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Abstract

We construct the complementary short-range correlation relativistic local-density-

approximation functional to be used in relativistic range-separated density-functional

theory based on a Dirac-Coulomb Hamiltonian in the no-pair approximation. For this,

we perform relativistic random-phase-approximation calculations of the correlation

energy of the relativistic homogeneous electron gas with a modified electron–

electron interaction, we study the high-density behavior, and fit the results to a

parametrized expression. The obtained functional should eventually be useful for

electronic-structure calculations of strongly correlated systems containing heavy

elements.
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1 | INTRODUCTION

Range-separated density-functional theory (RS-DFT) (see, e.g., References [1, 2]) is an extension of Kohn-Sham density-functional theory

(KS-DFT) [3] which allows one to rigorously combine a multideterminant wave-function method accounting for the long-range part of the

electron–electron interaction with a complementary short-range density functional. RS-DFT can improve over usual Kohn-Sham density-

functional approximations for the electronic-structure calculations of strongly correlated systems (see, e.g., References [4, 5]) and/or systems

involving weak intermolecular interactions (see, e.g., References [6, 7]), while still enjoying a fast basis convergence [8].

With the aim of describing compounds with heavy elements which involve both strong correlation and relativistic effects, RS-DFT has been

extended to a four-component relativistic framework [9–12]. In this relativistic RS-DFT, the no-pair [13, 14] ground-state electronic energy of the

Dirac-Coulomb Hamiltonian is written as [12].

E0 ¼ ΨþjT̂Dþ V̂neþŴ
lr,μ

ee jΨþ
D E

þ �E
sr,μ
Hxc nΨþ
� �

, ð1Þ

where T̂D is the kinetic + rest mass Dirac operator, V̂ne is the nuclei-electron interaction operator, Ŵ
lr,μ
ee is the electron–electron interaction opera-

tor associated with the long-range pair potential wlr,μ
ee r12ð Þ¼ erf μr12ð Þ=r12, and �E

sr,μ
Hxc nΨþ
� �

is the corresponding complementary short-range relativis-

tic Hartree-exchange-correlation functional evaluated at the density of Ψ+. The no-pair multideterminant wave function Ψ+ is constructed from

positive-energy states only and can in principle be obtained using a minmax principle [11, 12, 15–20]. The range-separation parameter μ� [0,+∞)

controls the range of the separation. For μ = 0, the long-range interaction vanishes and no-pair relativistic KS-DFT (see, e.g., References [21, 22])

is recovered. For μ!∞, the long-range interaction reduces to the full-range Coulomb interaction and no-pair relativistic wave-function theory

(see, e.g., References [19, 23]) is recovered.

While any existing wave-function approximation can directly be used for Ψ+, new approximations need to be developed for the short-range

relativistic functional �E
sr,μ
Hxc n½ �. As usual, this functional can be decomposed into Hartree, exchange, and correlation contributions
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�E
sr,μ
Hxc n½ � ¼ Esr,μH n½ �þEsr,μx n½ �þ �E

sr,μ
c n½ �: ð2Þ

The short-range Hartree functional is

Esr,μH n½ � ¼1
2

ð ð
n r1ð Þn r2ð Þwsr,μ

ee r12ð Þdr1dr2, ð3Þ

where wsr,μ
ee r12ð Þ¼1=r12�wlr,μ

ee r12ð Þ is the short-range pair potential. The short-range exchange functional is

Esr,μx n½ � ¼ Φþ n½ �j Ŵsr,μ
ee jΦþ n½ �

D E
�Esr,μH n½ �, ð4Þ

where Φ+[n] is the relativistic Kohn-Sham single-determinant wave function and Ŵ
sr,μ

ee is the electron–electron interaction operator associated

with wsr,μ
ee r12ð Þ . In References [9, 10], the relativistic short-range exchange and correlation functionals Esr,μx n½ � and �E

sr,μ
c n½ � were approximated by

non-relativistic short-range exchange and correlation functionals, which is a reasonable first approximation since for valence properties relativistic

effects are usually dominated by the kinematic contribution and the induced change in the density (see, e.g., Reference [24]). To go beyond this

non-relativistic approximation and put relativistic RS-DFT on a firmer ground, we have constructed for the short-range exchange functional

Esr,μx n½ � the relativistic local-density approximation (RLDA) in Reference [11] and approximations going beyond the RLDA in Reference [12]. In the

present work, we turn to the short-range correlation functional �E
sr,μ
c n½ � and we develop the RLDA for it.

