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Basis set construction for molecular electronic structure theory: Natural
orbital and Gauss–Slater basis for smooth pseudopotentials
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A simple yet general method for constructing basis sets for molecular electronic structure calcula-
tions is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational
self-consistent field calculation supplemented with primitive functions, chosen such that the asymp-
totics are appropriate for the potential of the system. Primitives are optimized for the homonuclear
diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis con-
struction are demonstrated. First, weak coupling exists between the optimal exponents of primitives
with different angular momenta. Second, the optimal primitive exponents for a chosen system depend
weakly on the particular level of theory employed for optimization. The explicit case considered here
is a basis set appropriate for the Burkatzki–Filippi–Dolg pseudopotentials. Since these pseudopoten-
tials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss–Slater functions are the
appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through
argon. These new bases offer significant gains over the corresponding Burkatzki–Filippi–Dolg bases
at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be
employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: ex-
pansions are unnecessary since the integrals are evaluated numerically. © 2011 American Institute of
Physics. [doi:10.1063/1.3551512]

I. INTRODUCTION

In quantum chemistry (QC) calculations, molecular or-
bitals are traditionally expanded in a combination of primitive
Gaussian basis functions and linear combinations of Gaussian
primitives called contracted basis functions.1 These basis sets
cannot express the correct molecular orbital asymptotic be-
havior but are used in QC calculations to permit analytic eval-
uation of the two-electron integrals.2

Analytic integral evaluation significantly limits flexibility
in basis set choice but is essential for computational efficiency
in QC calculations. However, in practice, other basis function
forms can be considered since an arbitrary function can be ex-
panded in Gaussians. Of course, the fidelity of this representa-
tion is limited. An expansion in a finite number of Gaussians
cannot reproduce the exponential decay of the wavefunction
at large distances or the Kato cusp conditions3 at nuclei, but it
can mimic these features over a finite range.

Quantum Monte Carlo (QMC) calculations4 offer greater
freedom in choice of basis functions because matrix elements
are evaluated using Monte Carlo integration. Consequently,
the correct short- and long-distance asymptotics can be sat-
isfied exactly. For systems with a divergent nuclear poten-
tial, Slater basis functions can exactly reproduce the correct
electron–nucleus cusp and long-range asymptotic behavior of
the orbitals. For calculations on systems with a potential that
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is finite at the nucleus and has a Coulomb tail, Gauss–Slater
(GS) primitives5 are the appropriate choice since they intro-
duce no cusp at the origin and reproduce the exponential long-
range asymptotic behavior of the orbitals.

Despite shortcomings, traditional QC basis sets have
yielded good results. The natural orbitals (NOs) from a post
Hartree–Fock (HF) method are a particularly successful form
of contracted function.6–9 The simplest NO construction in-
volves diagonalizing the one-particle density matrix from a
ground state atomic calculation.6 This construction is unbal-
anced due to obvious bias favoring the atom. More compli-
cated constructions involve diagonalizing the average one-
particle density matrix of several systems: atomic ground and
excited states, ions, diatomic molecules, and atoms in an ex-
ternal electric field.7–9 These constructions produce excellent
results, but they are complex.

A simple but general method for constructing basis sets
for molecular electronic structure calculations is proposed and
tested here. The bases are combinations of the NOs obtained
from diagonalizing the one-particle density matrix from an
atomic multiconfigurational self-consistent field (MCSCF)
calculation and primitive functions appropriate for the po-
tential in the system. The primitives are optimized for the
homonuclear dimer in coupled cluster calculations with sin-
gle and double excitations (CCSD), with the intention of pro-
ducing a balanced basis set. Importantly, optimal exponents
for the primitive functions are shown to depend weakly on
the level of theory used in the optimization. Additionally, re-
sults show that coupling is weak between primitive functions
of different angular momenta. This enables efficient determi-
nation of optimal exponents.
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The utility of the above construction is demonstrated for
the elements hydrogen through argon with the nondivergent
pseudopotentials of Burkatzki, Filippi, and Dolg (BFD).10

Since these pseudopotentials are finite at the nuclei and have a
Coulomb tail, the GS functions are the appropriate primitives.
These pseudopotentials are chosen for demonstrated accuracy
in all cases tested and because they are accompanied by a ba-
sis set. The BFD basis10 serves as a metric for testing the new
basis. The benefits of our bases extend to all electronic struc-
ture methods tested, including CCSD, HF, the Becke three-
parameter hybrid density functional (B3LYP),11 and QMC.

