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Molecular calculations in quantum Monte Carlo frequently employ a mixed basis consisting of
contracted and primitive Gaussian functions. While standard basis sets of varying size and accuracy
are available in the literature, we demonstrate that reoptimizing the primitive function exponents
within quantum Monte Carlo yields more compact basis sets for a given accuracy. Particularly large
gains are achieved for highly excited states. For calculations using nondiverging pseudopotentials,
we introduce Gauss—Slater basis functions that behave as Gaussians at short distances and Slaters at
long distances. These basis functions further improve the energy and fluctuations of the local energy
for a given basis size. Gains achieved by exponent optimization and Gauss—Slater basis use are
exemplified by calculations for the ground state of carbon, the lowest lying excited states of carbon
with > S°, 3P", lD”, and 3F° symmetries, carbon dimer, and naphthalene. Basis-size reduction enables
quantum Monte Carlo treatment of larger molecules at high accuracy. © 2010 American Institute of

Physics. [doi:10.1063/1.3342062]

I. INTRODUCTION

In traditional quantum chemistry (QC) calculations, mo-
lecular orbitals are often expanded in a combination of con-
tracted Gaussian basis functions and primitive Gaussian ba-
sis functions. For each occupied orbital, a contracted
function is constructed to reproduce the corresponding
atomic orbital from an effectively single-electron theory such
as Hartree—Fock (HF),'? or the natural orbital from a
post-HF method.>*

While a single primitive Gaussian has an incorrect long-
range asymptotic behavior, a contracted basis function can
reproduce the correct asymptotics over a reasonable range.
However, even contracted functions are unable to produce
the correct electron-nucleus cusps5 since they have zero gra-
dient at the origin. Despite these shortcomings, Gaussians
are used in QC calculations because they permit analytical
evaluation of the two-electron integlrals.6

In contrast to traditional QC methods, quantum Monte
Carlo (QMC) calculations’ enjoy greater wave function flex-
ibility by using Monte Carlo integration to evaluate matrix
elements. In particular, bases need not be restricted to Gaus-
sians. For calculations employing a potential that diverges at
the nucleus, Slater basis functions can exactly reproduce the
correct electron-nucleus cusp and long-range asymptotic be-
havior of the orbitals. In fact, for all-electron QMC calcula-
tions, highly accurate results have been obtained by employ-
ing compact basis sets consisting of Slater functions with
optimized exponents.&9

Conversely, the basis sets used for nondivergent pseudo-
potential calculations in QMC have deviated little from typi-
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cal QC basis sets. For these pseudopotentials, orbitals have
no electron-nucleus cusp. In this case, Gaussian basis func-
tions are more appropriate than Slater functions at small
electron-nuclear distances but still have incorrect long-range
asymptotics.

Contracted and primitive Gaussian functions are fre-
quently splined on a radial grid for QMC. Splining con-
tracted Gaussians presents a definite computational advan-
tage since evaluating polynomials is much cheaper than
evaluating a linear combination of Gaussians. In contrast,
splining primitive Gaussians provides minimal benefit at
best.

We propose two ideas for improving basis sets for
pseudopotential calculations in QMC. First, primitive basis
function exponents are optimized for each system. This pro-
vides greater accuracy with a compact basis for a wide range
of chemical environments and excitation levels. To facilitate
optimization, the primitive basis functions remain analytic
while the contracted functions are splined.

Second, we propose a novel form of primitive basis
function appropriate for calculations involving nondiverging
pseudopotentials. These primitives, which we call Gauss—
Slater (GS) functions, have the short-range behavior of a
Gaussian function and the long-range behavior of a Slater
function. The utility of our improvements is demonstrated by
calculations for the ground state of carbon, the lowest lying
excited states of carbon with 5So, 3P”, ID”, and F° symme-
tries, carbon dimer, and naphthalene.

This paper is organized as follows. In Sec. II, the form
and properties of GS functions are introduced. In Sec. III,
results of our calculations are discussed. In Sec. IV, conclud-
ing remarks are provided. In Appendices A-D, technical de-
tails are discussed.

