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We present a study of the variation of total energies and excitation energies along a range-separated
adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the
physical interacting system by progressively switching on the electron–electron interactions whilst
simultaneously adjusting a one-electron effective potential so as to keep the ground-state density
constant. The interactions are introduced in a range-dependent manner, first introducing predomi-
nantly long-range, and then all-range, interactions as the physical system is approached, as opposed
to the conventional adiabatic connection where the interactions are introduced by globally scaling
the standard Coulomb interaction. Reference data are reported for the He and Be atoms and the
H2 molecule, obtained by calculating the short-range effective potential at the full configuration-
interaction level using Lieb’s Legendre-transform approach. As the strength of the electron–electron
interactions increases, the excitation energies, calculated for the partially interacting systems along
the adiabatic connection, offer increasingly accurate approximations to the exact excitation ener-
gies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic con-
nection are much better approximations to the exact excitation energies than are the corresponding
Kohn–Sham excitation energies. This is particularly evident in situations involving strong static cor-
relation effects and states with multiple excitation character, such as the dissociating H2 molecule.
These results highlight the utility of long-range interacting reference systems as a starting point
for the calculation of excitation energies and are of interest for developing and analyzing practi-
cal approximate range-separated density-functional methodologies. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4890652]

I. INTRODUCTION

Range-separated density-functional theory (DFT) (see,
e.g., Ref. 1) constitutes an interesting alternative to standard
Kohn–Sham (KS) DFT.2, 3 In the standard KS approach, the
physical interacting electronic Hamiltonian is replaced by an
effective non-interacting Hamiltonian. By contrast, in range-
separated DFT, the physical Hamiltonian is instead replaced
by a partially interacting Hamiltonian that incorporates the
long-range part of the electron–electron interaction. This cor-
responds to an intermediate point along a range-separated adi-
abatic connection.1, 4–7 The KS Hamiltonian is linked to the
physical Hamiltonian by progressively switching on the long-
range part of the two-electron interaction, whilst simultane-
ously modifying the one-electron potential so as to maintain a
constant ground-state density. The ground-state energy of the
physical system can then be extracted from the ground state of
the long-range interacting Hamiltonian by using a short-range
density functional describing the complementary short-range
part of the electron–electron interaction. Be aware that this
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range-separated manner of introducing the interaction is not
the usual way of performing the adiabatic connection, where
the Coulomb interaction is instead scaled by a multiplicative
constant going from 0 to 1.

Several short-range density-functional approximations
have been developed1, 4, 8–13 and a diverse range of ap-
proaches for calculating the ground state of the long-range
interacting Hamiltonian have been explored. To aid in
the description of static (or strong) correlation effects,
which are poorly treated by standard density functionals,
configuration-interaction,1, 4, 7, 14–17 multiconfiguration self-
consistent-field (MCSCF),18–20 density-matrix functional
theory (DMFT),21–23 and constrained-pairing mean-field
theory24, 25 descriptions of the long-range interacting systems
have been employed. To treat van der Waals interactions,
second-order perturbation theory,26–37 coupled-cluster
theory,11, 13, 38–40 and random-phase approximations41–51 have
been used successfully.

Electronic excitation energies can also be calculated
in range-separated DFT by using the linear-response ap-
proach with a time-dependent generalization of the static
ground-state theory.52 In this case, the excitation energies
of the long-range interacting Hamiltonian act as starting
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approximations that are then corrected using a short-range
density-functional kernel, just as the KS excitation ener-
gies act as starting approximations in linear-response time-
dependent density-functional theory (TDDFT). Several such
range-separated linear-response schemes have been devel-
oped, in which the short-range part is described by an ap-
proximate adiabatic semi-local density-functional kernel and
the long-range linear-response part is treated at the Hartree–
Fock,52–55 MCSCF,52, 55 second-order polarization-propagator
approximation (SOPPA),55 or DMFT56 levels. These schemes
aim at overcoming the limitations of standard linear-response
TDDFT applied with usual adiabatic semi-local approxima-
tions for describing systems with static correlation,57 dou-
ble or multiple excitations,58 and Rydberg or charge-transfer
excitations.59, 60