The main area of interest for the authors is QMC. Since
QMC results depend less on basis set than traditional QC
methods,5 only double-zeta (2z) and triple-zeta (3z) bases are
presented.

This paper is organized as follows. Basis function form
and properties are demonstrated in Sec. II. Results for calcu-
lations with the new bases are discussed in Sec. III. Conclud-
ing remarks are provided in Sec. IV. Supplementary material
is provided on EPAPS.12

II. BASIS SET

The number of basis functions for each angular momen-
tum follows the correlation consistent polarized basis set pre-
scription of Dunning.1 2z and 3z bases appropriate for the
BFD pseudopotentials are generated for the elements hydro-
gen through argon. Since the BFD pseudopotential removes
no core for hydrogen and helium, the 2z basis for these ele-
ments consists of two S functions and one P function, while
the 3z basis consists of three S functions, two P functions, and
one D function. Since the BFD pseudopotential removes a he-
lium core for the first row atoms and a neon core for the sec-
ond row atoms, the remaining elements lithium through argon
have the same number of basis functions. In particular, the 2z
basis consists of two S functions, two P functions, and one D
function, while the 3z basis consists of three S functions, three
P functions, two D functions, and one F function.

The bases consist of a combination of contracted and
primitive functions. Since the BFD pseudopotentials are finite
at the origin and have a Coulomb tail, the GS functions are
the appropriate primitives. With the exception of the elements
in Group 1A of the periodic table (i.e., H, Li, and Na), the
basis for each element includes a single S contraction and a
single P contraction combined with an appropriate number of
GS primitives. Only two contractions are employed to reduce
the computational cost of using this basis in QC calculations.
Since elements in Group 1A of the periodic table have only
one electron for the BFD pseudopotentials, a single S orbital
is the ground state wavefunction, and this can be obtained ex-
actly in HF. Thus, the basis for each element in Group 1A
includes a single S contraction, no P contractions, and an ap-
propriate number of GS primitives.

A. Contracted functions

A contracted basis function is a linear combination of
Gaussian primitives

ϕnlm(r, θ, φ) =
∑

i

ci

√√√√2(2αi )n+ 1
2

�
(
n + 1

2

) rn−1e−αi r2
Zm

l (θ, φ), (1)

where r, θ, φ are the standard spherical coordinates, n is the
principal quantum number, l is the azimuthal quantum num-
ber, m is the magnetic quantum number, Zm

l (θ, φ) is a real
spherical harmonic, ci is the i th expansion coefficient, and
αi is the i th Gaussian exponent. In practice, the restriction
n = l + 1 applies.

The exponents of the primitive functions that form the
contracted basis functions are determined as follows. For each
angular momentum for which a contraction is desired, an un-
contracted basis consisting of nine even-tempered primitive
Gaussians is generated. For each set of uncontracted Gaus-
sians, the minimum exponent and even-tempering coefficient
are varied to minimize the CCSD energy of the atom using a
Python wrapper around GAMESS.13

An assumption of weak coupling between the different
angular momenta underlies the optimization procedure. Con-
sequently, the uncontracted basis for each angular momentum
is optimized separately. This optimization is performed by
calculating the CCSD energy on an initially coarse grid com-
posed of different minimum exponents and even-tempering
coefficients. Once regions of low CCSD energy are identified,
a finer grid is used to obtain the final minimum exponent and
even-tempering coefficient. In addition to the assumption of
weak coupling, two other properties of the problem make this
global optimization possible with modest computer resources;
low dimensionality of search space and efficiency of atomic
CCSD calculations.

Next, an atomic MCSCF calculation in a complete active
space (CAS) with the optimized uncontracted basis is per-
formed in GAMESS. For these calculations, all electrons not
removed by the pseudopotential are allowed to excite. For he-
lium, the active space consists of the orbitals from the n = 1
and n = 2 shells. For beryllium through neon, the active space
includes the orbitals from the n = 2 and n = 3 shells. For
magnesium through argon, the active space is composed of
the orbitals from the n = 3 and n = 4 shells, with the excep-
tion of the 4D and 4F orbitals. A subset of the natural orbitals
from the MCSCF calculations are used as the contracted func-
tions of our basis.