© 2010 American Institute of Physics
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Il. GS BASIS FUNCTIONS
We define GS functions as
2
QL (1, 0, ¢) = N1 L1+ zim (g ) (1)

where r, 6, ¢ are the standard spherical coordinates, n is the
principal quantum number, / is the azimuthal quantum num-
ber, m is the magnetic quantum number, Ng is the normaliza-
tion factor, and Z;'(6, ¢) is a real spherical harmonic.
Notice that for r<<1 the GS behaves like a Gaussian:

2 m
@0, ) = NEP 1 e 76, ), (2)
and for r>1 the GS behaves like a Slater:
Oon(r0.0) = N e 74210, ). (3)

The GS drift velocity and local energy are well behaved at
long distances, while for Gaussians these quantities diverge.

Unlike Gaussians and Slaters, normalization of GSs has
no closed form expression. Nevertheless, normalizing an ar-
bitrary GS is trivial with the following scaling relation (see
Appendix A) between N: and N,

N£=§n+l/2N}i. (4)

Since GSs are not analytically integrable, the exponential
part must be expanded in Gaussians for use in QC programs
that employ analytic integrals for evaluating the matrix ele-
ments. This expansion is

2(2a§)n+(1/2) _a§r2

R

where ¢¢ is the ith expansion coefficient, and o is the ith
Gaussian exponent. Additionally, the following scaling rela-
tions (see Appendix A) hold for the expansion coefficients
and Gaussian exponents:

of = 2al, ©6)

NEe e+ = 3 &
i

ct=cl (7)

Once the Gaussian expansions are found for unit exponents,
expansions of arbitrary GSs follow immediately from the
scaling relations.

lll. RESULTS

For all applications discussed in this paper, variational
Monte Carlo (VMC) and diffusion Monte Carlo (DMC)°
calculations are performed with the cCHAMP QMC code'" and
employ the pseudopotentials and accompanying basis sets of
Burkatzki, Filippi, and Dolg (BFD).”> We choose these
pseudopotentials and basis functions since they were con-
structed for use in QMC and have proved to be quite accu-
rate.

The wave function is of the standard Slater—Jastrow
form. All wave function parameters including Jastrow pa-
rameters, configuration state function (CSF) coefficients
(where applicable), orbital coefficients, and primitive expo-
nents (where applicable) are optimized via the linear
method.* " Optimization is performed for a linear combi-
nation of the energy and variance of the local energy with

J. Chem. Phys. 132, 094109 (2010)

weights 0.95 and 0.05, respectively. Optimizing just the en-
ergy yields slightly lower energies and somewhat higher
variances.

For each system considered, calculations are performed
with three different basis sets: (1) the BFD basis, (2) fixed
contracted functions and analytical Gaussian primitives with
optimized exponents, and (3) fixed contracted functions and
analytical GS primitives with optimized exponents. We refer
to these basis sets as BFD, G, and GS, respectively.

These three cases allow us to evaluate the improvements
our two methods provide to the current basis sets used in
QMC. First, if both the G and GS basis sets significantly
outperform the BFD basis, then the utility of reoptimizing
the basis exponents within QMC will be established. Second,
the utility of the GS basis depends on its performance rela-
tive to the G basis.

A. Ground state carbon atom

For the carbon atom ground state, 3P, we consider a
complete active space (CAS) wave function with an active
space generated by distributing the four valence electrons
among the thirteen orbitals of the n=2 and n=3 shells. De-
noted by CAS(4,13), this wave function consists of 83 CSFs
comprised of 422 determinants.

