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ABSTRACT
We develop relativistic short-range exchange energy functionals for four-component relativistic range-separated density-functional theory
using a Dirac–Coulomb Hamiltonian in the no-pair approximation. We show how to improve the short-range local-density approximation
exchange functional for large range-separation parameters by using the on-top exchange pair density as a new variable. We also develop a
relativistic short-range generalized-gradient approximation exchange functional that further increases the accuracy for small range-separation
parameters. Tests on the helium, beryllium, neon, and argon isoelectronic series up to high nuclear charges show that the latter functional
gives exchange energies with a maximal relative percentage error of 3%. The development of this exchange functional represents a step
forward for the application of four-component relativistic range-separated density-functional theory to chemical compounds with heavy
elements.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0004926., s

I. INTRODUCTION

Range-separated density-functional theory (RS-DFT) (see, e.g.,
Refs. 1 and 2) is an extension of Kohn–Sham density-functional
theory (DFT)3 that rigorously combines a wave-function method
accounting for the long-range part of the electron–electron interac-
tion with a complementary short-range density functional. RS-DFT
has a faster basis convergence than standard wave-function theory
(WFT)4 and can improve over usual Kohn–Sham density-functional
approximations (DFAs) for the description of strong-correlation
effects (see, e.g., Refs. 5 and 6) or weak intermolecular interactions
(see, e.g., Refs. 7 and 8).

For the description of compounds with heavy elements, RS-
DFT can be extended to a four-component relativistic frame-
work.9–11 In particular, in Refs. 9 and 10, second-order Møller–
Plesset perturbation theory and coupled-cluster theory based
on a no-pair Dirac–Coulomb Hamiltonian with long-range
electron–electron interactions were combined with short-range

non-relativistic exchange-correlation DFAs and applied to heavy
rare-gas dimers. One limitation, at least in principle, in these works
is the neglect of relativity in the short-range density functionals.
It is thus desirable to develop appropriate short-range relativistic
exchange-correlation DFAs for four-component RS-DFT in order
to quantify the error due to the neglect of relativity in the short-
range density functionals and possibly increase the accuracy of these
approaches. As a first step toward this, in Ref. 11, some of the present
authors developed a short-range relativistic local density-functional
approximation (srRLDA) exchange functional based on calcula-
tions on the relativistic homogeneous electron gas (RHEG) with the
Coulomb and Coulomb–Breit electron–electron interactions in the
no-pair approximation.

In the present work, we test this srRLDA exchange functional
on atomic systems, namely, the helium, beryllium, neon, and argon
isoelectronic series up to high nuclear charges Z, using a four-
component Dirac–Coulomb Hamiltonian in the no-pair approxi-
mation. We reveal that, for these relativistic ions with large Z, the
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srRLDA exchange functional is quite inaccurate even for large val-
ues of the range-separation parameter μ. We show how this func-
tional can be improved by using the on-top exchange pair density
as a new variable. Finally, we further improve the short-range rela-
tivistic exchange functional by constructing a generalized-gradient
approximation (GGA), achieving a 3% maximal relative energy
error.

This paper is organized as follows. In Sec. II, we lay out
the formalism of RS-DFT for a four-component relativistic Dirac–
Coulomb Hamiltonian in the no-pair approximation. In Sec. III, we
give the computational details for our calculations. In Sec. IV, we
test the srRLDA exchange functional and discuss its limitations. In
Sec. V, we improve the srRLDA exchange functional by using the
on-top exchange pair density. In Sec. VI, we construct and test short-
range relativistic exchange GGAs. Finally, Sec. VII summarizes our
conclusions. In Appendixes A and B, we derive the uniform coordi-
nate scaling relation for the relativistic short-range exchange density
functional and the expression of the on-top exchange pair density in
a four-component no-pair relativistic framework.

II. RELATIVISTIC RANGE-SEPARATED
DENSITY-FUNCTIONAL THEORY

Let us first discuss the choice of the relativistic quantum many-
particle theory on which to base relativistic RS-DFT and the gen-
eral strategy that we follow in this work. Clearly, since RS-DFT
combines WFT and DFT, we need a relativistic framework, which
is convenient for both of them. Relativistic Kohn–Sham DFT has
been formulated based on quantum electrodynamics (QED),12–14

even though the no-pair approximation15,16 is normally introduced
at a later stage for practical calculations. As regards WFT, the best
tractable relativistic framework is the recently developed effective
QED Hamiltonian17–21 incorporating all QED effects obtained with
non-retarded two-particle interactions. In the present work, we will
stick however to the most common choice of the four-component
Dirac–Coulomb Hamiltonian in the no-pair approximation, which
can easily be used for both WFT and DFT. This relativistic frame-
work can be derived in several ways (see, e.g., Refs. 17, 18, and
20–22).

In the effective QED approach, the Hamiltonian is written in
second quantization with normal ordering with respect to the vac-
uum state of empty positive-energy one-particle states and com-
pletely filled negative-energy one-particle states while incorporating
charge-conjugation symmetry. This Hamiltonian has a stable vac-
uum state and is physically meaningful. In this approach, the no-
pair approximation, corresponding to projecting this Hamiltonian
onto the many-electron subspace generated by positive-energy one-
particle states, is just a convenient approximation (but in principle
not necessary), akin to the idea of restricting the orbitals entering the
wave function to an active orbital subspace in the complete-active-
space self-consistent-field method. The no-pair Dirac–Coulomb
Hamiltonian is then obtained by further neglecting the effective
QED one-particle potential corresponding to vacuum polarization
and electron self-energy. By contrast, in the configuration-space
approach, the Hamiltonian is written either in first quantization
or, equivalently, in “naive” second quantization (i.e., without nor-
mal ordering with respect to a stable vacuum state). The resulting

Hamiltonian has thus an unstable vacuum state, corresponding
to empty positive-energy one-particle states and empty negative-
energy one-particle states, and no bound states (the electronic states
that should be normally bound being embedded in the continuum
of excitations to positive-energy states and deexcitations to negative-
energy states) and hence is per se unphysical. However, by projecting
this Hamiltonian onto the many-electron subspace generated by the
positive-energy one-particle states, we recover the same physically
relevant no-pair Dirac–Coulomb Hamiltonian as the one obtained
by starting with the effective QED approach.