The complementary short-range correlation RLDA functional is defined as

�E
sr,RLDA,μ
c n½ � ¼

ð
drn rð Þ�εsr,RHEG,μ

c n rð Þð Þ, ð5Þ

with

�εsr,RHEG,μ
c nð Þ¼ εRHEG

c nð Þ�εlr,RHEG,μ
c nð Þ, ð6Þ

where εRHEG
c nð Þ and εlr,RHEG,μ

c nð Þ are the correlation energies per particle of the relativistic homogeneous electron gas (RHEG) with full-range and

long-range electron–electron interactions, respectively. We express each of these correlation energies per particle as the correlation energy per

particle of the corresponding non-relativistic homogeneous electron gas (HEG) multiplied by a relativistic correlation factor

εRHEG
c nð Þ¼ εHEG

c nð Þϕc nð Þ, ð7Þ

εlr,RHEG,μ
c nð Þ¼ εlr,HEG,μ

c nð Þϕ~μ
c nð Þ, ð8Þ

where we have introduced the scaled range-separation parameter

~μ¼ μ

kF
, ð9Þ

where kF = (3π2n)1/3 is the Fermi wave vector. The scaled range-separation parameter ~μ is a natural adimensional parameter measuring the range

of the interaction relative to the density. We must have ϕlr,~μ!∞
c nð Þ¼ϕc nð Þ since the long-range interaction reduces to the full-range one in this

limit. Equations (7) and (8) allow one to use already existing parametrizations for εHEG
c nð Þ and εlr,HEG,μ

c nð Þ [25, 26].
The correlation energy per particle of the RHEG εRHEG

c nð Þ was first estimated at the random-phase approximation (RPA) level by Ramana and

Rajagopal [27] (see also References [21, 28–31]), and the corresponding relativistic correlation factor ϕc(n) was parametrized by Schmid et al. [32].

In the same spirit, we estimate in this work the relativistic long-range correlation factor ϕlr,~μ
c nð Þ at the RPA level, that is,

ϕlr,~μ
c nð Þ≈ϕlr,RRPA,~μ

c nð Þ¼ εlr,RRPA,~μc nð Þ
εlr,RPA,~μc nð Þ

, ð10Þ

where εlr,RRPA,~μc nð Þ is the long-range relativistic random-phase-approximation (RRPA) correlation energy per particle of the RHEG and εlr,RPA,~μc nð Þ is
its non-relativistic analog. The use of the RPA appears consistent considering that relativistic effects are most important in the high-density
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regime, for which the RPA provides a good approximation to the correlation energy. Contrary to the RRPA calculations of Ramana and Rajagopal

[27] which included the transverse contribution from the full quantum-electrodynamics (QED) photon propagator and were performed within the

no-sea approximation (i.e., including a renormalization contribution from negative-energy states) [31], here our RRPA calculations are limited to

the longitudinal component of the interaction in the Coulomb gauge and within the no-pair approximation. We do so for consistency since in the

relativistic RS-DFT of Equation (1), the long-range wave-function part is treated at the same level. The numerically calculated relativistic long-

range correlation factor ϕlr,RRPA,~μ
c nð Þ is then fitted to a parametrized expression imposing the correct high-density limit.

Hartree atomic units (a.u.) are used throughout the paper.

2 | LONG-RANGE CORRELATION ENERGY FROM RANDOM-PHASE APPROXIMATION

2.1 | Relativistic random-phase approximation

As already indicated, we want to determine the long-range RRPA correlation energy per particle of the RHEG within the no-pair approximation

and for the longitudinal component of the electron–electron interaction in the Coulomb gauge. With these approximations, the expression of

εlr,RRPA,~μc nð Þ is the same as its non-relativistic counterpart (see, e.g., References [33, 34])

εlr,RRPA,~μc nð Þ¼� 1
2π n

ð
dq

2πð Þ3
wlr,~μ qð Þ

ð∞
0
du
ð1
0
dλ

χ0 q, iuð Þ½ �2f lr,~μ,λH qð Þ
1�χ0 q, iuð Þf lr,~μ,λH qð Þ

, ð11Þ

where λ is a coupling constant. In this expression, χ0(q, iu) is the relativistic longitudinal non-interacting linear-response function of the RHEG

within the no-pair approximation at wave vector q = jqj and imaginary frequency iu (see References [27, 31, 35] and Appendix)

χ0 q, iuð Þ¼�kf

ð
d~k

2πð Þ3
θ 1�~k
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2þ~c2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kþ ~q
��� ���2þ~c2

r !2

�~q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2þ~c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kþ ~q
��� ���2þ~c2

r
~c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kþ ~q
��� ���2þ~c2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2þ~c2

q !