For the purpose of analyzing linear-response range-
separated DFT approaches, it is desirable to have accu-
rate reference values of the excitation energies of the long-
range interacting Hamiltonian along the range-separated
adiabatic connection [cf. Eq. (5)]. In this work, we pro-
vide and analyze reference data for the He and Be atoms
and the H2 molecule. The short-range one-electron poten-
tials required to keep the ground-density constant along a
range-separated adiabatic connection [cf. Eq. (6)] are deter-
mined at the full configuration-interaction (FCI) level us-
ing Lieb’s Legendre-transform approach.61–63 The excited-
state energies of the long-range interacting Hamiltonian along
the adiabatic connection [cf. Eq. (10)] are then calculated
using the FCI method. Several accurate ground-state cal-
culations have been performed in the past along the stan-
dard adiabatic connection62–67 and range-separated adia-
batic connections1, 6, 67–69 for small atomic and molecular
systems, but accurate calculations of excited-state energies
along adiabatic connections are very scarce—see, however,
Refs. 62 and 70.

The remainder of this paper is organized as follows. In
Sec. II, range-separated DFT is briefly reviewed and the def-
inition of the excited states along the range-separated adia-
batic connection is introduced. In Sec. III, the behaviour of
the excited-state energies near the two endpoints of the adi-
abatic connection, the KS system and the physical system,
is studied analytically. After giving computational details in
Sec. IV, results along the full adiabatic-connection path are
presented and discussed in Sec. V. Finally, some concluding
remarks are made in Sec. VI.

II. RANGE-SEPARATED DENSITY-FUNCTIONAL
THEORY

In range-separated DFT (see, e.g., Ref. 1), the ex-
act ground-state energy of an N-electron system is ob-
tained by the following minimization over normalized multi-
determinantal wave functions �:

E0 = min
�

{〈�|T̂ + V̂ne + Ŵ
lr,μ
ee |�〉 + Ē

sr,μ
Hxc [n�]

}
. (1)

This expression contains the kinetic-energy operator T̂ , the
nuclear–electron interaction operator V̂ne = ∫

vne(r)n̂(r)dr
expressed in terms of the density operator n̂(r), and a long-

range (lr) electron–electron interaction operator

Ŵ
lr,μ
ee = 1

2

∫∫
w

lr,μ
ee (r12)n̂2(r1, r2)dr1dr2, (2)

expressed in terms of the pair-density operator n̂2(r1, r2). In
the present work, we use the error-function interaction

w
lr,μ
ee (r12) = erf(μr12)

r12

, (3)

where μ controls the range of the separation, with 1/μ act-
ing as a smooth cut-off radius. The corresponding comple-
mentary short-range (sr) Hartree–exchange–correlation den-
sity functional Ē

sr,μ
Hxc [n�] is evaluated at the density of �:

n� (r) = 〈�|n̂(r)|�〉.
The Euler–Lagrange equation for the minimization of

Eq. (1) leads to the (self-consistent) eigenvalue equation

Ĥ lr,μ
∣∣�μ

0

〉 = Eμ

0

∣∣�μ

0

〉
, (4)

where �
μ

0 and Eμ

0 are the ground-state wave function and as-
sociated energy of the partially interacting Hamiltonian (with
an explicit long-range electron–electron interaction)

Ĥ lr,μ = T̂ + V̂ne + Ŵ
lr,μ
ee + ˆ̄V sr,μ

Hxc . (5)

It contains the short-range Hartree–exchange–
correlation potential operator, evaluated at the density
n0(r) = 〈�μ

0 |n̂(r)|�μ

0 〉, which is equal to the ground-state
density of the physical system for all μ,

ˆ̄V sr,μ
Hxc =

∫
v̄

sr,μ
Hxc [n0](r)n̂(r)dr, (6)

where

v̄
sr,μ
Hxc [n](r) = δĒ

sr,μ
Hxc [n]

δn(r)
. (7)

For μ = 0, Ĥ lr,μ reduces to the standard non-interacting KS
Hamiltonian, Ĥ KS, while for μ → ∞ it reduces to the physi-
cal Hamiltonian Ĥ :

Ĥ KS = Ĥ lr,μ=0 = T̂ + V̂ne + V̂Hxc, (8)

Ĥ = Ĥ lr,μ=∞ = T̂ + V̂ne + Ŵee. (9)

Varying the parameter μ between these two limits, Ĥ lr,μ

defines a range-separated adiabatic connection, linking the
non-interacting KS system to the physical system with the
ground-state density kept constant (provided that the exact
short-range Hartree–exchange–correlation potential v̄sr,μ

Hxc (r) is
used).