One drawback of the no-pair approximation is that the pro-
jector onto the subspace of electronic states depends on the sep-
aration between positive-energy and negative-energy one-particle
states, and therefore, it depends on the potential used to generate
these one-particle states. If the projector is applied to the Hamil-
tonian, the whole resulting projected Hamiltonian is thus depen-
dent on this potential. As mentioned in Ref. 14, this is problem-
atic for formulating DFT since we cannot isolate, as normally done,
a universal part of the Hamiltonian, and we thus cannot define
universal density functionals. However, instead of thinking of the
projector as being applied to the Hamiltonian, we can equivalently
think of the projector as being applied to the considered many-
electron state and optimize the projector simultaneously with the
wave function. In this way, we can introduce universal density func-
tionals, similarly to non-relativistic DFT, defined such that, for a
given density, a constrained-search optimization of the projected
wave function will determine alone the optimal projector without
the need of pre-choosing a particular potential, at least for sys-
tems for which positive-energy and negative-energy one-particle
states can be unambiguously separated. Again, both the effective
QED approach and the configuration-space approach can a priori
be used for doing so. In the effective QED approach, the projec-
tor would be optimized (by rotations between positive-energy and
negative-energy one-particle states) using an energy minimization
principle. In the configuration-space approach, the projector is opti-
mized using a minmax principle.23–28 In the present work, we fol-
low the configuration-space approach and leave for future work the
alternative formulation based on the effective QED approach.

We thus start with the Dirac–Coulomb electronic Hamiltonian
(see, e.g., Refs. 29 and 30)

Ĥ = T̂D + V̂ne + Ŵee, (1)

where the kinetic + rest mass Dirac operator T̂D, the nucleus–
electron interaction operator V̂ne, and the Coulomb electron–
electron interaction operator Ŵee are expressed using four-
component creation and annihilation field operators ψ̂†

(r) and ψ̂(r)
without normal reordering with respect to a stable vacuum state. We
thus write T̂D as

T̂D = ∫ ψ̂†
(r)[c (α ⋅ p) + β mc2

]ψ̂(r) dr, (2)

where p = −i∇r is the momentum operator, c = 137.036 a.u. is the
speed of light, m = 1 a.u. is the electron mass, and α and β are the
4 × 4 Dirac matrices,

α = (02 σ
σ 02

) and β = (I2 02
02 −I2

), (3)
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where σ = (σx, σy, σz) is the three-dimensional vector of the 2 × 2
Pauli matrices and 02 and I2 are the 2 × 2 zero and identity matrices,
respectively. Similarly, we write V̂ne and Ŵee as

V̂ne = ∫ vne(r) n̂(r) dr, (4)

where vne(r) is the nucleus-electron potential, and

Ŵee =
1
2∬

wee(r12) n̂2(r1, r2) dr1dr2, (5)

where wee(r12) = 1/r12 is the Coulomb electron–electron potential,
and n̂(r) = ψ̂†

(r)ψ̂(r) and n̂2(r1, r2) = ψ̂†
(r1)ψ̂†

(r2)ψ̂(r2)ψ̂(r1)

are the density and pair density operators, respectively.
Introducing a set of orthonormal four-component-spinor

orbitals {ψp(r)} that are eigenfunctions of a one-particle Dirac
Hamiltonian with some potential, and assuming that this set of
orbitals can be partitioned into a set of positive-energy orbitals and a
set of negative-energy orbitals, {ψp(r)} = {ψp(r)}εp>0∪{ψp(r)}εp<0,
the no-pair15,16 relativistic ground-state energy of an N-electron sys-
tem can be defined using a minmax principle,23–28 which we will
formally write as

E0 = minmax
Ψ+

⟨Ψ+∣T̂D + V̂ne + Ŵee∣Ψ+⟩. (6)

In this equation, we search over normalized wave functions of
the form ∣Ψ+⟩ = P̂+∣Ψ⟩, where P̂+ is the projector on the N-
electron-state space generated by the set of positive-energy orbitals
{ψp(r)}εp>0 and |Ψ⟩ is a general N-electron antisymmetric wave
function, and the notation minmaxΨ+ = minΨ maxP̂+

= maxP̂+
minΨ

means a minimization with respect to Ψ and a maximization with
respect to P̂+. This maximization must be done by rotations of the
positive-energy orbitals {ψp(r)}εp>0 with its complementary set of
negative-energy orbitals {ψp(r)}εp<0. Here, we have assumed that
the optimum of minmax is a saddle point in the wave-function
parameter space [which can be calculated with a multiconfiguration
self-consistent-field (MCSCF) algorithm28,31,32], so that the same
energy is obtained whatever the order of minΨ and maxP̂+

. Note
that, in the non-relativistic limit (c → ∞), the energy gap between
positive- and negative-energy orbitals of order 2mc2 goes to infinity
and the maximization over P̂+ becomes useless, and thus, the min-
max principle properly reduces to the non-relativistic minimization
principle.

Now, we attempt to formulate a relativistic DFT within this no-
pair approximation. Following the spirit of the constrained-search
formulation of non-relativistic DFT,33,34 we propose to define the
no-pair relativistic universal density functional as

F[n] = minmax
Ψ+→n

⟨Ψ+∣T̂D + Ŵee∣Ψ+⟩

= ⟨Ψ+[n]∣T̂D + Ŵee∣Ψ+[n]⟩, (7)

where the minmax procedure is identical to that in Eq. (6) except
for the additional constraint that Ψ+ yields the density n, i.e.,
⟨Ψ+∣n̂(r)∣Ψ+⟩ = n(r). In Eq. (7), Ψ+[n] is the optimal wave function
for the density n. We will again assume that the optimum of minmax
is a saddle point in the density-constrained wave-function parameter
subspace. Of course, this functional is only defined for densities that

come from a wave function of the form of Ψ+, which we will refer
to as Ψ+-representable densities. Note that, consistently by neglect-
ing the Breit electron–electron interaction, we will only consider
functionals of the density and not of the density current. The no-
pair relativistic ground-state energy of Eq. (6) can be in principle
obtained from F[n] as a stationary point with respect to variations
over Ψ+-representable densities,

