvement [37].

In this work, we propose a time-independent alternative
method for correcting the excitation energies of the partially
interacting system, based on extrapolation along the range-
separated adiabatic connection. Given that the long-range part
of the interaction is included in the partially interacting system,
its excitation energies constitute better approximations to the
energies of the physical system than do the excitation energies
of the KS system. The analysis of the Taylor expansion of
the energies in the range-separation parameter μ about the
physical system (μ → +∞) presented in Ref. [38] shows
that the energies of the partially interacting system converge
towards their physical limits as μ−2. Using this information, it
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is possible to develop a scheme for extrapolating the energies
of the physical system from the energies of the partially
interacting system by following the ideas of Refs. [39,40]. This
extrapolation scheme involves low-order derivatives of the
energies with respect to μ and constitutes an alternative to per-
turbation theory and to range-separated TDDFT [32,34,41,42].

The extrapolation scheme is also applied to the linear
adiabatic connection, where the interaction is scaled by a
parameter λ going from 0 to 1, and where the analysis of
the excitation energies around λ = 1 provides the required
information to improve the estimation of the energies of the
physical system from an intermediate point of the connection.

The expression for the energies of the partially interacting
system and for their extrapolations are given in Sec. II for
the range-separated and linear adiabatic connections. The
extrapolation is subsequently applied to the range-separated
energies of the helium and beryllium atoms and of the
hydrogen molecule at its equilibrium and stretched geometries;
for helium, we also use the linear adiabatic connection. The
computational details are given in Sec. III and the results are
discussed in Sec. IV.

II. ENERGY EXTRAPOLATION ALONG THE
RANGE-SEPARATED AND LINEAR ADIABATIC

CONNECTIONS

A. Range-separated adiabatic connection

Range-separated DFT uses a partially interacting system,
where the long-range part of the Coulomb interaction is
included instead of the more traditional noninteracting KS
system—see, for example, Ref. [31]. In terms of the long-range
(lr) electron-electron interaction operator

Ŵ lr,μ
ee = 1

2

∫∫
wlr,μ

ee (r12)n̂2(r1,r2)dr1dr2, (1)

where n̂2(r1,r2) is the pair-density operator, w
lr,μ
ee (r12) is the

error-function interaction

wlr,μ
ee (r12) = erf(μr12)

r12
, (2)

and r are the electronic coordinates, the Hamiltonian of the
partially interacting system is given by

Ĥ lr,μ = T̂ + V̂ne + Ŵ lr,μ
ee + ˆ̄V sr,μ

Hxc . (3)

The parameter μ controls the range of the separation, with
1/μ acting as a smooth cut-off radius. This Hamiltonian
also contains the short-range Hartree-exchange-correlation
potential operator ˆ̄V sr,μ

Hxc , whose role is to ensure that the
ground-state density of the partially interacting system,

n0(r) = 〈
�

μ

0

∣∣n̂(r)
∣∣�μ

0

〉
, (4)

is equal to the ground-state density of the physical system for
all μ. Here �

μ

0 is the ground-state wave function of the partially
interacting Hamiltonian and n̂(r) is the density operator. The
remaining terms in the Hamiltonian of Eq. (3) are the usual
kinetic-energy operator T̂ and nuclear-electron interaction
operator V̂ne = ∫

vne(r)n̂(r)dr with vne the nuclear-electron
potential.

The eigenvectors and eigenvalues of Ĥ lr,μ are the ground-
and excited-state wave functions |�μ

k 〉 and energies Eμ

k of the

partially interacting system

Ĥ lr,μ
∣∣�μ

k

〉 = Eμ

k

∣∣�μ

k

〉
. (5)

These excited-state wave functions and energies provide
natural first approximations to the excited-state wave functions
and energies of the physical system. For μ = 0, they reduce to
the single-determinant eigenstates and associated energies of
the noninteracting KS Hamiltonian,

Ĥ KS
∣∣�KS

k

〉 = EKS
k

∣∣�KS
k

〉
, (6)

while, for μ → ∞, they reduce to the excited-state wave
functions and energies of the physical Hamiltonian

Ĥ |�k〉 = Ek|�k〉. (7)

In Ref. [38], it was shown that the asymptotic expansion of
the total energy of state k around the physical system is

Eμ

k = Ek + 1

μ2
E

(−2)
k + 1

μ3
E

(−3)
k + O

(
1

μ4

)
, (8)

where E
(−2)
k and E

(−3)
k are the corrections entering at the

second and third powers of 1/μ, respectively. Following
the scheme proposed in Refs. [39,40], it is possible to
estimate the energy of the physical system Ek from the
energy of the partially interacting system Ek and its first- and
second-order derivatives with respect to μ.