All atomic calculations are performed in D2h symmetry
since GAMESS does not permit imposition of full rotational
symmetry. Hence, different components of the same atomic
subshell are not necessarily equivalent. Additionally, mixing
may occur among orbitals of different angular momenta. For
instance, there is mixing of S orbitals with both D3z2−r2 and
Dx2−y2 orbitals. This anisotropy can be removed by averag-
ing the different components of a particular subshell and ze-
roing out the off-diagonal blocks of the one-particle density
matrix.7

A simpler approach taken in this work is found to pro-
duce results of similar quality. For each angular momentum
for which a contraction is desired, the NO with that angu-
lar momentum which has the largest occupation number is
chosen. Additionally, NO elements which do not correspond
to the dominant character of the orbital are zeroed out. For
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instance, an NO with large coefficients on the S basis func-
tions and small coefficients on the D basis functions is con-
sidered to be dominated by S character, so the D coefficients
are zeroed out. Finally, the NOs are normalized. The NOs se-
lected in this procedure generate the contracted functions for
the basis set. The expansions of the contractions are given in
the supplementary material.12

B. Gauss–Slater primitives

GS functions5 are defined as

ϕ
ζ

nlm(r, θ, φ) = N ζ
n rn−1e− (ζr )2

1+ζr Zm
l (θ, φ), (2)

where ζ is the GS exponent and N ζ
n is the normalization fac-

tor. The restriction n ≥ l + 1 is imposed for GS functions. For
r � 1, the GS behaves like a Gaussian:

ϕ
ζ

nlm(r, θ, φ) ∼= N ζ
n rn−1e−(ζr )2

Zm
l (θ, φ), (3)

and for r � 1, the GS behaves like a Slater:

ϕ
ζ

nlm(r, θ, φ) ∼= N ζ
n rn−1e−ζr Zm

l (θ, φ). (4)

Consequently, GS functions introduce no cusp at the origin
and can reproduce correct long-range asymptotic behavior of
the orbitals.

Unlike Gaussians and Slaters, normalization of GSs has
no closed form expression. Nevertheless, normalizing an arbi-
trary GS is trivial with the following scaling relation between
N ζ

n and N 1
n :

N ζ
n = ζ n+1/2 N 1

n . (5)

Values for N 1
n are given in the supplementary material.12

Since GSs are not analytically integrable, the radial part
must be expanded in Gaussians for use in QC programs that
evaluate matrix elements analytically. The expansion is

ϕ
ζ

nlm(r, θ, φ) =
∑

i

cζ

i

√√√√2(2α
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i )l+ 3
2
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) rle−α
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i r2
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where cζ

i is the i th expansion coefficient and α
ζ

i is the i th
Gaussian exponent. Notice that the expansion permits the case
for which n �= l + 1 for the GS function. Additionally, the fol-
lowing scaling relations hold for the expansion coefficients
and Gaussian exponents:

α
ζ

i = ζ 2α1
i , (7)

cζ

i = c1
i . (8)

Once the Gaussian expansions are found for unit exponents,
expansions of arbitrary GSs follow immediately from the
scaling relations. For QC calculations in this paper, GSs are
expanded in six Gaussians. However, if the purpose of the
initial QC calculation is to generate crude starting orbitals for
QMC calculations in which orbital optimization is performed,
it is only necessary to expand GS primitives in a single Gaus-
sian. In this case, the cost of QC calculations is the same for
Gaussian and GS primitives. The expansions of GS functions

with unit exponent in both one and six Gaussians are given in
the supplementary material.12

As mentioned above, the restriction n ≥ l + 1 is imposed
for GS functions, instead of the more familiar n = l + 1 re-
striction imposed for Gaussian primitives. This motivates con-
struction of two types of bases. In the first, ANO-GS (atomic
natural orbital-Gauss–Slater), the restriction n = l + 1 is en-
forced. In the second, ANO-GSn, for each l there can be at
most a single GS primitive with a particular n. For each addi-
tional primitive with a particular l, n must be incremented.

For example, consider lithium. The 2z ANO-GS basis has
one S contraction, one GS-1S function, two GS-2P functions,
and one GS-3D function. On the other hand, the 2z ANO-GSn
basis has one S contraction, one GS-1S function, one GS-2P
function, one GS-3P function, and one GS-3D function.