E0 ∈ stat
n
{F[n] + ∫ vne(r) n(r) dr}, (8)

where we have introduced the notation statn to designate the set of
stationary energies with respect to variations of n. Due to the min-
max principle in Eqs. (6) and (7), we can only assume a stationary
principle in Eq. (8), instead of the usual non-relativistic minimiza-
tion principle over densities. This situation is in fact similar to the
problem of formulating a pure-state time-independent variational
extension of DFT for excited-state energies.35,36

We now define a no-pair relativistic long-range universal den-
sity functional, similarly to Eq. (7), as

Flr, μ
[n] = minmax

Ψ+→n
⟨Ψ+∣T̂D + Ŵ lr, μ

ee ∣Ψ+⟩

= ⟨Ψμ
+[n]∣T̂D + Ŵ lr, μ

ee ∣Ψ
μ
+[n]⟩, (9)

with the long-range electron–electron interaction operator
Ŵ lr, μ

ee = (1/2)∬ wlr, μ
ee (r12) n̂2(r1, r2) dr1dr2, where wlr, μ

ee (r12)

= erf(μr12)/r12 is the long-range electron–electron potential and μ
is the range-separation parameter. In Eq. (9), Ψμ

+[n] is the optimal
wave function for the density n and range-separation parameter μ.
We can thus decompose the density functional F[n] as

F[n] = Flr, μ
[n] + Ēsr, μ

Hxc [n], (10)

where Ēsr, μ
Hxc [n] defines the complementary relativistic short-range

Hartree-exchange-correlation density functional. Plugging Eq. (10)
into Eq. (8), we conclude that the no-pair relativistic ground-state
energy of Eq. (6) corresponds to a stationary point of the following
range-separated energy expression over Ψ+ wave functions:

E0 ∈ stat
Ψ+
{⟨Ψ+∣T̂D + V̂ne + Ŵ lr, μ

ee ∣Ψ+⟩ + Ēsr, μ
Hxc [nΨ+]}, (11)

where nΨ+ is the density of Ψ+. For practical calculations, we will
assume that the no-pair relativistic ground-state energy corresponds
in fact to the minmax search over Ψ+,

E0 = minmax
Ψ+

{⟨Ψ+∣T̂D + V̂ne + Ŵ lr, μ
ee ∣Ψ+⟩ + Ēsr, μ

Hxc [nΨ+]}. (12)

Even though we do not see any guarantee that this is always true,
it seems a reasonable working assumption for practical calculations.
In fact, it corresponds to what is done in practice in no-pair Kohn–
Sham DFT calculations,37–46 which corresponds to Eq. (12) in the
special case of μ = 0, i.e.,

E0 = minmax
Φ+

{⟨Φ+∣T̂D + V̂ne∣Φ+⟩ + EHxc[nΦ+]}, (13)

where the wave function can be restricted to a single determinant
Φ+ and EHxc[n] is the relativistic Kohn–Sham Hartree-exchange-
correlation density functional. Another special case of Eq. (12) is for
μ →∞ for which we correctly recover the wave-function theory of
Eq. (6).
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As usual, we can decompose the complementary relativistic
short-range Hartree-exchange-correlation density functional into
separate components,

Ēsr, μ
Hxc [n] = E

sr, μ
H [n] + Esr, μ

x [n] + Ēsr, μ
c [n]. (14)

In this expression, Esr,μ
H [n] is the short-range Hartree density func-

tional (which has the same expression as in the non-relativistic case),

Esr,μ
H [n] =

1
2∬

wsr, μ
ee (r12) n(r1)n(r2) dr1dr2, (15)

where wsr, μ
ee (r12) = wee(r12) − wlr, μ

ee (r12) is the short-range
electron–electron potential, and Esr, μ

x [n] is the relativistic short-
range exchange density functional,

Esr,μ
x [n] = ⟨Φ+[n]∣ Ŵ

sr,μ
ee ∣Φ+[n]⟩ − E

sr,μ
H [n], (16)

where Φ+[n] = Ψμ=0
+ [n] is the relativistic Kohn–Sham single-

determinant wave function and Ŵsr, μ
ee = (1/2)∬ wsr, μ

ee (r12) n̂2(r1, r2)

dr1dr2 is the short-range electron–electron interaction operator,
and Ēsr, μ

c [n] is the complementary relativistic short-range corre-
lation density functional. In Appendix A, we show that the rela-
tivistic short-range exchange density functional Esr,μ

x [n] satisfies a
uniform coordinate scaling relation [Eq. (A6)], which represents an
important constraint to impose in approximations.

Even though the present formulation of relativistic RS-DFT
seems reasonable for practical chemical applications, it obviously
calls for a closer mathematical examination of its domain of valid-
ity. In particular, it is clear that the minmax principle of the no-pair
approximation in the configuration-space approach breaks down in
the strong relativistic regime (i.e., for nuclear charges Z ≳ c). Of
course, in the non-relativistic limit (c → ∞), relativistic RS-DFT
properly reduces to non-relativistic RS-DFT.

III. COMPUTATIONAL SETUP
We consider the helium, beryllium, neon, and argon isoelec-

tronic series, up to the uranium nuclear chargeZ = 92. The electronic
density n(r) naturally increases in the nucleus with Z and can be con-
veniently measured with kFmax , i.e., the maximal value taken at the
nucleus by the local Fermi wave vector kF(r) = (3π2n(r))1/3. The
strength of the relativistic effects can be measured by comparing the
local Fermi wave vector kF(r) to the speed of light c ≃ 137.036 a.u.
(with h̵ = me = 1 a.u.): very little relativistic effects are expected in
regions where kF(r)≪ c, while strong relativistic effects are expected
in regions where kF(r) ≳ c.

To test the different functionals, we have first performed
four-component Dirac–Hartree–Fock (DHF) calculations based on
the relativistic Dirac–Coulomb Hamiltonian with the point-charge
nucleus, using our own program implemented as a plugin of the
software QUANTUM PACKAGE 2.0.

