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ABSTRACT
We investigate fractional-charge and fractional-spin errors in range-separated density-functional
theory (DFT). Specifically, we consider the range-separated hybrid (RSH) method which combines
long-range Hartree-Fock (HF) exchange with a short-range semilocal exchange-correlation density
functional, and the RSH+MP2 method which adds long-range, second-order Møller-Plesset (MP2)
correlation. Results on atoms and molecules show that the fractional-charge errors obtained in RSH
are much smaller than in the standard Kohn-Sham (KS) scheme applied with semilocal or hybrid
approximations, and also generally smaller than in the standard HF method. The RSH+MP2 method
tends to have smaller fractional-charge errors than standard MP2 for the most diffuse systems,
but larger fractional-charge errors for the more compact systems. Even though the individual
contributions to the fractional-spin errors in the H atom coming from the short-range exchange and
correlation density-functional approximations are smaller than the corresponding contributions for
the full-range exchange and correlation density-functional approximations, RSH gives fractional-spin
errors that are larger than in the standard KS scheme and only slightly smaller than in standard HF.
Adding long-range MP2 correlation only leads to infinite fractional-spin errors. This work clarifies the
successes and limitations of range-separated DFT approaches for eliminating self-interaction and
static-correlation errors.

1. Introduction

The study of systems with fractional electron num-
bers proved to be extremely useful to diagnose the
errors of computational electronic-structure methods, in
particular methods based on density-functional theory
(DFT) [1,2]. Using the grand-canonical ensemble formal-
ism, the exact ground-state energy EN of a system with a
fractional electronnumberN=M+ δ, whereM is an inte-
ger and 0� δ � 1, was showed to be a linear function of δ,
interpolating between the ground-state energies EM and
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EM + 1 of the adjacentM- and (M+ 1)-electron systems [3]
(see also Ref. 4 for a pure-state view)

EN = (1 − δ)EM + δEM+1. (1)

The deviation from this piecewise linearity behaviour of
the energy obtained with a given approximate method is
a measure of the (many-electron) self-interaction error
[5–8], also called the delocalisation error or the
fractional-charge error [9], of this method.
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For systems with degenerate ground states with dif-
ferent spin, another useful condition can be derived. For
example, for a system with a spin-doublet ground state,
such as the hydrogen atom or the lithium atom, the exact
ground-state energy EN↑,N↓ with fractional spin-up and
spin-down electron numbers, N↑ = M/2 + 1 − δ and
N↓ = M/2 + δ where M is an even integer and 0 � δ �
1, is independent of δ

EN↑,N↓ = EM/2+1,M/2 = EM/2,M/2+1. (2)

This is known as the constancy condition [10]. The devia-
tion from this constancy condition of the energy obtained
with a given approximate method is a measure of the
static (or strong) correlation error, also called fractional-
spin error in this context. The conditions of Eqs. (1)
and (2) can be unified and extended to the so-called flat-
plane condition [11].

An ideal computational electronic-structure method
should fulfill the two conditions of Equations (1) and (2).
Let us first focus on the deviation from Equation (1),
i.e. on the fractional-charge error. Semilocal density-
functional approximations (DFAs), i.e. the local-density
approximation (LDA), generalised-gradient approxima-
tions (GGA) andmeta-GGAapproximations, tend to give
convex energy curves as a function of N, i.e. favouring
too much electron delocalisation [5,8]. On the oppo-
site, Hartree-Fock (HF) gives concave energy curves, i.e.
favouring too much electron localisation [5,8]. Hybrid
approximations combining a fraction of HF exchange
with a semilocal DFA help to reduce fractional-charge
errors, even though they still give significantly con-
vex energy curves [5,8]. Long-range corrected (LC) [12]
or Coulomb-attenuated-method (CAM) [13] approxi-
mations introducing 100% of HF exchange at long-
range electron-electron distances tend to further reduce
fractional-charge errors [5,8,14–16]. Moving now to
approximations depending on virtual orbitals, second-
order Møller-Plesset (MP2) perturbation theory was
found to give very small fractional-charge errors [17,18].
Double-hybrid (DH) approximations [19], combining
HF exchange and MP2 correlation with a semilocal
DFA, inherit from the good fractional-charge behaviour
of standard MP2, and lead to smaller fractional-
charge errors than standard hybrid approximations, even
though the errors are generally larger than in stan-
dard MP2 [20,21]. The random-phase approximation
(RPA) in its simplest direct variant [22] gives quite con-
vex energy curves as a function of N, corresponding
to a large delocalisation error [23–25]. This fractional-
charge error can be very much reduced by adding the
HF exchange kernel within the standard (particle-hole)