~u2þ~c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~kþ ~q
��� ���2þ~c2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k
2þ~c2

q !2
, ð12Þ

where we have introduced the adimensional variables

~k¼ k
kF

, ~q¼ q
kF

, ~u¼ u

k2F
, ~c¼ c

kF
, ð13Þ

where c = 137.036 a.u. is the speed of light. Note that the scaled speed of light ~c is a natural adimensional parameter measuring the importance

of relativistic effects (relativistic effects are negligible for ~c�1 and increase as ~c decreases). In Equation (11), f lr,~μ,λH qð Þ is the long-range Hartree

kernel at the coupling constant λ given by the Fourier transform of the long-range interaction

f lr,~μ,λH qð Þ ¼ λwlr,~μ qð Þ¼ λ
4π

~q2k2F
exp

�~q2

4~μ2

" #
: ð14Þ

Performing the integrals in Equation (11) over the angular variables of q and over the coupling constant λ gives

εlr,RRPA,~μc nð Þ¼� 3
4π

ð∞
0
d~q
ð∞
0
d~u 4π exp

�~q2

4~μ2

" #
χ0 ~qkF, i~uk

2
F

� �
þ~q2k2F ln 1� 4π

~q2k2F
exp

�~q2

4~μ2

" #
χ0 ~qkF, i~uk

2
F

� �" # !
: ð15Þ

As in the non-relativistic case, the integral over ~q and ~u are performed numerically. However, contrary to the non-relativistic case, we also do

numerically the integral over ~k in the linear-response function in Equation (12). In total, this gives a four-dimensional numerical integration that

we calculate using the software Wolfram Mathematica [36] with six digits of accuracy. In the non-relativistic limit, that is, ~c!∞ , the integral

defining the linear-response function in Equation (12) can easily be done analytically and Equation (12) reduces to the well-known non-relativistic

Lindhard function [37]. However, for consistency, we also use a four-dimensional numerical integration with the same precision for ~c!∞ to

obtain the non-relativistic RPA long-range correlation energy per particle εlr,RPA,~μc nð Þ¼ lim~c!∞ε
lr,RRPA,~μ
c nð Þ. We use 41 values of the Fermi wave vec-

tor kF ranging from 0.005 to 1200 a.u. (corresponding to a range of Wigner-Seitz radius rs = [3/(4πn)]1/3 from 384 to 0.0016a.u.). The highest
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sampled density corresponds to more than twice the maximal core electronic density of uranium, thus encompassing all chemically relevant elec-

tronic densities. For the scaled range-separation parameter ~μ¼ μ=kF, we consider 25 different values ranging from 0.005 to 20 a.u., in addition to

the ~μ!∞ limit giving the full-range RRPA and RPA correlation energies εlr,RRPA,~μ!∞
c nð Þ¼ εRRPAc nð Þ and εlr,RPA,~μ!∞

c nð Þ¼ εRPAc nð Þ. Note that the speed

of light c is fixed to its physical value in our calculations, that is, we do not try to obtain the dependence on c of the RRPA correlation energy. For

more details on the numerical calculations, see Reference [38].

2.2 | Long-range correlation energy

We show in Figure 1 the non-relativistic and relativistic long-range RPA correlation energies per particle as a function of kF for several values of ~μ.

As regards the non-relativistic results, for ~μ!∞, we correctly reproduce the high-density expansion of the full-range RPA correlation energy per

particle (see, e.g., Reference [39]) that we expressed here in terms of kF

εRPAc nð Þ¼�1� ln2
π2

lnkF�0:05083þO
lnkF
kF

� 	
: ð16Þ

This is the usual weak-correlation limit where the correlation energy per particle is negligible compared to the exchange energy per particle which

is linear in kF. We observe a similar logarithmic behavior also for the long-range RPA correlation energy per particle on our chosen range of kF for

values of ~μ larger than 0.1 a.u. For ~μ≳20 a.u., the long-range RPA correlation energy is nearly identical to the full-range RPA correlation energy.