47 For the helium series, we use the
dyall_1s2.3z basis set of Ref. 28 except for Yb68+ and U90+ for
which the basis set was not available. For these systems, as well
as for the beryllium, neon, and argon series, we construct uncon-
tracted even-tempered Gaussian-type orbital basis sets,48 following
the primitive structure of the dyall-cvdz basis sets for He, Be, Ne,
and Ar.49 For each system and angular momentum, the exponents

of the large-component basis functions are taken as the geometric
series

ζν = ζ1 qν−1, (17)

where ζ1 is chosen among the largest exponents from the dyall-
cvdz basis set for the given element and angular momentum49,50 and
the parameter q is optimized by minimizing the DHF total energy.
The small-component basis functions are generated from the unre-
stricted kinetic-balance scheme.51 The basis-set parameters are given
in the supplementary material.

Using the previously obtained DHF orbitals, we then estimate
the short-range exact exchange energy

Esr,μ
x =

1
2∬

wsr,μ
ee (r12) n2,x(r1, r2)dr1dr2, (18)

where n2,x(r1, r2) is the exchange pair density given as

n2,x(r1, r2) = −Tr[γ(r1, r2)γ(r2, r1)], (19)

where γ(r1, r2) = ∑
N
i=1 ψi(r1)ψ†

i (r2) is the 4 × 4 one-electron density
matrix written with the four-component-spinor occupied orbitals
{ψi(r)}. This short-range DHF exchange energy is used as the ref-
erence for testing the different exchange energy functionals, which
are evaluated with the DHF density n(r) = Tr[γ(r, r)] (and the DHF
exchange on-top pair density for some of them, see below) using an
SG-2-type quadrature grid52 with the radial grid of Ref. 53.

IV. SHORT-RANGE EXCHANGE LOCAL-DENSITY
APPROXIMATIONS

The non-relativistic short-range local-density approximation
(srLDA) for the exchange functional has the expression

Esr,LDA, μ
x [n] = ∫ n(r) ϵsr,HEG, μ

x (n(r)) dr, (20)

where the non-relativistic short-range homogeneous electron gas
(HEG) exchange energy per particle ϵsr,HEG, μ

x (n) can be found in
Refs. 1, 54, and 55. The relativistic generalization of this functional,
referred to as the srRLDA, is

Esr,RLDA, μ
x [n] = ∫ n(r) ϵsr,RHEG, μ

x (n(r)) dr, (21)

where the short-range RHEG exchange energy per particle
ϵsr,RHEG, μ

x (n) is given in Ref. 11 with arbitrary accuracy as system-
atic Padé approximants with respect to the dimensionless variable
c̃ = c/kF = c/(3π2n)1/3 (we employ here the Padé approximant of
order 6) with coefficients written as functions of the dimensionless
range-separation parameter μ/kF. The dependence of ϵsr,RHEG, μ

x (n)
on the dimensionless parameters c̃ and μ/kF is a consequence of the
uniform coordinate scaling relation of Eq. (A6), which is valid of the
RHEG.

The relative percentage errors of the srLDA and srRLDA
exchange functionals with respect to the short-range DHF exchange
energy, i.e., 100 × (Esr,DFA, μ

x − Esr, μ
x )/∣E

sr, μ
x ∣, are plotted in Fig. 1 as

a function of the dimensionless range-separation parameter μ/kFmax

for three representative members of the neon isoelectronic series
(Ne, Xe44+, and Rn76+). The relativistic effects go from very small
for Ne to very large for Rn76+.
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FIG. 1. Relative percentage error of the short-range exchange energy calcu-
lated with the srLDA, srRLDA, srLDAot, and srRLDAot functionals for three
representative members of the neon isoelectronic series (Ne, Xe44+, and Rn76+).

For μ = 0, the short-range interaction reduces to the full-range
Coulomb interaction, and we observe that both the non-relativistic
and relativistic LDA exchange functionals underestimate (in abso-
lute value) the DHF exchange energy by 5%–10%. As previously

noted,56 the non-relativistic LDA exchange functional (evaluated
with a relativistic density) fortuitously gives exchange energies with
lower errors than the relativistic LDA exchange functional for sys-
tems with significant relativistic effects (Xe44+ and Rn76+). When μ
increases, the srLDA and srRLDA exchange functionals show quite
different behaviors for these relativistic systems. The relative error
of the srLDA exchange energy changes sign with μ and eventually
goes to a negative constant for μ → ∞, corresponding to an over-
estimation in absolute value. By contrast, the relative error of the
srRLDA exchange energy always remains positive and goes to a pos-
itive constant for μ → ∞, corresponding to an underestimation in
absolute value. The more relativistic the system is, the larger this
overestimation or underestimation is. While for Ne at large μ both
the srLDA and srRLDA exchange functionals have almost vanish-
ing relative errors, for Rn76+ at large μ the srLDA exchange energy
is too negative by a little more than 5% and the srRLDA exchange
energy is too positive by almost 20%. Clearly, both the srLDA
and srRLDA exchange functionals are not accurate for relativistic
systems.

In non-relativistic theory, it is known that the srLDA exchange
functional becomes exact for large μ,2 which is one of the key advan-
tages of RS-DFT. As apparent from Fig. 1, for relativistic systems,
this nice property does not hold anymore for both the srLDA and
srRLDA exchange functionals. This observation can be understood
by using the distributional asymptotic expansion of the short-range
interaction for large μ,2

wsr, μ
ee (r12) =

π
μ2 δ(r12) + O(

1
μ3 ), (22)

which directly leads to the asymptotic expansion of the short-range
exact exchange energy

Esr,μ
x =

π
2 μ2 ∫ n2,x(r, r) dr + O(

1
μ4 ), (23)

where n2,x(r, r) is the on-top exchange pair density. In the non-
relativistic theory, considering the case of closed-shell systems for
the sake of simplicity, the on-top exchange pair density is simply
given in terms of the density as57

nNR
2,x (r, r) = −

n(r)2

2
, (24)

and the srLDA exchange functional becomes indeed exact for
large μ,

Esr,LDA,μ
x [n] =

π
2 μ2 ∫ nHEG,0

2,x (n(r)) dr + O(
1
μ4 ), (25)

with the on-top exchange pair density of the non-relativistic HEG

nHEG,0
2,x (n) = −

n2

2
. (26)

In the relativistic theory, the on-top exchange pair density is no
longer a simple function of the density,

n2,x(r, r) = −Tr[γ(r, r)2
], (27)

which is not equal to −n(r)2/2, except in the special case of two elec-
trons in a unique Kramers pair (see Appendix B). Therefore, for
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relativistic systems with more than two electrons, we see that the
srLDA exchange functional is not exact for large μ [Eq. (25)]. The
srRLDA exchange functional is also not exact for large μ. It takes the
form

Esr,RLDA,μ
x [n] =

π
2 μ2 ∫ nRHEG,0

2,x (n(r)) dr + O(
1
μ4 ), (28)

with the on-top exchange pair density of the RHEG

nRHEG,0
2,x (n) = −

n2

4
(1 + h(c̃)), (29)

and the function11

h(c̃) =
9
4
[c̃2 + c̃4

− c̃4arcsinh(
1
c̃
)(2
√

1 + c̃2 − c̃2 arcsinh(
1
c̃
))].