RPA approach [23] or within the particle-particle RPA
approach [26]. Finally, coupled-cluster methods with sin-
gle and double excitations (CCSD) and perturbative triple
excitations [CCSD(T)] have also been extended to frac-
tional electron numbers and have been found to nearly
satisfy the exact piecewise linear behaviour [27].

Let us now focus on the deviation from Equation (2),
i.e. on the fractional-spin error. It turns out that most
of the symmetry-unbroken single-determinant-reference
methods giving small fractional-charge errors tend to
give large fractional-spin errors, and vice versa. For exam-
ple, while the addition of HF exchange in hybrid approx-
imations helps decrease fractional-charge errors, as pre-
viously mentioned, it also increases fractional-spin errors
in comparison to semilocal DFAs [10]. Even more illus-
trative is the case of MP2 which is among the meth-
ods giving the smallest fractional-charge errors, and also
gives infinite fractional-spin errors [17]. This last prob-
lem is partly overcome by self-consistent MP2 based
on Green-function theory which gives finite (but not
very small) fractional-spin errors in the fractional-spin H
atom [28]. Direct RPA has no fractional-spin errors for
the fractional-spin H atom [23,24], while CCSD shows
fractional-spin errors in systems with more than two
degenerate fractionally occupied orbitals. So far, only
particle–particle RPA seems to be able to give both small
fractional-charge and fractional-spin errors [26].

In this work, we investigate the fractional-charge and
fractional-spin errors in range-separated DFT (see, e.g.
Refs. 29 and 30) for some atoms (H, He, Li, Be, B, C,
N, O, F) and molecules (N2 and CO). We first focus on
the range-separated hybrid (RSH) approximation which
combines long-range HF exchange with a short-range
exchange-correlation DFA [31–33], which is similar but
not identical to the LC scheme. In particular, we analyse
the contributions to the fractional-charge and fractional-
spin errors coming from the short-range exchange and
correlation DFAs. We then also study the effect of adding
a long-range correlation energy calculated at the MP2
level [32,34,35]. Our work helps clarify the successes and
limitations of range-separated DFT approaches for elim-
inating self-interaction and static-correlation errors.

2. Range-separated DFT with fractional electron
numbers

2.1. RSH approximation

The extension of the RSH scheme [32] to fractional elec-
tron numbers is easily performed, just like forHF or other
hybrid Kohn-Sham approximations [5], by introducing
fractional occupation numbers nk for the RSH orbitals
ϕk(r). The total electronic energy in the spin-unrestricted
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RSH approximation is thus written as, in atomic units,

ERSH =
∑
k

nk
∫

ϕ∗
k (r)

[
−1
2
∇2 + vne(r)

]
ϕk(r)dr

+EH[n] + E lr
x + Esr

xc[n↑, n↓], (3)

where k is a spin-orbital index implicitly including a spin
index (σ = ↑,↓), vne(r) is the nuclei-electron interaction,
EH[n] is the full-range Hartree energy depending on the
total density n(r) = ∑

σ nσ (r)

EH[n] = 1
2

∫∫
n(r1)n(r2)wee(|r2 − r1|)dr1dr2, (4)

with the standard Coulomb electron–electron interac-
tion wee(r) = 1/r, E lr

x is the long-range HF exchange
energy depending on the spin-resolved one-particle den-
sity matrix γσ (r1, r2)