A caveat to the above definition of the ANO-GSn ba-
sis is that GS-2S functions are not permitted since a single
GS-2S function will introduce an undesired cusp in the wave-
function. Additionally, the 2z ANO-GS and ANO-GSn basis
sets are identical for all elements except lithium and sodium.
When the 2z ANO-GS and ANO-GSn basis sets are identical,
the basis sets are referred to as a 2z ANO-GS/GSn basis. For
both lithium and sodium, the basis sets differ because these
systems have no P contractions and instead have a second P
primitive for the 2z basis. This primitive is a GS-2P for the
ANO-GS basis and a GS-3P for the ANO-GSn basis. Addi-
tionally, weak coupling between functions of different angu-
lar momentum causes the GS-1S and GS-3D functions in the
ANO-GS bases for lithium and sodium to differ from their
counterparts in the ANO-GSn bases. However, the optimal
exponents differ by less than 0.01.

Optimal exponent selection for the GS primitives is dis-
cussed now. Instead of optimizing exponents for the atom as
was done to generate the contractions, optimization of the
GS exponents is performed for the homonuclear diatomic
molecule at experimental bond length.14–22 This advanta-
geously produces a balanced basis set.

Weak coupling between GS functions of different angu-
lar momenta is assumed, so the initial optimization for each
angular momentum is performed separately. This assumption
is validated in Fig. 1, which contains plots of the CCSD en-
ergy for Si2 while varying individual GS exponents in the 2z
ANO-GS/GSn basis. Both the curve shape and the exponent
value which minimizes the energy vary little with fixed expo-
nent value, signifying weak coupling between GS functions
of different angular momentum.

The optimization is performed at the CCSD level of the-
ory using a Python wrapper around GAMESS. For each an-
gular momentum, an energy landscape is defined by a grid
of primitive exponents ranging from 0.1 to 6.0 with 0.1 spac-
ing. Thorough investigation has revealed that exponents larger
than 6.0 are not optimal for the systems considered. Low ly-
ing minima of this energy landscape are then handled with in-
creasingly finer grids until energy changes are less than 0.01
mH. During this investigation of local minima, all angular
momenta are handled simultaneously to account for any cou-
pling effects. Results of this optimization are shown in Fig. 2.
Optimal exponents for ANO-GS and ANO-GSn bases exhibit
a linear trend across each row of the periodic table. For nearly
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FIG. 1. Change in Si2 CCSD energy for 2z ANO-GS/GSn basis shows weak
coupling between GS functions of different angular momenta. (a) Energy
versus GS-1S exponent for three values of the GS-2P exponent with the GS-
3D exponent fixed at its optimal value. (b) Energy versus GS-3D exponent
for three values of the GS-1S exponent with the GS-2P exponent fixed at its
optimal value.

degenerate minima, the exponent following the trend in the
figure is chosen as optimal, resulting in energy increase no
greater than several 0.1 mH. The optimal GS exponents are
given in the supplementary material.12

In some cases, the optimal exponents for primitives with
the same n and l are very close. This can lead to large equal
and opposite coefficients on these basis functions when con-
structing molecular orbitals. Numerical problems could re-
sult, providing further motivation for the ANO-GSn basis, in
which each pair of n and l is unique. However, all of our tests
with the ANO-GS basis have had no numerical problems.

Finally, the optimal primitive exponents are found to de-
pend weakly on the electronic structure method employed in
the optimization, as demonstrated in Fig. 3 for Si2 with the
2z ANO-GS/GSn basis. The globally minimizing exponents
are nearly equal in different methods. This exponent transfer-
ability to different levels of theory is extremely attractive for
a basis set.

III. RESULTS

Section II demonstrates that the ANO-GS and ANO-GSn
bases exhibit desirable properties. However, it remains to be
shown that these basis sets produce accurate results. Fortu-
nately, the basis set accompanying the BFD pseudopotential
serves as a metric for testing ANO-GS and ANO-GSn basis
quality. The BFD basis for elements in Groups 1A and 2A of
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FIG. 2. Optimal exponents for ANO-GS and ANO-GSn bases exhibit a lin-
ear trend across each row of the periodic table. The 2z ANO-GS and ANO-
GSn bases are identical for all elements except lithium and sodium. The GS-
1S and GS-3D exponents for these elements each differ by less than 0.01
between 2z ANO-GS and ANO-GSn bases, so 2z ANO-GS and ANO-GSn
are shown together as 2z ANO-GS/GSn. Exponents for GS functions of P
angular momentum are not included for lithium and sodium since these ele-
ments have an extra primitive of P angular momentum.

the periodic table has recently been updated,23 but the number
of functions in the new basis is inconsistent with the correla-
tion consistent polarized basis prescription.1 Since compari-
son would be difficult, their published functions are consid-
ered in this work.