In this work we also consider the excited-state wave func-
tions and energies of the long-range interacting Hamiltonian

Ĥ lr,μ
∣∣�μ

k

〉 = Eμ

k

∣∣�μ

k

〉
, (10)

where Ĥ lr,μ is Hamiltonian in Eq. (5), with the short-
range Hartree–exchange–correlation potential evaluated at
the ground-state density n0. In range-separated DFT, these
excited-state wave functions and energies provide a natural
first approximation to the excited-state wave functions and
energies of the physical system. For μ = 0, they reduce to
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the single-determinant eigenstates and associated energies of
the non-interacting KS Hamiltonian,

Ĥ KS
∣∣�KS

k

〉 = EKS
k

∣∣�KS
k

〉
, (11)

while, for μ → ∞, they reduce to the excited-state wave func-
tions and energies of the physical Hamiltonian

Ĥ |�k〉 = Ek|�k〉. (12)

We emphasize that, even with the exact (short-range) Hartree-
exchange-correlation potential, the total energies EKS

k (Eμ

k ) are
not the exact energies of the physical system but the total
energies of a non-interacting (partially interacting) fictitious
system of electrons with Hamiltonian Ĥ KS (Ĥ lr,μ). Note also
that, since the ionization energy is related to the asymptotic
decay of the ground-state density, the ionization energy of the
Hamiltonian in Eq. (10) is independent of μ and is equal to
the ionization energy of the physical system. This is an ap-
pealing feature since it sets the correct energy window for
bound excited states. Finally, note that the excitation energies
�Eμ

k = Eμ

k − Eμ

0 calculated from Eq. (10) constitute a start-
ing point for range-separated linear-response theory based on
the time-dependent generalization of Eq. (1).52

III. EXCITED-STATE ENERGIES NEAR
THE KOHN–SHAM AND PHYSICAL SYSTEMS

In this section, we study analytically the behaviour of the
excited-state energies Eμ

k as a function of the range-separation
parameter μ close to the endpoints of the adiabatic connec-
tion: the KS system at μ = 0 and the physical system at
μ → ∞. This study will aid in the understanding of the nu-
merical results presented in Sec. V.

A. Excited-state energies near the Kohn–Sham
system

We first derive the expansion of the excited-state energies
near μ = 0, to see how the KS energies are affected by the
introduction of the long-range electron–electron interaction.
We assume that the system is spatially finite.

We rewrite the long-range interacting Hamiltonian of
Eq. (5) as

Ĥ lr,μ = Ĥ KS + Ŵ
lr,μ
ee − V̂

lr,μ
Hxc , (13)

with the long-range Hartree–exchange–correlation potential
operator

V̂
lr,μ

Hxc = V̂Hxc − ˆ̄V sr,μ
Hxc =

∫
v

lr,μ
Hxc(r)n̂(r)dr. (14)

The expansion of the long-range two-electron interaction is
straightforward1 (valid for μr12 � 1)

w
lr,μ
ee (r12) = erf(μr12)

r12

= 2μ√
π

+ μ3w
lr,(3)
ee (r12) + O(μ5), (15)

with

w
lr,(3)
ee (r12) = − 2

3
√

π
r2

12. (16)

Note that the first term in the expansion of w
lr,μ
ee (r12) in

Eq. (15) is a spatial constant, 2μ/
√

π , which shows that what
we call the long-range interaction does in fact contain also a
contribution at short range.1 Next, the expansion of the long-
range Hartree–exchange–correlation potential

v
lr,μ
Hxc(r) = δE

lr,μ
Hxc[n]

δn(r)
(17)

can be determined from the expansion of the corresponding
energy functional Elr,μ

Hxc[n]. As derived in Ref. 1, the expansion
of the Hartree–exchange part begins at first order and may be
written as