In general, a single Slater determinant will not be a CSF
when a certain number of electrons have been excited rela-
tive to the ground-state HF Slater determinant. However, a
CSF can be produced from an arbitrary Slater determinant by

applying projection operators for angular momentum L and

spin . Since states with the same L and S but different L,
and S, are degenerate, we are free to choose convenient L,
and S, states. We choose L,=0 to make the wave functions
real to within a position independent phase, and we choose
S,=S§ to yield the minimum number of determinants in the
CSF. Since the carbon ground state has L=1, S=1, the pro-
jection operators are of the form

=11 [L-L@+1)], (8)
L'#1

Py= I [S-5'(s"+1)], 9)
S'#1

where the product over all possible angular momentum and
spin values omits the desired L=1 and S=1 values.

Carbon atom VMC results for each basis set are shown
in Table I. Included for comparison, coupled cluster calcula-
tions with single and double excitations and perturbative
triple excitations [CCSD(T)] values for the BFD basis'? ex-
hibit much larger dependence on basis size than QMC re-
sults.

Both the G and GS basis sets outperform the BFD basis
set. The 2z G basis exhibits a modest gain of 0.3 mH in
energy compared to the corresponding BFD basis. The 2z GS
basis exhibits larger gains of 1 mH in energy and 28 mH in
o, the root-mean-square (RMS) fluctuations of the local en-
ergy. The 3z GS basis yields identical results, within statis-
tical error, to the 5z BFD basis.
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TABLE I. VMC energy and RMS fluctuations of the local energy, o, in
Hartrees for CAS(4,13) ground state of carbon using BFD, G, and GS basis
functions. Statistical errors on the last digit are shown in parentheses. For
each n, the nz basis consists of n S functions, n P functions, and n—1 D
functions. CCSD(T) values for the BFD basis are included for comparison
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Type Size Energy (H) o (H)
BFD 2z —5.431 61(3) 0.1395(6)
3z —5.433 06(2) 0.099(3)
4z —5.43332(2) 0.0904(2)
5z —5.43341(2) 0.0905(4)
G 2z —5.431 96(3) 0.138(2)
3z —5.433 24(2) 0.0989(5)
GS 2z —5.432 64(2) 0.1114(4)
3z —5.433 44(2) 0.0898(2)
CCSD(T) 2z —5.409 230 N/A
3z —5.427 351 N/A
4z —5.431 486 N/A
5z —5.432 494 N/A

Carbon atom DMC results for each basis set are shown
in Table II. These calculations were performed with a time
step of 7=0.01 H~! which leads to negligible time step error
for these high quality wave functions. DMC depends less on
basis size than VMC, as is immediately apparent from the
data. Nevertheless, both the G and GS basis sets outperform
the BFD basis set. The 3z GS basis yields identical results,
within statistical error, to the 5z BFD basis, and an energy
0.1 mH lower than the 3z BFD basis.

Both VMC and DMC results indicate that reoptimizing
primitive basis function exponents provides improvements
which can be significant for the GS basis. In large systems,
the ability to use a 3z basis in place of a 4z or 5z basis
determines whether a calculation can be performed.

B. Excited states of carbon

We consider the lowest lying excited states of carbon
with 5S", 3P”, 1D", and 3F° symmetries. These states have
configurations 2s'2p3, 25%2p'3s!, 25?2p'3d", and 25*2p'3d",
respectively. The 3P", lD", and 3F° states have much higher
energy than the ground state and °S° excited state.

TABLE II. DMC energy in Hartrees for CAS(4,13) ground state of carbon
using BFD, G, and GS basis functions. Statistical errors on the last digit are
shown in parentheses. For each n, the nz basis consists of n S functions, n P
functions, and n—1 D functions. Calculations were performed with a time
step of 7=0.01 H~! which leads to a negligible time step error for these high
quality wavefunctions.

Type Size Energy (H)
BFD 2z —5.433 14(2)
3z —5.43395(2)
4z —5.434 04(1)
sz —5.434 07(1)
G 2z —5.433 42(2)
3z —5.43400(2)
GS 2z —5.433 56(2)
3z —5.434 07(1)

FIG. 1. VMC energies in Hartrees for lowest lying excited states of carbon
with S°, 3P", Do and 3o symmetries. For each n, the nz basis consists of
n S functions, n P functions, and n—1 D functions (where applicable). For
3P", Ipe; and 3o calculations, the BFD basis is augmented with diffuse
functions of the aug-cc-pVnZ basis sets (Refs. 4, 16, and 17). For G and GS
basis sets, only 2z and 3z calculations were performed. In many cases,
results for G and GS bases are indistinguishable on this scale.