Figure 4 shows the CCSD total energy gain per electron
of the ANO-GS and ANO-GSn bases over the BFD bases10

for atoms and homonuclear dimers of hydrogen through ar-
gon. Energy gains per electron tend to increase across each
row of the periodic table. Both ANO-GS and ANO-GSn bases
yield energy gains for most molecules and atoms. The energy
gains per electron are generally larger for molecules than for
atoms, and larger for the ANO-GSn basis than for the ANO-
GS basis. The energy gains for the 2z bases are generally
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FIG. 3. Change in Si2 energy for 2z ANO-GS/GSn basis shows optimal
exponents depend weakly on electronic structure method (CCSD, HF, and
B3LYP). (a) GS-1S exponent is varied with GS-2P and GS-3D exponents
fixed at their optimal values. (b) GS-2P exponent is varied with GS-1S and
GS-3D exponents fixed at their optimal values. The large increase in energy
around an exponent of 1.0 occurs since the P primitive and P contraction be-
come nearly linearly dependent. (c) GS-3D exponent is varied with GS-1S
and GS-2P exponents fixed at their optimal values. For the middle and bot-
tom figures, HF and B3LYP energy scale is on the y-axis. This difference in
energy scale occurs since higher angular momentum functions are less im-
portant in these effectively single-determinant theories.

larger than for the 3z bases, as expected, since the energy left
to recover becomes smaller as the basis size increases.

The ANO-GS and ANO-GSn bases also produce more
accurate CCSD atomization energies than the BFD basis
for the homonuclear dimers of hydrogen through argon.
Figure 5 shows the fraction of experimental atomization en-
ergy recovered in CCSD for the homonuclear dimers which
are not weakly bound. The 2z ANO-GS/ANO-GSn basis re-
covers more atomization energy than the 2z BFD basis for all
dimers except those of Group 1A elements. Similarly, the 3z
ANO-GSn basis recovers more atomization energy than the
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FIG. 4. CCSD total energy gains per electron of ANO-GS and ANO-GSn
relative to the corresponding BFD basis (Ref. 10) for atoms and homonuclear
dimers of hydrogen through argon. Energy gains per electron tend to increase
across each row of the periodic table. The 2z ANO-GS and ANO-GSn bases
are identical for all elements except lithium and sodium. Differences between
2z ANO-GS and ANO-GSn results for these elements is ∼ 0.01 mH, so they
are shown together as 2z ANO-GS/GSn.

3z BFD basis for the same systems, but the differences are
small. The 3z ANO-GSn is on average slightly better than the
3z ANO-GS basis, the largest gains being for F2 and Cl2.

For Group 1A elements, the BFD bases recover more at-
omization energy in CCSD than do their ANO-GS or ANO-
GSn counterparts. This occurs due to inaccurate BFD ener-
gies for the atoms, as can be seen in Fig. 4. However, as de-
scribed above, we used the published BFD bases for these
elements rather than the updated BFD bases23 to maintain
consistency.

Finally, improvements of the ANO-GS and ANO-GSn
bases extend to other systems and methods. Figure 6 shows
the fraction of experimental atomization energy recovered for
five systems in the G2 set24 with the BFD, ANO-GS, and
ANO-GSn bases in three quantum chemistry methods. For
CCSD, the ANO-GS and ANO-GSn bases outperform the
BFD basis for all systems. For sulfur dioxide the improve-
ment due to the ANO-GS and ANO-GSn bases is dramatic:
the 2z ANO-GS/GSn result is nearly halfway between the 2z
and 3z BFD results, and the 3z ANO-GS/GSn result is nearly
halfway between the 3z and 5z BFD results. ANO-GS and
ANO-GSn benefits are more prominent in HF and B3LYP: for
most systems, the 2z ANO-GS/GSn result is closer to the 3z
BFD result than the 2z BFD result, and the 3z ANO-GS/GSn
result is closer to the 5z BFD result than the 3z BFD result.
Differences between results with the ANO-GS and ANO-GSn
bases are small.