E
lr,μ
Hx [n] = μ√

π

∫∫
nKS

2 (r1, r2)dr1dr2

+μ3

2

∫∫
nKS

2 (r1, r2)wlr,(3)
ee (r12)dr1dr2

+O(μ5), (18)

where nKS
2 (r1, r2) is the KS pair density, while the expansion

of the correlation part only begins at sixth order (assuming a
non-degenerate KS ground state)

E
lr,μ
c [n] = 0 + O(μ6). (19)

If the functional derivative of E
lr,μ
Hx [n] is taken with respect

to density variations that preserve the number of electrons,∫
δn(r)dr = 0, then the first-order term in Eq. (18) does not

contribute due to the fixed normalization of the KS pair den-
sity,

∫∫
nKS

2 (r1, r2)dr1dr2 = N (N − 1). The derivative is then
defined up to an additive (μ-dependent) constant Cμ, which
can be fixed by requiring that a distant electron experiences
zero potential interaction in Eq. (13), amounting to setting
the zero-energy reference. The linear term in μ in the long-
range Hartree–exchange–correlation potential can then be de-
termined as follows.

To first order in μ, the long-range electron–electron in-
teraction tends to a constant, 2μ/

√
π . A distant electron

(with 1 � r12 � 1/μ) then experiences a constant interaction
2(N − 1)μ/

√
π with the remaining N − 1 other electrons.

This constant must be exactly compensated by the long-range
Hartree–exchange–correlation potential in Eq. (13), so that its
first-order term in μ must also be 2(N − 1)μ/

√
π . The expan-

sion of v
lr,μ
Hxc(r) therefore takes the form

v
lr,μ
Hxc(r) = 2(N − 1)μ√

π
+ μ3v

lr,(3)
Hxc (r) + O(μ5),

(20)

where v
lr,(3)
Hxc (r) is the third-order contribution.

Combining Eqs. (15) and (20), we arrive at the follow-
ing expansion of the long-range interacting Hamiltonian of
Eq. (13):

Ĥ lr,μ = Ĥ KS + μĤ lr,(1) + μ3Ĥ lr,(3) + O(μ5), (21)
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with a constant first-order correction

Ĥ lr,(1) = −N (N − 1)√
π

(22)

and the following third-order correction

Ĥ lr,(3) = Ŵ
lr,(3)
ee − V̂

lr,(3)
Hxc , (23)

Ŵ
lr,(3)
ee = 1

2

∫∫
w

lr,(3)
ee (r12)n̂2(r1, r2)dr1dr2, (24)

V̂
lr,(3)

Hxc =
∫

v
lr,(3)
Hxc (r)n̂(r)dr. (25)

Since the first-order correction in the Hamiltonian is a con-
stant, it does not affect the associated wave functions. The ex-
pansion of the wave functions therefore begins at third order
in μ:

�
μ

k = �KS
k + μ3�

(3)
k + O(μ5). (26)

Using normalized KS wave functions 〈�KS
k |�KS

k 〉 = 1, the ex-
pansion of the total energy for the state k is then

Eμ

k = EKS
k − N (N − 1)√

π
μ

+μ3
〈
�KS

k

∣∣Ĥ lr,(3)
∣∣�KS

k

〉 + O(μ5). (27)

The first-order contribution is the same for all states, can-
celling out in the differences between the energies of two
states. As a result, the corrections to the KS excitation en-
ergies are third order in μ.

For closed shells, the expansion of the difference be-
tween the singlet and triplet energies associated with the sin-
gle excitation i → a can be obtained by applying Eq. (27)
with the spin-adapted KS wave functions 1�KS = (�KS

i→a

+ �KS
ī→ā

)/
√

2, for the singlet state, and 3,1�KS = �KS
ī→a

, for
the triplet state with spin projection MS = 1. Only the two-
electron term then contributes:

�Eμ,1−3
i→a = 2μ3〈ia|ŵlr,(3)

ee |ai〉 + O(μ5)

= 8μ3

3
√

π
|〈i|r̂|a〉|2 + O(μ5), (28)

where we have used r2
12 = r2

1 + r2
2 − 2r1 · r2. The appearance

of the transition dipole moment integral in Eq. (28) means
that, for an atomic system, the singlet–triplet energy splitting
appears at third order in μ if the difference between the an-
gular moment of the orbitals ϕi and ϕa is �� = +1 or −1.
Otherwise, the splitting appears at a higher order in μ.