The dominant CSF for each of the three highly excited
states occupies orbitals that are unoccupied in the HF ground
state. For fair comparison, the BFD basis therefore must be
augmented. The diffuse functions of the aug-cc-pVnZ basis
#1617 are used for this purpose. The BFD nz basis then
becomes an (n+1)z basis.

Obtained by application of the projection operators dis-
cussed in Sec. III A, the dominant CSF for each of the four
excited states has one, one, four, and three Slater determi-
nants, respectively.

VMC results for energies and o of each system are
shown in Figs. 1 and 2. In all cases, the reoptimized expo-
nents provide significant gains in both energy and o. Results
for the three higher-lying states demonstrate that reoptimized
exponents are essential for describing states containing orbit-
als unoccupied in the HF ground state. For these systems, 2z
results using the G and GS basis sets are substantially better
than 5z results for the augmented BFD basis set. In the most
extreme case of 3F", the 2z GS basis results in 30 mH lower
energy and 110 mH lower o than the 5z BFD basis.
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FIG. 2. RMS fluctuations of VMC local energies. See Fig. 1 for notation
and details.
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TABLE III. VMC energy and o in Hartrees for single determinant carbon
dimer ground state. Statistical errors on the last digit are shown in paren-
theses. For each n, the nz basis consists of n S functions, n P functions, and
n—1 D functions, n—2 F functions, and n—3 G functions.

J. Chem. Phys. 132, 094109 (2010)

TABLE V. VMC energy and o, and DMC energy in Hartrees for single
determinant ground state naphthalene, C,;)Hg. Statistical errors on the last
digit are shown in parentheses. DMC calculations were performed with a
time step of 7=0.01 H~!. For carbon, the 2z basis includes 2 S function, 2 P
function, 1 D function. For hydrogen, the 2z basis includes 2 S functions

Type Size Energy (H) o (H) and 1 P function.

BFD 2z —11.026 44(4) 0.4343(9) Type Size  VMC energy (H) VMC o (H)  DMC energy (H)
3z ~11.030 03(4) 0.4172(4)
4z —11.030 94(4) 0.4127(7) BFD 2z —61.5193(5) 0.980(1) —61.6479(5)
52 —11.030 95(4) 0.4113(6) G 2z —61.5273(4) 0.938(1) —61.6518(5)

G 2z —11.027 07(4) 0.4288(7) GS 2z —61.5438(4) 0.927(2) —61.6634(5)
3z ~11.030 30(4) 0.4183(6)

GS 2z —11.029 68(4) 0.4191(6)
3z —11.030 65(4) 0.4109(6) D. Naphthalene

The importance of the reoptimized exponents is evident
for the excited states of carbon. However, benefits of the GS
basis relative to the G basis are never more than several
tenths of a mH. On the scale of the plots in Figs. 1 and 2,
many G and GS basis results coincide.

C. Carbon dimer

Single determinant calculations were performed for the
carbon dimer with initial wave functions generated from the
QC code GAMESS.'® VMC results for each basis set are
shown in Table III. The G and GS basis sets outperform the
BFD basis set. In particular, the 2z G basis attains a 0.6 mH
lower energy than the corresponding BFD basis, and the GS
basis yields a 3.2 mH lower energy than the BFD basis. The
3z GS basis yields an energy within 0.3 mH of and a o
identical to the 5z BFD basis results.

DMC results for each basis set are shown in Table IV.
These calculations were performed with a time step of 7
=0.005 H~! which leads to negligible time step error. The 2z
G and GS basis sets significantly outperform the correspond-
ing BFD basis set. The 2z GS basis yields a result that is
essentially converged with respect to basis size. Both VMC
and DMC results indicate that reoptimizing primitive basis
function exponents provides improvements which can be sig-
nificant for the GS basis.