From the Taylor expansion of the energies when μ → ∞,
the first-order derivatives of the energies with respect to μ

behave as

∂Eμ

k

∂μ
= − 2

μ3
E

(−2)
k + O

(
1

μ4

)
, (9)

around the real system. Inserting this into Eq. (8), the exact
energies Ek can be written as a function of the energies along
the adiabatic connection and of their first-order derivative as

Ek = Eμ

k + μ

2

∂Eμ

k

∂μ
+ O

(
1

μ3

)
. (10)

This scheme gives extrapolated energies

E
EE,μ

k = Eμ

k + μ

2

∂Eμ

k

∂μ
, (11)

that are correct up to and including the second power of
1/μ relative to the energies of the physical system. The
correction given by the extrapolation scheme vanishes at μ = 0
by construction, but should improve the description of the
energies as soon as the interaction is switched on. One should
note that the absence of a correction at μ = 0 is only due to
the choice of 1/μk as the basis for the expansion. Other basis
functions such as μ2/(a + μ5) would lead to a correction at
μ = 0 but are not considered in this work.

A more elaborate scheme can be developed by using also
the correction E

(−3)
k and the second-order derivative. In this

case, the first- and second-order derivatives are given by

∂Eμ

k

∂μ
= − 2

μ3
E

(−2)
k − 3

μ4
E

(−3)
k + O

(
1

μ5

)
, (12)

∂2Eμ

k

∂μ2
= 6

μ4
E

(−2)
k + 12

μ5
E

(−3)
k + O

(
1

μ6

)
, (13)
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and, after eliminating E
(−2)
k and E

(−3)
k , the extrapolated

energies become

E
EE2,μ

k = Eμ

k + μ
∂Eμ

k

∂μ
+ μ2

6

∂2Eμ

k

∂μ2
. (14)

Higher-order derivatives should further reduce errors. Addi-
tionally, several points along the adiabatic connection could
be used to perform the extrapolation to increase the accuracy
of the extrapolated energies. However, only first- and second-
order corrections at a single point of the adiabatic connection
are considered hereinafter.

B. Linear adiabatic connection

If the linear adiabatic connection is performed, then the
partially interacting Hamiltonian is defined as Ĥ λ = T̂ +
λŴee + V̂ λ where V̂ λ is adjusted to keep the ground-state
density constant. This potential can be expressed in terms of
the connecting parameter λ as

V̂ λ = V̂ne + (1 − λ)V̂Hx + V̂c − V̂ λ
c , (15)

where V̂ λ
c enters at second order in λ and is equal to V̂c at

λ = 1. The energies of the partially interacting system can
then be expanded around the physical system as

Eλ
k = Ek + (λ − 1)E(1)

k + (λ − 1)2E
(2)
k + O(λ − 1)3, (16)

where E
(1)
k and E

(2)
k are the contributions entering at the first

and second power of (λ − 1), respectively. As in the range-
separated case, by differentiation with respect to λ, it is then
possible to extrapolate the energies of the physical system at
first order by considering only the correction E

(1)
k as

E
EE,λ
k = Eλ

k + (1 − λ)
∂Eλ

k

∂λ
. (17)

When λ = 0, this extrapolation is equivalent to the first-order
correction of Görling-Levy perturbation theory [23,25].

A second-order correction can be obtained by using also
the correction E

(2)
k . The first- and second-order derivatives are

∂Eλ
k

∂λ
= E

(1)
k + 2(λ1)E(2)

k + O(λ − 1)2, (18)

∂2Eλ
k

∂λ2
= 2E

(2)
k + O(λ − 1), (19)

and the extrapolated energies become

E
EE2,λ
k = Eλ

k + (1 − λ)
∂Eλ

k

∂λ
+ 1

2
(1 − λ)2 ∂2Eλ

k

∂λ2
. (20)

III. COMPUTATIONAL DETAILS

Calculations were performed for the He and Be atoms and
the H2 molecule with a development version of the DALTON

program [43]; see Refs. [44–46]. Following the procedure of
Ref. [38], a full configuration interaction (FCI) calculation
was first carried out to get the exact ground-state density
within the basis set considered: uncontracted t-aug-cc-pV5Z
for He, uncontracted d-aug-cc-pVDZ for Be, and uncontracted
d-aug-cc-pVTZ for H2. A Lieb optimization of the short-
range potential vsr,μ(r) was then performed to reproduce the

FCI density with the long-range electron-electron interaction
w

lr,μ
ee (r12). Finally, an FCI calculation was carried out with the

partially interacting Hamiltonian constructed from w
lr,μ
ee (r12)

and vsr,μ(r) to obtain the zeroth-order energies and wave
functions.