E lr
x = −1

2

∑
σ

∫∫
|γσ (r1, r2)|2wlr

ee(|r2 − r1|)dr1dr2, (5)

with the long-range electron–electron interaction
wlr

ee(r) = er f (μr)/r and the range-separation param-
eter μ, and Esr

xc[n↑, n↓] is the short-range exchange-
correlation energy depending on the spin densities
nσ (r). The spin densities and the one-particle density
matrix are expressed with the fractional orbital occupa-
tion numbers

nσ (r) =
∑

k of spin σ

nk|ϕk(r)|2, (6)

and

γσ (r, r′) =
∑

k of spin σ

nkϕ∗
k (r

′)ϕk(r), (7)

where the sum is overall spin orbitals k of spin σ .
Forμ = 0, fractional occupation number RSH reduces

to Kohn-Sham DFT, while for μ → � it reduces to the
HF method, both in their extended versions to fractional
occupation numbers. The RSH approximation is similar
to the LC scheme [12], except that in the latter a full-
range correlation functional is used instead of a short-
range correlation functional. We note that other defini-
tions of the Hartree and exact exchange contributions for
an ensemble than the ones of Equations (4) and (5) are
possible (see, e.g. Refs. 36 and 37). The ones of Equa-
tions (4) and (5), based on the ensemble density of Equa-
tion (6) and the ensemble one-particle density matrix of
Equation (7), are the relevant ones for the purpose of ana-
lyzing fractional systems arising for example frommolec-
ular dissociations.

In practice, in an atomic-orbital (AO) basis {χμ(r)},
the total RSH electronic energy is calculated as

ERSH =
∑
μν

Pνμ

[
hμν + 1

2
(
Jμν − K lr

μν

)] + Esr
xc[n↑, n↓],

(8)

where Pμν = ∑
σ P

σ
μν is the total AO density matrix, hμν

are the one-electron (kinetic + electron–nuclei) inte-
grals, Jμν = �λγPγ λ〈μλ|νγ 〉 is the Hartree contribution,
K lr

μν = ∑
λγ Pγ λ〈μλ|γ ν〉lr is the long-range HF exchange

contribution and the spin densities are calculated as
nσ (r) = ∑

μν P
σ
μνχμ(r)χ∗

ν (r) with the spin-resolved AO
density matrix Pσ

μν . In these expressions, 〈μλ|νγ 〉 are
the two-electron integrals for the Coulomb interaction
wee(r) and 〈μλ|γ ν〉lr are the two-electron integrals for
the long-range interaction wlr

ee(r). The fractional occu-
pation numbers nk only appear in the AO density matrix
whose expression is (assuming from now on real-valued
orbitals),

Pσ
μν =

∑
k of spin σ

nkckμckν, (9)

where ckμ is the coefficient of the spin orbital k over the
basis function χμ.

Three sets of spin orbitals can be defined:Nf fully occu-
pied spin orbitals for which nk = 1, Np partially occu-
pied spin orbitals for which 0 � nk � 1 (correspond-
ing to possibly degenerate HOMO spin orbitals for each
spin) and Nu fully unoccupied spin orbitals for which
nk = 0. We always consider fixed occupation numbers
nk which add up to the desired spin-up and spin-down
fractional electron numbers N↑ and N↓. The RSH total
energy is then minimised with respect to the orbital
coefficients.

We note that, while for the standard case of non-
fractional occupation numbers the non-redundant
orbital-rotation parameters to optimise corresponds to
occupied → unoccupied excitations, in the present case
of fractional occupation numbers there are a priorimore
orbital-rotation parameters to consider: fully occupied
→ partially occupied, fully occupied → fully unoccupied,
partially occupied → partially occupied and partially
occupied → fully unoccupied (see, e.g. Ref. 38). Hence,
the number of parameters is in principle (Nf + Np)(Np
+ Nu). However, in practice, if using canonical spin
orbitals diagonalising the Fock matrix, it is sufficient
in a program to change the definition of the density
matrix according to Equation (9) and perform the orbital
optimisation as in the standard case where the partially
occupied spin orbitals would be fully occupied, i.e.
only optimising (Nf + Np)Nu parameters. Indeed, the
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energy gradient with respect to the additional parameters
only involve off-diagonal elements of the Fock matrix
and are thus automatically zero with canonical spin
orbitals.

2.2. Long-rangeMP2 correlation energy

In theRSH total energy, the long-range correlation energy
E lr
c is missing and can be calculated a posteriori, e.g. with

long-range MP2 [32,34,35]. The expression of the MP2
correlation energy extended to fractional electron num-
bers was given by Casida [39] and Cohen et al. [17]. The
extension to the range-separated case is straightforward
and is described now.