B. Excited-state energies near the physical system

We now derive the asymptotic expansion of the excited-
state energies when μ → ∞, which shows how the exact
excited-state energies are affected by the removal of the very
short-range part of the electron–electron interaction.

For this purpose, we rewrite the long-range interacting
Hamiltonian of Eq. (5) as

Ĥ lr,μ = Ĥ − Ŵ
sr,μ
ee + ˆ̄V sr,μ

Hxc , (29)

where Ĥ is the Hamiltonian of the physical system,

Ŵ
sr,μ
ee = 1

2

∫∫
w

sr,μ
ee (r12)n̂2(r1, r2)dr1dr2 (30)

is the short-range electron–electron interaction operator de-
fined with the complementary error-function interaction

w
sr,μ
ee (r12) = erfc(μr12)

r12

, (31)

and ˆ̄V sr,μ
Hxc is the short-range Hartree–exchange–correlation

potential operator in Eq. (6). The first term in the asymp-
totic expansion of w

sr,μ
ee (r12) can be written in terms of a delta

function1 (valid for μr12 � 1)

w
sr,μ
ee (r12) = π

μ2
δ(r12) + O

(
1

μ3

)
, (32)

while the expansion of v̄
sr,μ
Hxc (r) = δĒ

sr,μ
Hxc [n]/δn(r) can be ob-

tained from that of Ē
sr,μ
Hxc [n]. As derived in Ref. 1, the expan-

sion of the long-range Hartree–exchange energy is

E
sr,μ
Hx [n] = π

2μ2

∫
nKS

2 (r, r)dr + O
(

1

μ4

)
, (33)

where nKS
2 (r, r) is the KS on-top pair density, while the ex-

pansion of the long-range correlation energy is

Ē
sr,μ
c [n] = π

2μ2

∫
n2,c(r, r)dr + O

(
1

μ3

)
, (34)

where n2,c(r, r) is the on-top correlation pair density of the
physical system. Therefore, the expansion of the short-range
Hartree–exchange–correlation potential takes the form

v̄
sr,μ
Hxc (r) = 1

μ2
v̄

sr,(−2)
Hxc (r) + O

(
1

μ3

)
, (35)

where v̄
sr,(−2)
Hxc (r) is the μ−2 contribution formally obtained by

taking the functional derivative of Eqs. (33) and (34).
Substituting Eqs. (32) and (35) into Eq. (29), we obtain

the asymptotic expansion of the long-range interacting Hamil-
tonian as

Ĥ lr,μ = Ĥ + 1

μ2
Ĥ lr,(−2) + O

(
1

μ3

)
, (36)

where Ĥ lr,(−2) = −Ŵ
sr,(−2)
ee + ˆ̄V sr,(−2)

Hxc is composed of an on-
top two-electron term and a one-electron term:

Ŵ
sr,(−2)
ee = π

2

∫
n̂2(r, r)dr, (37)

ˆ̄V sr,(−2)
Hxc =

∫
v̄

sr,(−2)
Hxc (r)n̂(r)dr. (38)

The expansion of the Hamiltonian in Eq. (36) suggests a
similar expansion for the excited-state wave functions, �

μ

k

= �k + μ−2�
(−2)
k + O(μ−3). However, as shown in Ref. 71,

this expansion is not valid for r12 � 1/μ. The contribution of
the wave function for small r12 to the integral for the total en-
ergy Eμ

k = 〈�μ

k |Ĥ lr,μ|�μ

k 〉 nevertheless vanishes in the limit
μ → ∞, and the asymptotic expansion of the total energy of
the state k is

Eμ

k = Ek + 1

μ2
〈�k|Ĥ lr,(−2)|�k〉 + O

(
1

μ3

)
, (39)

where the wave function �k is normalized to unity.
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IV. COMPUTATIONAL DETAILS

Calculations have been performed for the He and Be
atoms and for the H2 molecule with a development version
of the DALTON program,72, 73 using the implementation de-
scribed in Refs. 63 and 69. First, a FCI calculation was per-
formed to determine the exact ground-state density within
the basis set considered, followed by a Lieb optimization62

of the short-range potential vsr,μ(r) = vne(r) + v̄
sr,μ
Hxc (r) also

at the FCI level to reproduce the FCI ground-state density
in the presence of the long-range electron–electron interac-
tion w

lr,μ
ee (r12). The FCI excited-state energies were then cal-

culated using the partially interacting Hamiltonian with the
interaction w

lr,μ
ee (r12) and effective potential vsr,μ(r).