Turning now to the relativistic results, we observe a very different behavior. Namely, for ~μ!∞, the full-range RRPA correlation energy per

particle is linear with respect to kF
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F IGURE 1 Non-relativistic (A) and relativistic (B) long-range RPA correlation energies per particle of the HEG
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εRRPAc nð Þ �
kF!∞

�0:0014 kF, ð17Þ

which is in agreement with other RRPA calculations reported in the literature [31, 32]. This is the ultra-relativistic limit, ~c!0, which is akin to a

strong-correlation limit where both the exchange and correlation energies per particle are linear with respect to kF. A similar linear behavior is also

observed for the case of the long-range interaction. Again, for ~μ≳20 a.u., the long-range RRPA correlation energy is nearly identical to the full-

range RRPA correlation energy.

2.3 | Relativistic long-range correlation factor

We show in Figure 2 the relativistic long-range correlation factor ϕlr,RRPA,~μ
c as a function of kF and ~μ. We observe that, for all values of ~μ and all rel-

evant values of kF, the relativistic factor is greater than 1, that is, relativistic effects increase the magnitude of the correlation energy. Moreover,

ϕlr,RRPA,~μ
c is an increasing function of kF, that is, the relative relativistic effects increase as we increase the density.

In Figure 2(A), it appears at first sight that ϕlr,RRPA,~μ is a monotonic decreasing function of ~μ, but the dependence on ~μ is in fact more compli-

cated and is plotted in Figure 2(B) for several values of kF. For clarity, we show only values of kF lower than 200 a.u., but the behavior is similar

for the whole range of Fermi wave vectors that we have considered. For any value of kF, it appears that ϕ
lr,RRPA,~μ starts as an increasing function

of ~μ until it reaches a maximum for a value ~μmax kFð Þ, after which it becomes a decreasing function of ~μ converging to its full-range interaction limit.

The value of ~μmax kFð Þ is itself an increasing function of kF, going from ~μmax 10ð Þ≈0:5 to ~μmax 1200ð Þ≈1:5 a.u. Furthermore, while ϕlr,RRPA,~μ increases

rapidly before ~μmax kFð Þ, it decreases only slightly afterward. This behavior explains why in Figure 2(A) we observe that all curves for ~μ higher than

1 appear to be superposed since there is little variation of ϕlr,RRPA,~μ with respect to ~μ for these values, and why we observe a monotonic decreas-

ing behavior with respect to ~μ only for lower values of ~μ. It appears that for ~μ!0 the relativistic correction factor goes to 1 for all values of kF,

that is, the relativistic effects disappear when only the very long-range part of the electron–electron interaction remains. In this limit, however,

the long-range correlation energy itself vanishes.
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F IGURE 3 Relative error of the high-density approximations for the non-relativistic (A) and relativistic (B) long-range RPA correlation
energies per particle (Equations 20 and 21)

TABLE 1 Parameters for the relativistic long-range correlation factor ϕlr,RRPA,~μ
c (Equation 22)

i a1,i a2,i a3,i b1,i b2,i b3,i

1 2.22080 �10�2 9.66045 �10�2 1.59065 �10�4 - - -

2 7.04721 �10�1 2.66457 9.62993 �10�2 7.09439 �10�1 2.91597 �10�1 �2.40333 �10�3

3 - 9.24891 �10�1 6.30881 �10�1 - 5.62594 �10�1 6.077222 �10�3

4 1.16165 �10�1 1.50127 �10�1 5.30353 �10�3 - - -

5 - 3.07852 5.32685 �10�1 - 7.56679 �10�1 8.30363 �10�1
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3 | PARAMETRIZATION

We now construct parametrizations of our numerical data. As building blocks for a parametrization of ϕlr,RRPA,~μ , we first parametrize the high-

density limits of the non-relativistic and relativistic long-range correlation energies.

3.1 | High-density limit of the non-relativistic long-range correlation energy

The parametrization of the high-density limit of the non-relativistic correlation energy is done by combining a parametrization for large values of

~μ and a parametrization for small values of ~μ.