We calculate the long-rangeMP2 correlation energy as

E lr,MP2
c = 1

2

∑
ia, jb

Bx
ia, jbT

d,(1)
jb,ia , (10)

where Bx
ia, jb = fia, jb〈ab||i j〉lr are the exchange interac-

tion matrix elements and Td,(1)
jb,ia are the direct first-order

double-excitation amplitudes

Td,(1)
ia, jb =

−Bd
ia, jb

εa + εb − εi − ε j
, (11)

where Bd
ia, jb = fia, jb〈ab|i j〉lr are the direct interaction

matrix elements. In these expressions, 〈ab||ij〉lr = 〈ab|ij〉lr
− 〈ab|ji〉lr and 〈ab|ij〉lr are the antisymmetrised and
non-antisymmetrised long-range two-electron integrals
over RSH spin orbitals, respectively, ϵk are RSH spin-
orbital energies and fia, jb = √

nin j(1 − na)(1 − nb) is
the fractional-occupation-number factor of Ref. 40.

In Equation (10), the sums over i and j are overall
fully occupied and partially occupied spin orbitals, while
the sums over a and b are overall partially occupied and
fully unoccupied spin orbitals. Note that, in practice, we
restrict these sums to only non-spin-flip excitations i
→ a and j → b (i.e. the spin orbitals i and a have the
same spins, and the spin orbitals j and b have the same
spins) since Bd

ia, jb = 0 for spin-flip excitations. Also, we
exclude from the sums of Equation (10) all terms for
which Bx

ia, jb = 0, which include in particular the terms
with i = j or a = b.

For the range-separation parameter μ = 0, the long-
range MP2 correlation energy of Equation (10) vanishes,
while for μ → � it reduces to the post-HF full-range
MP2 correlation energy with fractional occupation num-
bers of Ref. 17.

2.3. Computational details

All calculations were done with a development version
of MOLPRO 2015 [41], in which we have implemented
the above-described extensions to fractional occupation
numbers.

The RSH calculations are done with the short-range
exchange-correlation Perdew-Burke-Ernzerhof (PBE)
density functional of Ref. 42, which is a modified version
of the short-range functional of Ref. 43 so that it reduces
to the standard PBE functional [44] for μ = 0. The
range-separated MP2 total energy is obtained as

ERSH+MP2 = ERSH + E lr,MP2
c , (12)

and is referred to as RSH+MP2. In these calculations, the
range-separation parameter is fixed toμ = 0.5 bohr−1, as
recommended in previous studies [45,46].

For comparison, we also perform HF calculations and
Kohn-Sham calculations using the PBE functional and
the PBE0 hybrid approximation [47,48], as well as full-
range MP2 calculations starting from HF, i.e.

EHF+MP2 = EHF + EMP2
c , (13)

corresponding to Equation (12) in the limit μ → �,
which is referred to as HF+MP2.

The calculations forH,He,H+
2 , He

+
2 andH2 were done

with the Dunning cc-pVTZ basis sets [49,50]. The cal-
culations for Li, Be, B, C, N, O and F were done with
the aug-cc-pCVTZ basis sets [51], including core exci-
tations in the MP2 calculations. The calculations for N2
and CO were done with the aug-cc-pVTZ basis sets [52],
without core excitations. We note that using basis sets
augmented with diffuse basis functions has an impor-
tant impact on the fractional-charge errors for the neg-
atively charged systems considered (see, in particular,
Ref. 53). The internuclear distances of N2 and CO were
taken as the experimental distances of 1.098 Å 54 and
1.128 Å 55, respectively. Spatial symmetry is not explic-
itly imposed in our calculations (but not necessarily bro-
ken either). The calculations with fractional occupation
numbers are always done in a spin-unrestricted formal-
ism. For fractional-charge calculations, either the spin-
up or spin-down HOMO orbital is fractionally occupied
so as to connect the lowest-energy states (according to
Hund’s rule of maximum spin multiplicity) at both adja-
cent integer-electron numbers.