The Lieb maximization was performed using the short-
range analogue of the algorithm of Wu and Yang,74 in which
the potential is expanded as

vsr,μ(r) = vne(r) + v
sr,μ
ref (r) +

∑
t

btgt (r), (40)

where the reference potential is the short-range analogue of
the Fermi–Amaldi potential

v
sr,μ
ref (r) = N − 1

N

∫
n0(r′)wsr

ee(|r − r′|)dr′, (41)

calculated for a fixed N-electron density n0, to ensure the cor-
rect asymptotic behaviour. The same Gaussian basis set {gt}
is used for the expansion of the potential and the molecu-
lar orbitals. The coefficients bt are optimized by the New-
ton method, using a regularized Hessian with a truncated
singular-value-decomposition cutoff of 10−7 for He and 10−6

for Be and H2.
Even-tempered Kaufmann basis sets75 and uncontracted

correlation consistent Dunning basis sets76 augmented with
diffuse functions were tested extensively for the He atom, es-
pecially to converge the lowest P state. No significant differ-
ences were observed using the two basis sets and only the
Dunning basis sets are used in the following. The basis sets
used are: uncontracted t-aug-cc-pV5Z for He, uncontracted d-
aug-cc-pVDZ for Be, and uncontracted d-aug-cc-pVTZ Dun-
ning basis sets for H2.

Calculations were performed for about 30 values of μ be-
tween 0 to 10 bohrs−1 (with about half the points between 0
and 1 where the energies vary the most). Cubic spline interpo-
lation has been used on this calculated data when plotting the
total and excitation energies as a function of μ. For later use,
analytical expressions were also fitted to the calculated total
energies and excitation energies. The forms used in the fitting
were chosen to satisfy the expansions at small and large μ

values as presented in Eqs. (27) and (39). The details of these
fits are given in the supplementary material.77

V. RESULTS AND DISCUSSION

A. Helium atom

The total energies of the ground state 11S and of the first
Rydberg-like singlet and triplet S and P excited states of the
He atom are plotted as a function of the range-separation pa-
rameter μ in Figure 1. At μ = 0, the KS non-interacting total

-3
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-2

-1.5

-1
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µ in bohr−1

T
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π
µ
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13P
11P

FIG. 1. Ground- and excited-state total energies Eμ
k (in hartree) of the He

atom as a function of μ (in bohr−1). The total energies of the physical system
E

k
= Eμ→∞

k are plotted as horizontal dotted lines. The slope at μ = 0 is
shown by the black dashed line for the first excited state.

energies are obtained. Being sums of orbital energies with a
resulting double counting of electron repulsion, these quanti-
ties are well above the total energies of the physical system
(higher by about 1 hartree). When the long-range electron–
electron interaction is added by increasing μ from μ = 0,
the total energies decrease linearly with μ with a slope of
−2/

√
π , in accordance with the linear term in the expansion

of Eq. (27) for N = 2. For larger μ values, the total energy
curves flatten and approach the energies of the physical sys-
tem asymptotically as 1/μ2 as μ → ∞, in accordance with
Eq. (39). The total energies along the adiabatic connection
are poor approximations to the total energies of the physi-
cal system unless the range-separation parameter μ is large.
Specifically, μ � 6 is required to be within 10 mhartree of the
exact total energies.