Starting from the analytical form of the fit given in the
supplementary material of Ref. [38], it is then straightforward
to calculate the analytical derivatives of the energies with
respect to μ. In the linear case, a cubic fit of the energies was
performed. The extrapolated energies were calculated using
Eqs. (11), (14), (17), and (20).

All the unextrapolated curves shown hereinafter correspond
to the curves of Ref. [38].

IV. RESULTS AND DISCUSSION

A. Range-separated adiabatic connection of the helium atom

1. Ground-state energy

The results of the first- and second-order extrapolation
schemes on the ground-state total energy of the helium atom
are shown in Fig. 1 (top). By construction, the extrapolation
has no effect at μ = 0 and the ground-state energy of the KS
system is, therefore, unaffected by the extrapolation. However,
for μ > 0, the extrapolated energies show a systematic
improvement with respect to the unextrapolated ground-state
energy, that is, the ground-state energy of the partially
interacting Hamiltonian without any correction.

Without extrapolation, a range-separation parameter of
about 6 bohr−1 is needed to give an error smaller than 10
mhartree relative to the energy of the physical system. With the
first- and second-order corrections added, the same accuracy
is achieved with a range-separation parameter of only 2.8 and
1.5 bohr−1, respectively.

2. Rydberg excitation energies

Figure 1 also shows the effects of extrapolation on the
lowest Rydberg S (middle) and P (bottom) excitation energies
of helium. The convergence of the excitation energies towards
their physical limit is overall improved by the first- and
second-order corrections with respect to the unextrapolated
curves. In fact, the range-separation parameter required to
achieve an accuracy of 1 mhartree is divided by approximately
a factor 2 or a factor 3 by the first- and second-order schemes,
respectively. For the excitation energies considered here, a
range-separation value of 2 and 1 bohr−1 suffices to reduce the
error to less than 1 mhartree with the first- and second-order
schemes, respectively.

The 1S and 3S excitation energies change monotonically
with increasing μ. Accordingly, extrapolation provides a
systematic improvement, with the sign of the derivative pulling
the excitation energies towards their physical limits at both
first- and second-order levels.

The 3P excitation energy also changes monotonically
with μ and the first-order extrapolation provides, therefore, a
systematic improvement. However, the first-order extrapolated
energy does not converge monotonically towards its physical
limit (not visible), leading to a slight degradation of the
excitation energies around μ = 1.5 bohr−1 at second order.
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FIG. 1. (Color online) Helium ground-state energy (top) Eμ

0 , and
first S (middle) and P (bottom) excitation energies �Eμ

k = Eμ

k − Eμ

0

calculated without extrapolation (full lines), with first-order extrap-
olation (dashed), and second-order extrapolation (dot-dashed) as a
function of μ. The dotted horizontal lines are the physical energies.
The colored regions represent errors of ±10 and ±1 mhartree for the
ground-state and excitation energies, respectively.

Finally, the 1P excitation energy shows a nonmonotonic
behavior even before extrapolation, exhibiting a “bump” for
small μ that is probably a basis-set effect [38]. In fact, for
such small μ, only the very long-range part of the interaction
is modified, which is poorly described by Gaussian basis
functions. The higher a given state is in energy, the more
sensitive it becomes to this basis-set defect.

As a consequence, the 1P excitation energy approaches its
physical limit from above, its first-order derivative changing
sign around 0.7 bohr−1. In this region, the extrapolated
energies become less accurate than the unextrapolated energy.
However, this behavior is observed only in a small region.
As soon as the excitation energy recovers a monotonic
convergence towards its physical limit (for μ larger than
0.7 bohr−1), the energy is improved by the extrapolation and
converges faster to its physical limit.

B. Range-separated adiabatic connection for the valence
excitation of the beryllium atom

The ground-state energy of the beryllium atom is shown in
Fig. 2 (top). Since beryllium has a core orbital, the convergence
of its total energies is slower than for helium as the density
is more contracted and a larger range-separation parameter is
needed to describe correctly the core region. However, this
affects all valence states in a similar fashion (not shown here).