TABLE IV. DMC energy in Hartrees for ground state of carbon dimer using
BFD, G, and GS basis functions. Statistical errors on the last digit are shown
in parentheses. For each n, the nz basis consists of n S functions, n P func-
tions, n—1 D functions, n—2 F functions, and n—3 G functions. Calcula-
tions were performed with a time step of 7=0.005 H™! which leads to a
negligible time step error.

Type Size Energy (H)
BFD 2z —11.055 61(3)
3z —11.057 19(4)
4z —11.057 28(4)
5z —11.057 23(4)
G 2z —11.056 32(3)
3z —11.057 17(3)
GS 2z —11.057 02(4)
3z —11.057 19(3)

Single determinant calculations were performed for
naphthalene, C;yHg, with initial wave functions generated
from the QC code GAMESS."® Calculations were performed
only for the 2z basis. The intention of this section is not to
produce an energy converged with respect to basis size, but
to demonstrate that the utility of reoptimizing primitive basis
functions, and GS primitives in particular, extends to large
systems. VMC and DMC results for each basis set are shown
in Table V. The DMC calculations were performed with a
time step of 7=0.01 H'.

At both the VMC and DMC level, wave function quality
increases by reoptimizing the primitive Gaussian exponents.
The GS basis provides further improvement. In particular,
even at the DMC level, the 2z G basis attains a 4 mH lower
energy than the corresponding BFD basis, and the GS basis
yields a 15 mH lower energy than the BFD basis. This is
significant since DMC is less sensitive to basis set choice
than VMC.

IV. CONCLUSION

The QMC methods have the advantage over standard
QC methods of rapid convergence with increasing basis size.
Basis-size dependence for pseudopotential calculations in
QMC is further reduced by two basis set improvements in-
troduced in this work. Calculations for the ground state of
carbon, the lowest lying 3 S°, 3P", 'De, and 3Fo excited states
of carbon, carbon dimer, and naphthalene demonstrate the
utility of our contribution.

First, we reoptimized the primitive basis function expo-
nents for each system because the exponents of standard QC
and QMC basis sets, such as the BFD basis, represent a
compromise. These standard exponents are designed to yield
good energies for some range of chemical environments and
excitation levels, but they cannot be optimal for all systems.
We have shown that reoptimizing primitive basis function
exponents for each system yields significant improvements
in the energy and fluctuations of the local energy, o. The
most pronounced benefits were observed in higher-lying ex-
cited state calculations. In the most extreme case of *F° at
the variational Monte Carlo (VMC) level, the 2z mixed basis
was 30 mH lower in energy and 110 mH lower in o than the
5z numerical basis. Although not discussed in this paper, we
have found that reoptimization of standard Slater basis expo-
nents used in all-electron calculations also provides consid-
erable improvements in energy and o.
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TABLE VI. Normalization factors for Gauss—Slater basis functions with
unit exponent and principal quantum number 7.

1
n N,

1.126 467 421
0.576 609 950
0.196 581 141
0.050 275 655
0.010 280 772

S O S

Second, we introduced GS basis functions for nondiver-
gent pseudopotential calculations. GS functions behave like
Gaussians at short distances and Slaters at long distances. In
all systems considered, results obtained using a mixed basis
comprised of contracted and primitive basis functions im-
proved when optimized Gaussian primitives were replaced
by optimized GS primitives. Importantly, for carbon dimer at
the DMC level the 2z GS total energies are nearly converged
with respect to basis size.

A 3z mixed basis with optimized GSs for carbon atom or
carbon dimer produces results comparable to the 5z BFD
basis. Since the number of orbital coefficients to be opti-
mized scales quadratically with basis size, the use of a more
compact basis allows larger problems to be attacked in
QMC.