For sufficiently large values of ~μ, the non-relativistic long-range RPA correlation energy per particle in the high-density limit follows a logarith-

mic behavior similar to the one of the non-relativistic full-range RPA correlation energy per particle [see Equation (16)], and we found that the

dependence on ~μ can be approximated by

εlr,RPA,~μ,hd1c nð Þ¼�1� ln2
π2

lnkF þ �0:0508324þ 1þa1~μ

a2þa3~μþa4~μ2þa5~μ3

� 	
, ð18Þ

giving our first high-density (hd1) parametrization. The parameters a1 = 3.72862, a2 = 3.53869, a3 = 43.4382, a4 = 40.2625, and a5 = 53.1731

have been fitted on numerical values of εlr,RPA,~μc nð Þþ 1� ln2ð Þ=π2� �
lnkF at kF = 9600 a. u. for 21 values of ~μ≥ 0:1 a.u.

For sufficiently small values of ~μ, the high-density limit of the non-relativistic RPA long-range correlation energy per particle can be approxi-

mated by the expression of Paziani et al. [26]

εlr,RPA,~μ,hd2c nð Þ¼2ln2�2
π2

ln
1þb1xþb2x2þb3x3

1þb1xþb4x2


 �
, ð19Þ

with x¼ μ
ffiffiffiffi
rs

p ¼ 3
ffiffiffi
π

p
=2ð Þ1=3~μ ffiffiffiffiffi

kF
p

and the parameters b1 = 5.84605, b2 = 7.44953, b3 = 3.91744, and b4 = 3.44851 are taken from Reference

[26]. This gives us our second high-density (hd2) parametrization.

We now combine these two high-density parametrizations in a single parametrization by interpolating using the switching function f ~μð Þ¼
erf 3~μð Þ4

εlr,RPA,~μ,hdc nð Þ¼ f ~μð Þεlr,RPA,~μ,hd1c nð Þ þ 1� f ~μð Þð Þεlr,RPA,~μ,hd2c nð Þ: ð20Þ
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The use of the fourth power of the error function allows for a steep enough switching and using 3~μ as the argument puts the transition between

the two parts around ~μ¼0:3 a.u. Equation (20) thus constitutes our high-density approximation for the non-relativistic long-range RPA correlation

energy per particle valid for all ~μ. In particular, for ~μ!∞, it correctly reduces to the full-range behavior in Equation (16).

The relative error of this high-density approximation εlr,RPA,~μ,hdc nð Þ is plotted in Figure 3(A). For kF≳400 a.u. and ~μ≥0:025 a.u., the high-density

approximation gives a relative error of less than 0.2%. For smaller values of ~μ (not shown), the maximal relative error increases up to around 3%

but the error is made on very small values of the correlation energy.
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F IGURE 5 Non-relativistic and relativistic complementary short-range correlation energy per particle of the HEG for kF = 1 a.u. (A), kF = 100
a.u. (B), and kF = 550 a.u. (C)
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3.2 | High-density limit of the relativistic long-range correlation energy

In the high-density limit, the relativistic long-range RRPA correlation energy is linear in kF for all values of ~μ and it is well approximated by

εlr,RRPA,~μ,hdc nð Þ¼�0:185345 � 1� 1þ c1~μþc2~μ2þc3~μ3þ c4~μ4

1þc5~μþc6~μ2þc7~μ3þc8~μ
4þc9~μ

5

� 	
=~c, ð21Þ

where the parameters c1 = 63.6213, c2 = 161.703, c3 = 58.4589, c4 = �0.55375, c5 = 63.7034, c6 = 467.578, c7 = 624.653, c8 = 952.370, and

c9 = 159.956 have been obtained by fitting at kF = 9600 a. u. using all 26 values for ~μ considered in this work. For ~μ!∞, Equation (21) correctly

reduces to the full-range behavior in Equation (17).

The relative error of this high-density approximation εlr,RRPA,~μ,hdc nð Þ is plotted in Figure 3(B). For ~μ!∞, the relative error gets below 1% for

kF≳1000 a.u. As ~μ decreases, the high-density regime is reached for smaller values of kF, for example, for ~μ¼0:005 a.u. we obtain 1% accuracy

for kF≳300 a.u.