(30)

For an alternative but equivalent expression for nRHEG,0
2,x (n), see

Eq. (A1) of Ref. 39. The srRLDA exchange functional is in fact not
even exact at large μ for two electrons in a unique Kramers pair. In
Sec. V, we show how to impose the large-μ behavior on the srLDA
and srRLDA exchange functionals.

V. SHORT-RANGE EXCHANGE LOCAL-DENSITY
APPROXIMATIONS WITH ON-TOP EXCHANGE
PAIR DENSITY

In order to impose the correct large-μ behavior on the srLDA
and srRLDA exchange functionals for relativistic systems, we need
to introduce a new ingredient in these functionals, namely, the exact
(relativistic) on-top exchange pair density n2,x(r, r), or equivalently
the on-top exchange hole

nx(r, r) =
n2,x(r, r)
n(r)

. (31)

A simple way to use nx(r, r) to correct the srLDA exchange
functional is to find, at each position r, the effective density
neff(r) at which the on-top exchange hole of the HEG, nHEG,0

x (n)
= nHEG,0

2,x (n)/n = −n/2, is equal to the on-top exchange hole of the
inhomogeneous system considered, nx(r, r), i.e.,

nHEG,0
x (neff(r)) = nx(r, r), (32)

which simply gives neff(r) = −2nx(r, r). We then define the srLDA
exchange functional with the on-top exchange pair density (srL-
DAot) using this effective density as

Esr,LDAot, μ
x [n] = ∫ n(r) ϵsr,HEG, μ

x (neff(r)) dr. (33)

This approximation could be considered either as an implicit func-
tional of the density alone since nx(r, r) is an implicit functional of
the density through the orbitals or as an explicit functional of both
the density and the on-top exchange hole nx(r, r). This approxi-
mation corresponds to changing the transferability criterion in the
LDA: at a given point r, instead of taking the exchange energy per

particle of the HEG having the same density than the inhomoge-
neous system at that point, we now take the exchange energy per
particle of the HEG having the same on-top exchange hole than the
inhomogeneous system at that point. Interestingly, this approxima-
tion can be thought of as a particular application of the recently
formalized connector theory.58,59

Similarly, we can correct the srRLDA exchange functional
by finding, at each position r, the effective density nR

eff(r)
at which the on-top exchange hole of the RHEG, nRHEG,0

x (n)
= nRHEG,0

2,x (n)/n = −(n/4)(1 +h(c̃)), is equal to the on-top exchange
hole of the inhomogeneous system considered, nx(r, r), i.e.,

nRHEG,0
x (nR

eff(r)) = nx(r, r). (34)

This equation is less trivial to solve than Eq. (32) since nRHEG,0
x (n)

is a complicated nonlinear function of n (through c̃). However, at
each point r, a unique solution nR

eff(r) exists since the function
n ↦ nRHEG,0

x (n) is monotonically decreasing and spans the domain
[−∞, 0] in which nx(r, r) necessarily belongs. In practice, we eas-
ily find nR

eff(r) by a numerical iterative method, and we use it to
define the srRLDA exchange functional with the on-top exchange
pair density (srRLDAot) as

Esr,RLDAot, μ
x [n] = ∫ n(r) ϵsr,RHEG, μ

x (nR
eff(r)) dr. (35)

Both the srLDAot and srRLDAot exchange functionals now fulfill
the exact asymptotic expansion for large μ [Eq. (23)]. In fact, restor-
ing the correct on-top value of the exchange hole could be beneficial
for any value of μ, given the fact that the accuracy of non-relativistic
Kohn–Sham exchange DFAs has been justified by the exactness of
the underlying LDA on-top exchange hole (in addition to fulfilling
the correct sum rule of the exchange hole).60 Finally, we note that, in
the non-relativistic limit (c →∞), we have neff(r) = nR

eff(r) = n(r)
and all these short-range exchange functionals reduce to the non-
relativistic srLDA exchange functional (i.e., srLDAot = srRLDAot
= srRLDA = srLDA).

The relative percentage errors of the srLDAot and srRLDAot
exchange functionals for Ne, Xe44+, and Rn76+ are reported in Fig. 1.
The most prominent feature is of course the correct recovery of
the large-μ asymptotic behavior for both the srLDAot and srRL-
DAot exchange functionals. It turns out the srLDAot and srRLDAot
exchange functionals give very similar exchange energies for all val-
ues of μ. This comes from the fact that going from srLDA to srLDAot
[Eq. (32)] tends to make the LDA exchange hole shallower and going
from srRLDA to srRLDAot [Eq. (34)] tends to make the relativistic
LDA exchange hole deeper, making finally for very close descrip-
tions. The absolute relative percentage errors of the srLDAot and
srRLDAot exchange functionals are always below 10%, and below
about 2% for μ/kFmax ≥ 0.5.