Extrapolation systematically improves the convergence of
the ground-state energy along the adiabatic connection. First-
order extrapolation reduces the error to less than 50 mhartree
with μ ≈ 5 bohr−1, an order of magnitude smaller than
the error without the extrapolation correction but still large.
Second-order extrapolation gives the same error reduction
already with μ ≈ 3 bohr−1.

The effect of the extrapolation on the valence excitation
energies of beryllium is shown in Fig. 2 (bottom). As the errors
associated with the core largely cancel in the excitation ener-
gies, the unextrapolated excitation energies already converge
faster than do the total energies. With first-order extrapolation,
an error smaller than 2 mhartree is reached with μ ≈ 0.5
bohr−1, to be compared with a much larger error of 4 hartree
in the total energies with the same μ value. The second-order
extrapolation allows one to reach the same accuracy with a
range-separation parameter as small as 0.3 bohr−1. However,
once again, some bumps are observed in the extrapolated
energies probably due to the limited size of the basis set. This
fast convergence of the excitation energies with respect to the
range-separation parameter is due to the fact that in beryllium,
static correlation is important and the multiconfigurational
character of the wave function is quickly established when
the interaction is switched on; see Ref. [47].

C. Range-separated adiabatic connection
for the hydrogen molecule

Finally, we consider extrapolation of the lowest excitation
energies of the hydrogen molecule along the range-separated
adiabatic connection, at the equilibrium geometry and at a
stretched geometry. The results of the first- and second-order
extrapolations on the singlet and triplet �+

g → �+
u excitation
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FIG. 2. (Color online) Ground-state energy Eμ

0 (top) and excita-
tion energies �Eμ

k = Eμ

k − Eμ

0 (bottom) of beryllium as a function of
μ. The unextrapolated energies are shown as full lines, the first-order
extrapolated energies are plotted in dashed lines, and the second-order
ones in dot-dashed lines. The energies of the physical system are
given as horizontal dotted lines. An error of ±50 mhartree is colored
around the physical ground-state energy and an error of ±2 mhartree
is colored around the physical excitation energies.

energies at the equilibrium geometry are shown in Fig. 3 (top).
First- and second-order extrapolations provide a systematic
improvement in the excitation energies, μ ≈ 2 bohr−1 for first
order and μ ≈ 1 bohr−1 for second order being sufficient to
reproduce the physical energies to within 1 mhartree.

Having stretched the hydrogen molecule to three times the
equilibrium distance, we apply extrapolation to the singlet and
triplet excitations to the 1�+

u state and to the double excitation
to the 2�+

g state—see the bottom part of Fig. 3. Again, the
improvement is systematic. The triplet extrapolated energy
shows a monotonic behavior with respect to μ, whereas the
singlet energy shows a slight bump at 0.8 bohr−1. However,
all extrapolated excitation energies converge faster than their
unextrapolated counterparts. Extrapolation works remarkably
well, reducing errors to less than 5 mhartree with μ ≈
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FIG. 3. (Color online) Unextrapolated (full lines), first-order ex-
trapolated (dashed lines), and second-order extrapolated (dot-dashed
lines) excitation energies �Eμ

k = Eμ

k − Eμ

0 of the H2 molecule at
the equilibrium internuclear distance Req (top) and three times the
equilibrium distance (bottom) as a function of μ. The excitation
energies of the physical system �Ek = �Eμ→∞

k are plotted as
horizontal dotted lines. An error of ±1 mhartree is colored around
the physical excitation energies at equilibrium and an error of ±5
mhartree at stretched geometry.

0.6 bohr−1, compared with 2 bohr−1 without extrapolation.
In particular, extrapolation allows us to describe double and
single excitation energies equally well. In this case, one
should note that the second-order scheme does not improve
significantly the convergence of the 11�+

g → 23�+
g (σ+

u )2 and
11�+

g → 11�+
u excitation energies because of their nonmono-

tonicity probably due to the limited basis set.

D. Linear adiabatic connection for the helium atom

1. Total energies

The total energies of the helium atom along the linear
adiabatic connection are plotted in Fig. 4 (top). When λ = 0,
no interaction is included, so the KS energies are recovered
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FIG. 4. (Color online) Helium ground- and excited-state energy
(top), S excitation energies (middle), and P excitation energies
(bottom) calculated without extrapolation (full lines), with first-order
extrapolation (dashed), and second-order extrapolation (dot-dashed)
along the linear connection. The dotted horizontal lines are the
physical energies. The colored regions represent errors of ±1
mhartree for the excitation energies.

as for μ = 0. When λ = 1, the full interaction is present
and the energies of the physical system are recovered, which
corresponds to the limit μ → ∞. The two limiting cases are,
therefore, identical for the two adiabatic connections but the
way they are connected differs.