Figure 7 shows the fraction of experimental atomiza-
tion energy recovered using diffusion Monte Carlo (DMC)
with the BFD, ANO-GS, and ANO-GSn bases. For each
system, the DMC calculations are performed with both a
single-configuration state function (single-CSF) reference
(DMC-1CSF) and full-valence complete active space refer-
ence (DMC-FVCAS). However, for each of the constituent
atoms in these molecules, the FVCAS and single-CSF ref-
erences are equivalent. All DMC calculations are performed
with a 0.01 H−1 time step and trial wavefunction obtained by
optimizing Jastrow, orbital, and configuration state function
parameters (where applicable) via the linear method25–27 in
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variational Monte Carlo. The DMC-1CSF and DMC-FVCAS
calculations exhibit similar trends to the HF and B3LYP cal-
culation for most systems: the 2z ANO-GS/GSn result is
closer to the 3z BFD result than the 2z BFD result, and the
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3z ANO-GS/GSn result is closer to the 5z BFD result than
the 3z BFD result. Again, differences between results with
the ANO-GS and ANO-GSn bases are small.

There are several important points that can be made by
comparing the DMC calculations of Fig. 7 to the CCSD
calculations of Fig. 6. First, the DMC results for the at-
omization energies have a weaker dependence on basis size
than the CCSD results. Second, for a given basis set, the
most basic DMC calculations, DMC-1CSF, yield superior re-
sults compared to CCSD. In addition to yielding superior
results, DMC-1CSF calculations have better computational
cost scaling than CCSD calculations. Under certain assump-
tions, the cost of DMC-1CSF calculations scales as O(N 3)
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(Ref. 28), while the cost of CCSD calculations scales as
O(N 6) (Ref. 29), where N is the number of electrons. How-
ever, it is important to note that the prefactor of the scaling is
significantly smaller for the CCSD calculations.

Finally, our results are not the first to show that DMC cal-
culations can produce accurate atomization energies. In par-
ticular, DMC-1CSF calculations of the entire G2 set have
been performed for both pseudopotential and all-electron
systems30, 31 and produced excellent results. Additionally,
there is good agreement between the pseudopotential and
all-electron results with a mean absolute deviation of about
2.0 kcal/mol over the entire G2 set.31 Although these pre-
vious results are very good, there is room for improvement,
particularly for the open shell systems. A systematic study
with DMC-FVCAS calculations is currently underway in our
group, which should produce results to (near) chemical accu-
racy for all systems in the G2 set.

IV. CONCLUSION

A simple yet general method for constructing basis sets
for molecular electronic structure theory calculations has
been presented. These basis sets consist of a combination
of atomic natural orbitals from an MCSCF calculation with
primitive functions optimized for the corresponding homonu-
clear dimer. The functional form of the primitive functions is
chosen to have the correct asymptotics for the nuclear poten-
tial of the system.

It was shown that optimal exponents of primitives with
different angular momenta are weakly coupled. This enables
efficient determination of optimal exponents. Additionally,
it was demonstrated that the particular electronic structure
method employed in optimization has little effect on the opti-
mal values of the primitive exponents.

Two sets of 2z and 3z bases, ANO-GS and ANO-GSn,
appropriate for the Burkatzki, Filippi, and Dolg nondiver-
gent pseudopotentials were constructed for elements hydro-
gen through argon. Since these pseudopotentials do not di-
verge at nuclei and have a Coulomb tail, GS functions are the
appropriate primitives.

It was demonstrated that both ANO-GS and ANO-GSn
basis sets offer significant gains over the Burkatzki, Filippi,
and Dolg basis sets for CCSD, HF, B3LYP (Ref. 11), and
QMC calculations. Improvements were observed in both to-
tal energies and atomization energies. The latter indicates
that basis sets providing a balanced description of atoms and
molecules were produced by using both the atom and the
dimer in the optimization. On average, the ANO-GSn basis
is slightly better than the ANO-GS basis, but either is a sound
choice.

In the future, these basis sets will be extended to include
the transition metals, and bases will be constructed for all-
electron calculations, for which Slater functions are the ap-
propriate primitives.
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