VI. SHORT-RANGE EXCHANGE
GENERALIZED-GRADIENT APPROXIMATIONS

In order to improve over the short-range LDA exchange func-
tionals at small values of the range-separation parameter μ, we
now consider short-range GGA exchange functionals. We start with
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the non-relativistic short-range extension of the Perdew–Burke–
Ernzerhof (PBE)61 theory of Refs. 62 and 63, referred to as srPBE,

Esr,PBE, μ
x [n] = ∫ n(r) ϵsr,HEG, μ

x (n(r))[1 + f μx (n(r),∇n(r))]dr,
(36)

with the function

f μx (n,∇n) = κ −
κ

1 + b(μ̃)s2/κ
, (37)

where s = |∇n|/(2kFn) is the reduced density gradient and μ̃
= μ/(2kF) is a dimensionless range-separation parameter. In this
expression, κ = 0.840 is a constant fixed by imposing the Lieb–
Oxford bound (for μ = 0) and b(μ̃) = bPBE

[bT
(μ̃)/bT

(0)]e−αx μ̃2
,

where bPBE = 0.219 51 is the second-order gradient-expansion coef-
ficient of the standard PBE exchange functional, bT

(μ̃) is a function
coming from the second-order gradient-expansion approximation
(GEA) of the short-range exchange energy and given in Refs. 64 and
65, and αx = 19.0 is a damping parameter optimized on the He atom.
For μ = 0, this srPBE exchange functional reduces to the standard
PBE exchange functional,61 and for large μ, it reduces to the srLDA
exchange functional.

A simple relativistic extension of this srPBE exchange func-
tional can be obtained by replacing the srLDA part by the srRLDA
one while using the same density-gradient correction f μx (n,∇n), to
which we will refer as srRLDA/PBE,

Esr,RLDA/PBE, μ
x [n] = ∫ n(r) ϵsr,RHEG, μ

x (n(r))

× [1 + f μx (n(r),∇n(r))]dr, (38)

which reduces to the srRLDA exchange functional for large μ.
The srPBE and srRLDA/PBE exchange functionals have the

same (incorrect) asymptotic expansions as the srLDA and srRLDA
exchange functionals [Eqs. (25) and (28)], and we can thus use the
same effective densities in Eqs. (32) and (34) to restore their large-μ
behaviors, which define the srPBEot and srRLDA/PBEot exchange
functionals,

Esr,PBEot, μ
x [n] = ∫ n(r) ϵsr,HEG, μ

x (neff(r))

× [1 + f μx (neff(r),∇neff(r))]dr, (39)

where∇neff(r) = −2∇nx(r, r), and

Esr,RLDA/PBEot, μ
x [n] = ∫ n(r) ϵsr,RHEG, μ

x (nR
eff(r))

× [1 + f μx (n
R
eff(r),∇n

R
eff(r))]dr, (40)

where∇nR
eff(r) = [dn

RHEG,0
x (nR

eff(r))/dn
R
eff]
−1
∇nx(r, r).

In Fig. 2, we report the relative percentage errors of the srPBE,
srRLDA/PBE, srPBEot, and srRLDA/PBEot exchange energies for
Ne, Xe44+, and Rn76+. For Ne, where the relativistic effects are
very small, all these functionals give almost the same exchange
energy, as expected. For Xe44+ and Rn76+, even though the srPBE
and srRLDA/PBE exchange functionals are more accurate than the
srLDA and srRLDA exchange functionals at μ = 0 (see Fig. 1),
they eventually suffer from the same large inaccuracy as srLDA and

FIG. 2. Relative percentage error of the short-range exchange energy calculated
with the srPBE, srRLDA/PBE, srPBEot, and srRLDA/PBEot functionals for three
representative members of the neon isoelectronic series (Ne, Xe44+, and Rn76+).

srRLDA as μ increases. This problem is solved by using the effec-
tive densities from the on-top exchange pair density, the srPBEot
and srRLDA/PBEot exchange functionals giving vanishing errors at
large μ. Similarly to what was observed for srLDAot and srRLDAot,
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FIG. 3. Relativistic correction factor ϕμ(n) to the density-gradient term [Eq. (42)] as
a function of kF for several values of μ.

the srPBEot and srRLDA/PBEot functionals give very close exchange
energies for all values of μ. Interestingly, we see that using the effec-
tive densities also reduces the errors of srPBE and srRLDA/PBE at
μ = 0, making srPBEot and srRLDA/PBEot quite accurate in this

full-range limit. Thus, the srPBEot and srRLDA/PBEot exchange
functionals are definitely an improvement over srLDAot and srRL-
DAot. We observe a maximal absolute percentage error of about 3%
for Rn76+ for μ/kFmax ≈ 0.2.

In order to further reduce the errors, in particular for interme-
diate values of μ, we now consider a relativistic correction to the
density-gradient term in the srRLDA/PBEot exchange functional.
We define a short-range relativistic PBE exchange functional using
the on-top exchange pair density, referred to as srRPBEot,

Esr,RPBEot, μ
x [n] = ∫ n(r) ϵsr,RHEG, μ

x (nR
eff(r))

× [1 + f μx (n
R
eff(r),∇n

R
eff(r)) ϕ

μ
(nR

eff(r))]dr, (41)

where, in the spirit of the work of Engel et al.,56 we have introduced
a multiplicative relativistic correction ϕμ(n) to the term f μx (n,∇n) of
the form

ϕμ(n) =
1 + a1(μ/c)

c̃2 + a2(μ/c)
c̃4

1 + b1(μ/c)
c̃2 + b2(μ/c)

c̃4

. (42)

Since ϕμ(n) only depends on the dimensionless parameters c̃ and μ/c,
it does not change the uniform coordinate scaling of the functional,
which still fulfills the scaling relation of Eq. (A6).

FIG. 4. Relative percentage error of the short-range exchange energy calculated with the srRPBEot functional for systems of helium, beryllium, neon, and argon isoelectronic
series.
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After some tests, we chose to impose a1(μ/c) = b1(μ/c) to
avoid overcorrections in low-density regions, which have very
small relativistic effects. We started to determine the coefficients
for μ = 0 by minimizing the mean squared relative percent-
age error of the exchange energy with respect to the reference
DHF exchange energy for seven systems of the neon isoelectronic
series (Ne, Ar8+, Kr26+, Xe44+, Yb60+, Rn76+, U82+), giving a1(0)
= b1(0) = 1.3824, a2(0) = 0.3753, and b2 = 0.4096. The resulting
relativistic correction factor ϕμ=0(n) can be seen in Fig. 3. It cor-
rectly tends to 1 in the low-density (kF → 0) or non-relativistic
(c→∞) limit and remains very close to 1 for kF≪ c. In regions with
very high densities, the relativistic correction factor ϕμ=0(n) induces
a slight reduction of the effective density-gradient correction term
in the functional, reducing a bit the relative error of the exchange
energy for the heaviest systems.