3.3 | Parametrization of the relativistic long-range correlation factor

Having found parametrizations for the high-density limit of the non-relativistic and relativistic long-range RPA correlation energies per particle,

we now use these expressions to build a Padé-like expression for the relativistic long-range correlation factor ϕlr,RRPA,~μ
c . We found that it is accu-

rately represented by

ϕlr,RRPA,~μ
c nð Þ¼

1þ a1,1þa1,2~μ
a1,4þ~μ =~cþ a2,1þa2,2~μþa2,3~μ

2

a2,4þa2,5~μþ~μ2
=~c2þ a3,1þa3,2~μþa3,3~μ

2

a3,4þa3,5~μþ~μ2
=~c3� εlr,RRPA,~μ,hdc nð Þ=~c4

1þ a1,1þb1,2~μ
a1,4þ~μ =~cþ a2,1þb2,2~μþb2,3~μ

2

a2,4þb2,5~μþ~μ2
=~c2þ a3,1þb3,2~μþb3,3~μ

2

a3,4þb3,5~μþ~μ2
=~c3� εlr,RPA,~μ,hdc nð Þ=~c4

: ð22Þ

The choice of using the opposite of the high-density correlation energies as coefficients of 1=~c4 terms ensures that these coefficients are positive

and reduces the risk of introducing poles within the parametrization. The parameters are given in Table 1. They have been found by fitting to the

numerical values of εlr,RRPA,~μc =εlr,RPA,~μc using all values of kF and ~μ considered in this work. The maximal absolute error is less than 0.4% for

the smallest values of ~μ considered. In the special case ~μ!∞ , we obtain the full-range relativistic correlation factor ϕlr,RRPA,~μ!∞
c nð Þ¼ϕRRPA

c nð Þ ,
with a maximal absolute error less than 0.1%. Again, we stress that the parametrization of Equation (22) is valid for the physical value of the speed

of light c, and not for an arbitrary value of c. For more details on the fit, see Reference [38].

4 | COMPLEMENTARY SHORT-RANGE CORRELATION ENERGY PER PARTICLE

From Equations (6)–(8), we finally obtain our approximation for the complementary short-range correlation energy per particle of the RHEG,

�εsr,RHEG,μ
c nð Þ≈ εHEG

c nð ÞϕRRPA
c nð Þ�εlr,HEG,μ

c nð Þϕlr,~μ,RRPA
c nð Þ, ð23Þ

in which we use the Perdew-Wang-92 parametrization for εHEG
c nð Þ [25] and the parametrization of Paziani et al. [26] for εlr,HEG,μ

c nð Þ.
In the limit μ = 0, this short-range correlation energy per particle reduces to the full-range correlation energy per particle, that is,

�εsr,RHEG,μ¼0
c nð Þ¼ εRHEG

c nð Þ. In Figure 4, we compare our obtained εRHEG
c nð Þ with its non-relativistic analog εHEG

c nð Þ. As already indicated, relativistic

effects increase the magnitude of the correlation energy for large densities and turn the logarithmic dependence with respect to kF into a linear

dependence.

We plot in Figure 5 the relativistic and non-relativistic complementary short-range correlation energies per particle as a function of ~μ for sev-

eral values of kF. For kF = 100 a.u., we already see the impact of the relativistic effects for small values of ~μ . For kF = 550 a.u., the relativistic

effects are important for all relevant values of ~μ . Note that the wiggling behavior with respect to ~μ observed on the graphs for kF = 100 and

550 a.u. is most likely unphysical and comes from the parametrization of the non-relativistic long-range correlation energy per particle εlr,HEG,μ
c nð Þ.

This is not so surprising since such high densities were not considered in the construction of the parametrization of Reference [26]. This calls per-

haps for a refinement of this parametrization. For high enough densities, however, the possible refinement of εlr,HEG,μ
c nð Þ is secondary in compari-

son to the relativistic effects.
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Finally, we mention another possible limitation of our parametrization: we did not impose the large-μ behavior of the complementary short-

range correlation energy per particle of the RHEG, which is expected to have the same form as its non-relativistic analog [2, 26, 40] (as the large-μ

behavior of the relativistic and non-relativistic short-range exchange energies had the same form [12]), that is,

�εsr,RHEG,μ
c nð Þ �

μ!∞

k3F gRHEG
c 0,nð Þ
6πμ2

, ð24Þ

where gRHEG
c 0,nð Þ is the correlation contribution to the on-top pair-distribution function of the RHEG. Indeed, we do not have a good estimate of

gRHEG
c 0,nð Þ and RRPA is not expected to be accurate for this quantity. Therefore, we do not expect our parametrization to be very accurate for

large μ. Fortunately, the short-range correlation energy is small anyway for large μ.