The lowest singlet and triplet excitation energies are plot-
ted in Figure 2. The KS singlet and triplet excitation energies
are degenerate and, as already observed for a few atomic sys-
tems in Refs. 78–80, are bracketed by the singlet and triplet
excitation energies of the physical system. As μ increases
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FIG. 2. Excitation energies �Eμ
k = Eμ

k − Eμ
0 (in hartree) of the He atom as

a function of μ (in bohr−1). The excitation energies of the physical system
�E

k
= �Eμ→∞

k are plotted as horizontal dotted lines.
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FIG. 3. Singlet–triplet energy splittings (in hartree) for the He atom as a
function of μ (in bohr−1).

from μ = 0, the excitation energies vary as μ3 since the lin-
ear term in Eq. (27) cancels out for energy differences. The
singlet–triplet degeneracy is lifted and the excitation energies
converge to the exact singlet and triplet excitation energies
when μ → ∞. Whereas a monotonic variation of the ex-
citation energy with μ can be observed for the singlet and
triplet 1S→ 2S excitations and for the triplet 11S → 13P ex-
citation, a non-monotonic variation is observed for the singlet
11S → 11P excitation. This behaviour could be an artefact
of the basis-set expansions (either orbital or potential), noting
that a similar behaviour was observed for other excitations in
a smaller basis set and was removed by enlarging the basis
set (the basis set dependence of the singlet 11S → 11P excita-
tion energy is given in the supplementary material77). In line
with previous observations in Refs. 78 and 80 for the KS sys-
tem, the excitation energies for Rydberg-type states along the
adiabatic connection are rather good approximations to the
excitation energies of the physical system (the maximal error
is about 0.02 hartree at μ = 0 for the triplet 11S → 23S ex-
citation), becoming better and better for high-lying states as
they must eventually converge to the exact ionization energy.

The singlet–triplet energy splittings for the 2S and 1P
states are plotted in Figure 3. The expansion at small μ of
Eq. (28) predicts the singlet–triplet splitting to increase as μ3

for the 1P state since it corresponds to the 1s → 2p excitation
in the KS system, so that �� = 1. By contrast, the singlet–
triplet splitting should increase at most as μ5 for the 2S state
since it corresponds to the 1s → 2s excitation in the KS sys-
tem, so that �� = 0. This difference is clearly visible in Figure
3, where the 2S curve for the singlet–triplet splitting initially
increases more slowly than the 1P curve.

B. Beryllium atom

The total energies of the ground state 11S and of the va-
lence singlet and triplet 1P excited states of the Be atom are
plotted in Figure 4. The KS total energies are approximately
6 hartree above the physical energies. At small μ, an initial
slope of −12/

√
π is observed for all states, in accordance

with Eq. (27) with N = 4. However, convergence to the phys-
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FIG. 4. Ground- and excited-state total energies Eμ
k (in hartree) of the Be

atom as a function of μ (in bohr−1). The total energies of the physical system
E

k
= Eμ→∞

k are plotted as horizontal dotted lines. The slope at μ = 0 is
shown in dashed line.

ical energies with increasing μ is much slower than for the
He atom, owing to the short inter-electronic distances in the
Be 1s core region, which are consequently probed at larger μ

values.
The singlet and triplet excitation energies are plotted in

Figure 5. As for He, the KS excitation energies are brack-
eted by the singlet and triplet excitation energies of the physi-
cal system. Not surprisingly, the KS excitation energies are
poorer approximations to the exact excitation energies for
these valence excitations in Be than for the Rydberg excita-
tions in He. As μ increases, the KS excitation energies rapidly
converge to the physical excitation energies. Clearly, the slow
convergence of the core energies does not affect the conver-
gence of the valence excitation energies.

Close to the KS system, at μ = 0, the excitation energies
are quite sensitive to the introduction of a small portion of
electron–electron interaction in the Hamiltonian, which may
be interpreted as a sign of static correlation. For μ ≈ 0.4–0.5,
a typical μ value in range-separated DFT calculations,18, 81

the calculated excitation energies are significantly better
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FIG. 5. Excitation energies �Eμ
k = Eμ

k − Eμ
0 (in hartree) of the Be atom as

a function of μ (in bohr−1). The excitation energies of the physical system
�E

k
= �Eμ→∞

k are plotted as horizontal dotted lines.
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k
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k are plotted as
horizontal dotted lines.

approximations to the exact excitation energies than are
the KS excitation energies. This observation justifies range-
separated multi-determinantal linear-response DFT calcula-
tions, which take these excitation energies as a starting point.