For μ ≠ 0, we have searched for coefficients in Eq. (42), which
reduce the largest errors of the srRLDA/PBEot exchange energy
observed at intermediate values of μ (see Fig. 2). We chose coeffi-
cients depending on μ/c of the form

a1(μ/c) = b1(μ/c) = a1(0)[1 − erf(μ/c)], (43)

a2(μ/c) = a2(0)[1 − erf(μ/c)], (44)

b2(μ/c) = b2(0)[1 − β erf(μ/c)], (45)

with β = −4.235, which has been found by minimizing the mean
squared relative percentage error of the short-range exchange energy
for the same seven systems of the neon isoelectronic series and
for four intermediate values of the range-separation parameter
(μ/kFmax = 0.05; 0.1; 0.2; 0.4). The resulting relativistic correction fac-
tor ϕμ(n) is reported in Fig. 3. It still tends to 1 in the low-density
limit but goes down to 0 when μ≫ c in the high-density limit. The
higher the value of μ, the faster it decreases as a function of kF.

In Fig. 4, we report the relative percentage errors of the srRP-
BEot exchange functional for systems of the helium, beryllium,
neon, and argon series. For μ = 0, this functional achieves an
error of at most about 1% for all systems, and it has the cor-
rect large-μ limit. The maximum absolute percentage errors, which
are found for intermediate values of μ, tend to grow with Z but
remain at most about 3% for the heavier systems. The srRPBEot
exchange functional represents a significant improvement over the
srPBEot and srRLDA/PBEot exchange functionals for the heavier
systems.

VII. CONCLUSIONS
In this work, we have tested the srRLDA exchange functional

developed in Ref. 11 on three systems of the neon isoelectronic series
(Ne, Xe44+, and Rn76+) and compared it to the usual non-relativistic
srLDA exchange functional. Both functionals are quite inaccurate
for relativistic systems and do not have the correct asymptotic
behavior for a large range-separation parameter μ. In order to fix this
large-μ behavior, we have then defined the srLDAot and srRLDAot
exchange functionals by introducing the exact on-top exchange pair
density as a new variable. These functionals recover the correct
asymptotic behavior for large μ but remain inaccurate for small

values of μ. To improve the accuracy for small values of μ, we have
then developed a relativistic short-range GGA exchange functional
also using the on-top exchange pair density as an extension of the
non-relativistic srPBE exchange functional. Tests on the systems of
the isoelectronic series of He, Be, Ne, and Ar up to Z = 92 show that
this srRPBEot exchange functional gives a maximal relative percent-
age error of 3% for intermediate values of μ and less than 1% relative
error for μ = 0. Of course, in the non-relativistic limit (c →∞), all
the relativistic functionals introduced in this work properly reduce
to their non-relativistic counterparts.

Possible continuations of this work include further tests on
atoms and molecules, extension to the Gaunt or Breit electron–
electron interactions, development of the short-range relativis-
tic correlation functionals, and use of a local range-separation
parameter.

SUPPLEMENTARY MATERIAL

See the supplementary material for the parameters of the even-
tempered basis sets constructed in this work.

APPENDIX A: UNIFORM COORDINATE SCALING
RELATION FOR THE RELATIVISTIC NO-PAIR
SHORT-RANGE EXCHANGE DENSITY FUNCTIONAL

Here, we generalize the uniform coordinate scaling relation of
the non-relativistic exchange density functional66 and of the non-
relativistic short-range exchange density functional67 to the case of
the relativistic no-pair short-range exchange density functional of
Eq. (16). Since the scaling relation involves scaling the speed of light
c, we will explicitly indicate in this section the dependence on c.

First, we introduce the non-interacting Dirac kinetic + rest
mass energy density functionalTc

s [n] defined by Eq. (9) in the special
case of a vanishing range-separation parameter, μ = 0,

Tc
s [n] = minmax

Φ+→n
⟨Φ+∣T̂c

D∣Φ+⟩ = ⟨Φc
+[n]∣T̂

c
D∣Φ

c
+[n]⟩, (A1)

where Φc
+[n] is the relativistic Kohn–Sham single-determinant wave

function. Let us now consider the scaled wave function Φc
+,γ[n]

defined by, for N electrons,

Φc
+,γ[n](r1, . . . , rN) = γ3N/2Φc

+[n](γr1, . . . , γrN), (A2)

where γ > 0 is a scaling factor. The wave function Φc
+,γ[n] yields

the scaled density nγ(r) = γ3n(γr) and is the minmax optimal wave
function of ⟨Φ+∣T̂

cγ
D ∣Φ+⟩ since it can be checked that

⟨Φc
+,γ[n]∣T̂

cγ
D ∣Φ

c
+,γ[n]⟩ = γ

2
⟨Φc

+[n]∣T̂
c
D∣Φ

c
+[n]⟩, (A3)

and the right-hand side is minmax optimal by definition of Φc
+[n].

Therefore, we conclude that

Φc
+,γ[n] = Φ

cγ
+ [nγ]. (A4)

From the definition of the relativistic short-range exchange energy
density functional Esr,μ,c

x [n] = ⟨Φc
+[n]∣ Ŵ

sr,μ
ee ∣Φc

+[n]⟩ − E
sr,μ
H [n], we

then arrive at the scaling relation
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Esr,μγ,cγ
x [nγ] = γEsr,μ,c

x [n], (A5)

or, equivalently,

Esr,μ,c
x [nγ] = γEsr,μ/γ,c/γ

x [n]. (A6)

This scaling relation is an important constraint that is satisfied
by our approximate density functionals. Besides, it shows that the
low-density limit (γ → 0) corresponds to the non-relativistic limit
(c → ∞), while the high-density limit (γ → ∞) corresponds to the
ultra-relativistic limit (c→ 0). It also shows that, for a fixed value of
the range-separation parameter μ, low-density regions explore the
functional in the short-range limit (μ→∞) and high-density regions
explore the functional in the full-range limit (μ = 0).