5 | CONCLUSION

From RRPA calculations on the RHEG, we have constructed the complementary short-range correlation RLDA functional to be used in relativistic

RS-DFT based on a Dirac-Coulomb Hamiltonian in the no-pair approximation. This short-range correlation RLDA functional could be tested on

atomic and molecular systems, and will most likely serve a starting point for building more sophisticated relativistic short-range correlation func-

tionals, for example, depending on the density gradient or on the on-top pair density as already done for the short-range exchange functional

[12]. We believe that the present work helps to establish relativistic RS-DFT on a firm ground and will eventually be useful for electronic-structure

calculations of strongly correlated systems containing heavy elements.
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APPENDIX

Non-interacting linear-response function of the RHEG in the no-pair approximation

The non-interacting one-electron Green function of the RHEG in the no-pair approximation at wave vector k and frequency ω is

G0 k,ωð Þ¼
X

s � ",#f g
ψk,sψ

†
k,s

θ k�kFð Þ
ω�εkþ i0þ þ θ kF�kð Þ

ω�εk� i0þ


 �
, ðA1Þ

where k = j kj and ψk,s are the four-component spinors associated with the positive-energy solutions of the non-interacting Dirac equation

ψk,s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εkþc2

2εk

s
φs

c σ�kð Þ
εkþc2

φs

0
@

1
A, ðA2Þ

where σ is the vector composed of the three Pauli matrices, εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2c2þ c4

p
are the one-electron energies, and φs are the two-component spinors

φ" ¼
1

0

� 	
and φ# ¼

0

1

� 	
: ðA3Þ

Note that the Green function G0(k,ω) is a 4 � 4 matrix.

The corresponding no-pair longitudinal (i.e., density-density) non-interacting linear-response function at wave vector q = j qj and frequency

q0 is

χ0 q,q0ð Þ¼
ð

dk

2πð Þ3
ðþ∞

�∞

dω
2πi

Tr G0 k,ωð ÞG0ðkþq,ωþq0Þ½ �, ðA4Þ

which after calculating the trace of the products of spinors (see, e.g., Reference [11]) and calculating the integral over ω by contour integration,

gives
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χ0 q,q0ð Þ¼
ð

dk

2πð Þ3
1þk� kþqð Þc2þc4

εkεjkþqj

� 	
θ jkþqj�kFð Þθ kF�kð Þ �1

q0þ εjkþqj �εk� i0þ þ 1

q0þεk� εjkþqj þ i0þ

" #
: ðA5Þ

Evaluating the linear-response function at imaginary frequency q0 = iu, and after simplifying, we find

χ0 q, iuð Þ¼�
ð

dk

2πð Þ3
θ kF�kð Þ 1þk� kþqð Þc2þ c4

εkεjkþqj

� 	
2 εjkþqj �εk
� 

u2þ εjkþqj �εk
� 2 , ðA6Þ

which can also be written as

χ0 q, iuð Þ¼�
ð

dk

2πð Þ3
θ kF�kð Þ

εkþ εjkþqj
� 2�q2c2
h i

εjkþqj �εk
� 

εkεjkþqj u2þ εjkþqj �εk
� 2h i : ðA7Þ

This expression is equal, up to a trivial sign convention, to the first term of the longitudinal non-interacting linear-response function given by

Ramana and Rajagopal [27] (Equation (6) of Reference [27]). The expression determined in their work is not within the no-pair approximation but

within the no-sea approximation, and thus their expression includes a renormalization term coming from the negative-energy states. The no-pair

longitudinal non-interacting linear-response function of the RHEG was also calculated by Facco Bonetti et al. [31], who gave a closed-form

expression for real frequencies (Equation (A1) of Reference [31]). However, to the best of our knowledge, their expression cannot be straightfor-

wardly used for imaginary frequencies. We prefer then to use Equation (A7) in order to work with imaginary frequencies. After introducing

adimensional variables and simplifying, Equation (A7) leads to Equation (12) and we perform the integral numerically. For more details on the deri-

vation of Equation (A7), see Reference [38].
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