C. Hydrogen molecule

The first few excitation energies of H2 at the equilibrium
bond distance are plotted against μ in Figure 6. As for the
atoms, the valence excitations energies vary much more along
the adiabatic connection than do the Rydberg-like excitation
energies. Note also that the energetic ordering of the states
changes along the adiabatic connection. With our choice of
basis set, we also observe that the higher singlet excitation
energies do not depend monotonically on μ, approaching the
physical limits from above, as observed for He. Again, the ex-
citation energies around μ ≈ 0.4–0.5 represent better approxi-
mations to the exact excitation energies than the KS excitation
energies.
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FIG. 7. Excitation energies �Eμ
k = Eμ

k − Eμ
0 (in hartree) of the H2 molecule

at 3 times the equilibrium internuclear distance as a function of μ (in bohr−1).
The excitation energies of the physical system �E

k
= �Eμ→∞

k are plotted
as horizontal dotted lines.

Finally, we consider the interesting case of the dissocia-
tion of the H2 molecule. The first excitation energies at three
times the equilibrium distance are shown in Figure 7. With
increasing bond distance, the 1σg and 1σu molecular orbitals
become degenerate. Consequently, the KS excitation energy
for the single excitation 1σg → 1σu goes to zero. Moreover,
the KS excitation energy for the double excitation (1σg)2

→ (1σu)2 also goes to zero (albeit more slowly). This be-
haviour is in contrast to that of the physical system, where
only the excitation energy to the triplet 13
+

u state goes to
zero, whilst those to the singlet 11
+

u state and the 21
+
g state

(the latter connected to the double excitation in the KS sys-
tem) go to finite values.

Clearly, the excitation energies of KS theory are poor ap-
proximations to the exact excitation energies, making it dif-
ficult to recover from these poor starting values in practical
linear-response TDDFT calculations. As μ increases from μ

= 0, the excitation energies to the singlet 11
+
u and 21
+

g

states vary abruptly, rapidly approaching the physical values.
This sensitivity to the inclusion of the electron–electron inter-
action is a clear signature of strong static correlation effects,
emphasizing the importance of a multi-determinantal descrip-
tion in such situations. At μ ≈ 0.4–0.5, the 11
+

u and 21
+
g

excitation energies, although still too low, are much better ap-
proximations than the KS excitation energies, constituting a
strong motivation for range-separated multi-determinantal ap-
proaches in linear-response theory.

VI. CONCLUSIONS

We have studied the variation of total energies and
excitation energies along a range-separated adiabatic con-
nection, linking the non-interacting KS system (μ = 0) to
the physical system (μ → ∞) by progressively switching on
the long-range part of the electron–electron interaction with
the range-separation parameter μ, whilst keeping the ground-
state density constant. This behaviour is of interest for the
development and analysis of range-separated DFT schemes
for the calculation of excitation energies, such as the linear-
response range-separated schemes of Refs. 52, 53, and 55.

Reference calculations were performed for the He and
Be atoms and the H2 molecule. Except when μ is large, the
ground- and excited-state total energies along the adiabatic
connection are poor approximations to the corresponding
energies of the physical system. On the other hand, the
excitation energies are good approximations to the excitation
energies of the physical system for most of the adiabatic
connection curve, except close to the KS system (μ = 0). In
particular, the excitation energies obtained at μ ≈ 0.4–0.5,
typically used in range-separated DFT calculations, are
significantly better approximations to the exact excitation
energies than are the KS excitation energies. This behaviour
appears to be particularly evident for situations involving
strong static correlation effects and double excitations, as
observed for the dissociating H2 molecule.

These observations suggest that the excitation energies
of the long-range interacting Hamiltonian in range-separated
DFT may be useful as first estimates of the excitation energies
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of the physical system. However, if one cannot afford to use
large μ values (μ > 2–3), these excitation energies should be
considered only as starting approximations, suitable for cor-
rection by, for example, linear-response range-separated the-
ory.

In future work, we will utilize the present reference
data to assess the approximations made in practical linear-
response range-separated schemes, where the long-range con-
tribution is treated, for example, at the Hartree–Fock, MC-
SCF, or SOPPA levels of theory, while the short-range part
is described by semi-local density-functional approximations.
We will also use the results of this work to guide the de-
velopment of time-independent range-separated DFT meth-
ods for the calculation of excitation energies as alternatives to
linear-response schemes—in particular, for methods based on
perturbation theories79, 82 or extrapolations83, 84 along the adi-
abatic connection.
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