APPENDIX B: ON-TOP EXCHANGE PAIR
DENSITY IN A FOUR-COMPONENT RELATIVISTIC
FRAMEWORK

Using four-component-spinor orbitals

ψi(r) =

⎛
⎜
⎜
⎜
⎜
⎝

ψLα
i (r)
ψLβ
i (r)
ψSα
i (r)
ψSβ
i (r)

⎞
⎟
⎟
⎟
⎟
⎠

, (B1)

the on-top value of the 4 × 4 one-electron density matrix has the
expression

γ(r, r) =
N

∑
i=1
ψi(r) ψ†

i (r) =

⎛
⎜
⎜
⎜
⎜
⎝

ψLα
i (r)ψLα

i (r)∗ ψLα
i (r)ψ

Lβ
i (r)

∗ ψLα
i (r)ψSα

i (r)∗ ψLα
i (r)ψ

Sβ
i (r)

∗

ψLβ
i (r)ψ

Lα
i (r)∗ ψLβ

i (r)ψ
Lβ
i (r)

∗ ψLβ
i (r)ψ

Sα
i (r)∗ ψLβ

i (r)ψ
Sβ
i (r)

∗

ψSα
i (r)ψLα

i (r)∗ ψSα
i (r)ψ

Lβ
i (r)

∗ ψSα
i (r)ψSα

i (r)∗ ψSα
i (r)ψ

Sβ
i (r)

∗

ψSβ
i (r)ψ

Lα
i (r)∗ ψSβ

i (r)ψ
Lβ
i (r)

∗ ψSβ
i (r)ψ

Sα
i (r)∗ ψSβ

i (r)ψ
Sβ
i (r)

∗

⎞
⎟
⎟
⎟
⎟
⎠

, (B2)

which leads to the density

n(r) = Tr[γ(r, r)] =
N

∑
i=1
∣ψLα

i (r)∣
2 + ∣ψLβ

i (r)∣
2 + ∣ψSα

i (r)∣
2 + ∣ψSβ

i (r)∣
2. (B3)

The on-top exchange pair density has the expression

n2,x(r, r) = −Tr[γ(r, r)2
] = −

N

∑
i=1

N

∑
j=1
(∣ψLα

i (r)∣
2
∣ψLα

j (r)∣
2 + ∣ψLβ

i (r)∣
2
∣ψLβ

j (r)∣
2 + 2ψLα

i (r)ψ
Lβ
i (r)

∗ψLβ
j (r)ψ

Lα
j (r)

∗

+ ∣ψSα
i (r)∣

2
∣ψSα

j (r)∣
2 + ∣ψSβ

i (r)∣
2
∣ψSβ

j (r)∣
2 + 2ψSα

i (r)ψ
Sβ
i (r)

∗ψSβ
j (r)ψ

Sα
j (r)

∗ + 2ψLα
i (r)ψ

Sα
i (r)

∗ψSα
j (r)ψ

Lα
j (r)

∗

+ 2ψLβ
i (r)ψ

Sβ
i (r)

∗ψSβ
j (r)ψ

Lβ
j (r)

∗ + 2ψLα
i (r)ψ

Sβ
i (r)

∗ψSβ
j (r)ψ

Lα
j (r)

∗ + 2ψLβ
i (r)ψ

Sα
i (r)

∗ψSα
j (r)ψ

Lβ
j (r)

∗
). (B4)

In the non-relativistic limit, each orbital has a definite spin state, i.e.,
ψi(r) = (ψLα

i (r), 0, 0, 0) or ψi(r) = (0,ψLβ
i (r), 0, 0), and we recover

the well-known expression of the on-top exchange pair density in
terms of the spin densities

nNR
2,x (r, r) = −

N

∑
i=1

N

∑
j=1
(∣ψLα

i (r)∣
2
∣ψLα

j (r)∣
2 + ∣ψLβ

i (r)∣
2
∣ψLβ

j (r)∣
2
)

= −nα(r)2
− nβ(r)

2, (B5)

or, for closed-shell systems, nNR
2,x (r, r) = −n(r)2

/2. However, in
the relativistic case, n2,x(r, r) can no longer be generally expressed
explicitly with the density, as seen from the presence of terms mix-
ing different spinor components in Eq. (B4). There are however
two exceptions. The first exception is provided by one-electron sys-
tems for which it is easy to check that n2,x(r, r) = −n(r)2, as in
the non-relativistic case. The second exception is provided by sys-
tems of two electrons in a unique Kramers pair, for which n2,x(r, r)
= −n(r)2/2, as in the non-relativistic case. Indeed, for closed-shell
systems, the one-electron density matrix can be decomposed into
Kramers contributions,

γ(r, r) = γ+(r, r) + γ−(r, r), (B6)

where γ+(r, r) = ∑N/2
i=1 ψi(r)ψ†

i (r) and γ−(r, r) = ∑N/2
i=1 ψ̄i(r) ψ̄†

i (r),
and ψ̄i(r) is the Kramers partner of ψi(r),

ψ̄i(r) =

⎛
⎜
⎜
⎜
⎜
⎝

−ψLβ
i (r)

∗

ψLα
i (r)∗

−ψSβ
i (r)

∗

ψSα
i (r)∗

⎞
⎟
⎟
⎟
⎟
⎠

. (B7)

In this case, the density can then be expressed as n(r) = 2Tr[γ+(r, r)]
and the on-top exchange pair density as

n2,x(r, r) = −2(Tr[γ+(r, r)2
] + Tr[γ+(r, r)γ−(r, r)]), (B8)

where we have used Tr[γ+(r, r)2] = Tr[γ−(r,r)2]. For a unique
Kramers pair (i.e., for N = 2), it is easy to check that Tr[γ+(r, r)2

]

= (Tr[γ+(r, r)])2 and Tr[γ+(r, r)γ−(r, r)] = 0, and thus,

n2,x(r, r) = −2(Tr[γ+(r, r)])2
= −

n(r)2

2
for N = 2. (B9)
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The reason why systems with one electron or two electrons in
a single Kramers pair constitute exceptions is that, in these sys-
tems, exchange only represents in fact a self-interaction correction,
and we have Esr,μ

x [n] = −E
sr,μ
H [n] for one electron and Esr,μ

x [n]
= −(1/2)Esr,μ

H [n] for two electrons in a single Kramers pair, as for
the non-relativistic theory.
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