ACKNOWLEDGMENTS

We thank Paul Zimmerman for providing the GAMESS
input for naphthalene. This work was supported by the NSF
(Grant No. DMR-0908653) and by the DOE (Grant No.
DOE-DE-FG05-080R23339) and by the DOE-CMSN pro-
gram. Computations were performed in part at the Cornell
NanoScale Facility, a member of the National Nanotechnol-
ogy Infrastructure Network, and, at the Computation Center
for Nanotechnology Innovation at Rensselaer Polytechnic In-
stitute.

APPENDIX A: SCALING RELATIONS

To derive the scaling relation between Nfl and N,IL, con-
sider

= (Ng)zf dr r2r2(n—l)6—2[({r)2/(1+§r)]’ (A1)
0
1 £\2 N 2 ~2[u¥(1+u)]
=%(Nn) du u”e s (A2)
0
1 [(N\?
=§2n+1(]7rll> . (A3)

Hence, the scaling relation for the normalization factor is
_ 121
Né= 12N (A4)

The values of N are given in Table VI.

To derive the scaling relations for the parameters aef and
cf in the Gaussian expansion of the GS functions, suppose
the best-fit expansion for {=1 is

J. Chem. Phys. 132, 094109 (2010)

/ I\n+(1/2)
erle—rz/(1+r) — 2 Cil 2(1_‘2?/1) 1 ) e—al.lrz'
i n+x5

2

(AS)

Using Eq. (A4) and performing the substitution r— {r results

in
I\n+(1/2)
Née L+ Z gne123) (1 /Me-a}gz#
n - i 1 ’
i F(fl + E)
(A6)
2(2ai1§2)n+(1/2) 1a
=Ec}\/—le e (A7)
i F(l’l + 5)
2(2al§)n+(l/2) (2
=2 ¢ r(n+d) e, (A8B)
i n+ 5
where
al{= gza} , (A9)
cf=c (A10)

APPENDIX B: SPATIAL DERIVATIVES

A general un-normalized radial basis function has the
form

RE(r) = 180, (B1)
where g%(r) is an arbitrary function. The gradient is
14
VRi(r) = Mﬁ, (B2)
where
4 _ {
IRL(r) _ Rgm[ (n=1) g (r)] 53
ar ar
The Laplacian is
FRY(r) 2 9RE(r)
2pl _ n = n
V°R;(r) = P + . (B4)
where
FRy(r) R )[ P (n- 1)} 1 (aRg(r))2
gt " o P - Ri(r) or '
(B5)
For GS functions,
(¢r)?
L) = _ =222
g'(r)= o (B6)
agn)  rfQ+1r)
o (1+¢r)? (B7)
Fgr) 20
ot (1+ ) (B8)

For Gaussian functions,
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g =7 (89)
§ r

ZAUNPY (B10)
ar

Pe(r
jrﬁ ). (B11)

For Slater functions,

g =~¢r (B12)
dag’(r)
== Z (B13)
4 r
firg ) _ (B14)

APPENDIX C: PARAMETER DERIVATIVES

Wave function optimization via the linear method re-
quires both the derivatives of the wave function with respect
to the exponent parameters ¢, and the Hamiltonian acting on
those derivatives. From Eq. (A4), the derivative of the nor-
malization with respect to the exponent is

N, _(n+ 1/2)N§'
2 ¢
Now consider a general un-normalized radial basis function
of the form

RE(r) = P 1et0), (C2)

(C1)

where g(r) is an arbitrary function. The derivative of the
radial part of the wave function with respect to the exponent
is

{ r
oK g ) KRE), (©3)
where
Fi =22 ér) (C4)

The gradient is
V{&Ri(r)} af ()
al or

The Laplacian is

=R+ fAIVRL()]. (C5)

Vz[aRﬁm} 25f5(r)[ )+ ()}
al r d J
LI 0ROV, (o)
For GS functions,
P2+ )
f(p)=_ TN
F0 == (C7)
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TABLE VII. Basis exponents for CAS(4,13) ground state of carbon and
ground state of carbon dimer using G and GS basis functions. For each n,
the nz basis includes n—1 S primitives, n—1 P primitives, n—1 D primi-
tives, and n—2 F primitives (where applicable).