The evolution of the total energies with respect to λ is
almost linear. Although this behavior is easier to predict and
should provide an efficient framework for extrapolations, the
value of λ required to have an error of 10 mhartree is very
close to 1; in the range-separation case, an intermediate value
of μ is sufficient. In general, we note that, in the linear case,
the calculation of the wave function is by and large equally
expensive at all points along the connection since the electron-
electron cusp must always be described (except at λ = 0); in
the range-separated case, by contrast, the calculation becomes
less expensive with decreasing μ since the description of the
cusp is then avoided.

2. Excitation energies and comparison
with the range-separated case

The lowest (Rydberg) excitation energies of helium along
the linear adiabatic connection are also plotted in Fig. 4 (middle
and bottom). As for the total energies, the end points are
the same as in the range-separated case but the behavior
of the energies along the connection is more linear. As in
the range-separated case, the 1P excitation energy does not
evolve monotonically with λ, probably because of basis-set
limitations.

When the first- and second-order extrapolation corrections
are added, a systematic improvement is observed for the
triplet excitation energies. With the second-order correction,
the physical energies are already reproduced to 1 mhartree
at λ = 0. The singlet excitation energies are less affected by
the correction but are still overall improved, the amount of
interaction required to reproduce the physical limit within an
accuracy of 1 mhartree dropping to 50%. Moreover, unlike in
the range-separated case, the KS excitation energy also benefits
from this correction, which no longer vanishes in this limit.
Indeed, at λ = 0, the extrapolated excitation energy matches
the results obtained in Ref. [25], using first-order Görling-Levy
perturbation theory.

To compare the range-separated and linear cases, the
effects of first-order extrapolation on the lowest excitation
energy of helium are shown in Fig. 5 in both cases. Without
extrapolation, the scaling parameter λ must be greater than
0.95 to reproduce energies within 1 mhartree. By contrast,
a small change in μ near zero gives a large change in the
energies; thus, a range-separation parameter of 2 bohr−1 is
sufficient to ensure the same accuracy. Clearly, the range-
separated connection includes the most significant region of
the interaction first, whereas the linear connection treats all
ranges equally, independently of their importance for the
excitation energies.

For the KS system, it is obviously better to use the correction
obtained from the linear connection as the corresponding
range-separated correction vanishes. For a partially interacting
system, the comparison is more difficult.
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FIG. 5. (Color online) Error in the 3S excitation energy along the
range-separated and linear adiabatic connections for the helium atom
as functions of μ and λ. The unextrapolated energies are given in full
lines and the extrapolated ones in dashed lines. An error smaller than
1 mhartree around the physical limit is given by the colored region.

V. CONCLUSION

In this work, we have exploited the asymptotic behavior of
the energies of a partially interacting system along the range-
separated adiabatic connection to design an energy correction
that allows us to extrapolate to the physical energies of the
system from its partially interacting energies. The simplest
possible extrapolations were obtained by using either only
the first-order derivative of the energies with respect to the
range-separation parameter at a given point or by using the
first- and second-order derivatives.

This extrapolation scheme was tested at the FCI level of
theory on the helium and beryllium atoms and on the hydrogen
molecule (at equilibrium and at stretched geometry), where

it significantly improves the convergence of energies and
excitation energies towards their physical limits. Moreover,
the improvements are systematic, except at μ = 0 (where
the correction is zero by construction) and in a few cases
where the partially interacting energies present a bump for
small μ. In all cases, with respect to the unextrapolated case,
the extrapolation schemes reduce the smallest value of the
range-separation parameter required to reproduce the physical
energies of the system with a given accuracy by approximately
a factor of 2 with the first-order scheme and by a factor of 3 with
the second-order scheme. This is of particular relevance for
truncated wave functions, as the smaller the range-separation
parameter is, the fewer Slater determinants are needed to
describe the wave functions with an equivalent accuracy.

Finally, the extrapolation scheme was applied along the lin-
ear adiabatic connection, where it also improves significantly
the description of the excitation energies along the connection.

All results discussed here were obtained without the
use of approximate functionals. The proposed extrapolation
scheme should now be tested in a more pragmatic case,
where the potential is not obtained by Lieb optimization
but from different approximations such as the (semi)local
approximations or more interestingly approximations where
the long-range behavior of the potential is correct, such as the
optimized-effective potential (OEP) [48,49]. The effects of the
inclusion of higher-order derivatives and of multiple points on
this extrapolation should also be explored.
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