Type Size L C exp. C, exp.
G 2z S 0.087 0.145
P 0.129 0.196
D 0.470 0.679
3z S 0.102 0.127
N 0.676 0.998
P 0.104 0.121
P 0.270 0.423
D 0.314 0.386
D 0.982 1.099
F N/A 0.783
GS 2z S 0.586 0.853
P 0.984 1.162
D 1.810 3.774
3z S 1.000 1.127
S 1.258 1.570
P 1.059 0.703
P 1.750 1.416
D 1.132 2.225
D 1.981 3.228
F N/A 2.588
af(r) g4+ ¢r(3 + r)] (C8)
or (1+¢r)?
Prr)  24(Lr-2)
> = T (C9)
ar (1+¢r)
For Gaussian functions,
Fr)=- (C10)

TABLE VIII. Basis exponents for the lowest lying excited states of carbon
with °S°, 3P, 'D?, and 3F° symmetries. For each n, the nz basis includes
n—1 S primitives, n—1 P primitives, and n—1 D primitives (where appli-
cable)

Type Size L 55 exp. 3P exp. 'D° exp. 3F° exp.
G 2z S 0.110 0.006 0.087 0.112
P 0.150 0.157 0.109 0.766
D N/A N/A 0.006 0.006
3z S 0.356 0.010 0.094 0.096
S 2.145 0.284 0.496 0.689
P 0.809 4.868 0.079 0.117
P 2.262 6.707 0.854 0.524
D N/A N/A 0.007 0.007
D N/A N/A 0.407 0.822
GS 2z S 1.960 0.059 0.756 0.570
P 1.860 3.002 0.763 0.588
D N/A N/A 0.351 0.293
3z S 1.148 0.371 0.160 0.894
S 1.451 0.376 0.931 2.045
P 1.137 0.691 0.043 1.326
P 1.325 2.087 0.444 3.016
D N/A N/A 0.238 0.295
D N/A N/A 0.953 1.545
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TABLE IX. Basis exponents for ground state naphthalene, C;oHg, using G
and GS basis functions. For carbon, the 2z basis includes 1 S primitive, 1 P
primitive, 1 D primitive. For hydrogen, the 2z basis includes 1 S primitive.

Type Size L C,oHg C exp. C,oHg H exp.
G 2z S 0.139 0.099
P 0.191 N/A
D 0.754 N/A
GS 27 S 0.875 0.798
P 1.118 N/A
D 2.109 N/A
9f
0 __,, (C11)
ar
Fr(r)
=-2. Cl12
ar’ ( )
For Slater functions,
ffir=-r (C13)
9 4
>y (C14)
ar
Ff(r)
=0. C15
Py (C15)

APPENDIX D: EXPONENTS

To promote use of this basis, exponents for each system
studied are given in this appendix. Only exponents of the
primitives are given, as the contracted functions are pre-
sented elsewhere.' Exponents for the ground state of carbon
using CAS(4,13) CSFs, and, the ground state of carbon
dimer using a single CSF are shown in Table VII. Exponents
for the lowest lying excited states of carbon with 5S", 3P",
'De, and *F° symmetries are shown in Table VIII. Exponents
for the ground state of naphthalene are shown in Table IX. In
naphthalene, since atoms of the same atomic species are lo-

J. Chem. Phys. 132, 094109 (2010)

cated at inequivalent geometrical locations, one could inde-
pendently optimize the exponents for each inequivalent
atom, but we have not done so because we expect the result-
ing gain to be small.

We have found that the carbon S and P exponents
change relatively little from one molecule to another (though
they do differ more for the atom) while there is considerable
leeway in the D exponents (they change considerably even
from one optimization to another for a given molecule). This
is because the energy and o are not as sensitive to the D
basis functions as they do not appear in the ground-state
determinant of the carbon atom. Hence it is possible to find
an approximately optimal set of exponents for the atoms in a
large molecule, by optimizing them for a small molecule
with the same atoms.
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