3. Results and discussion

In all figures, the SCF and MP2 results are colour- and
symbol-coded in a consistent way; full-range calculations
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Figure . Dissociation of H+
2 and corresponding fractional-charge analysis for the H atom. On the left panel, the dissociation energy curve


Edissoc(R) defined in Equation () is plotted as a functionof the internuclear distanceR for eachmethod.On the rightpanel, the fractional-
charge error 
Efrac(δ) defined in Equation () is plotted as a function of δ for the same methods.

are always shown with dotted lines while range-separated
calculations are shown with full lines.

3.1. Dissociation of H+
2 and fractional-charge error

in H

The study of the dissociation of H+
2 reveals the propen-

sity of each computational method to the one-electron
self-interaction error. In the left panel of Figure 1, the
total energy of H+

2 calculated by each method, without
breaking spatial symmetry in the calculation, is plotted as
a function of the internuclear distance R, taking as zero
energy reference the sum of the energies of the isolated
ion H+ and atom H (with integer numbers of electrons)
calculated with the same method


Edissoc(R) = E(H+
2 ,R) − [

E(H+) + E(H)
]
. (14)

On the right panel of Figure 1, for each correspond-
ing method, we plot twice the error in the total energy
of a fractionally charged hydrogen atom, H+(1 − δ), with
respect to the linear interpolation of the energies of H+

and H as a function of the fractional number of electron
δ with 0 � δ � 1

2
Efrac(δ) = 2E(H+(1−δ)) − 2
[
(1 − δ)E(H+) + δE(H)

]
.

(15)

In the exact case,
Efrac(δ)= 0 for any 0� δ � 1, accord-
ing to Equation (1). For all the SCF methods consid-
ered here, H+

2 dissociates into two half-electron hydro-
gen ions, i.e. E(H+

2 ,R → ∞) = E(H+0.5 + H+0.5). Since

for all the SCF and MP2 methods considered here the
total energy is additively separable, i.e. E(H+0.5 + H+0.5)
= 2E(H+0.5), the dissociation limit of the energy curve is


Edissoc(R → ∞) = 2E(H+0.5) − [
E(H+) + E(H)

]
= 2
Efrac(δ = 0.5). (16)

Thus, the value 2
Efrac(δ = 0.5) corresponds to the one-
electron self-interaction error in H+

2 in the dissociation
limit. More generally, the curve of the fractional-charge
error 
Efrac(δ) is a convenient way to analyse the self-
interaction error of a method. The equality of Equa-
tion (16) can be checked by comparing the left and right
panels of Figure 1 (note that the point displayed on the
right of all dissociation figures is at 50 Å).

Clearly, HF is exact for H+
2 (it is one-electron self-

interaction free) and correctly gives 
Efrac(δ) = 0 for all
0 � δ � 1. By contrast, PBE leads to large fractional-
charge errors. Due to the introduction of 25% of global
HF exchange, PBE0 has a bit smaller fractional-charge
errors. RSH has much smaller fractional-charge errors
than PBE0, which is what was also previously found for
LC-ωPBE [8]. Note that both the PBE and PBE0 disso-
ciation energy curves display a spurious barrier due to
the electrostatic repulsion (proportional to 1/R) between
the charged fragments H+0.5 and H+0.5, as explained in
Ref. [56]. This spurious barrier is absent with RSH thanks
to the introduction of the long-range HF exchange which
correctly cancels out the electrostatic repulsion of the
charged fragments.
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For this system, the MP2 correlation energy is cor-
rectly zero for any 0 � δ � 1. Indeed, it can be eas-
ily checked that when a single spin orbital i is occu-
pied Bx

ia,ib = 0 in Equation (10). Therefore, the HF+MP2
results are identical to the HF results, and the RSH+MP2
results are identical to the RSH results. The small
fractional-charge errors of RSH+MP2 are thus only due
to the use of the approximate short-range PBE exchange-
correlation density functional.

We can analyse further the contributions to the
fractional-charge error coming from the approximate
exchange and correlation density functionals used. For
Kohn-ShamDFT applied to systemswith one or less spin-
up electron (see, e.g. Refs. 57 and 58), the exact exchange
energy functional cancels out the Hartree energy

Ex[nδ, 0] = −EH[nδ], (17)

where the exact exchange functional is defined as
Ex[n↑, n↓] = −(1/2)

∑
σ

∫∫ |γσ (r1, r2)|2wee(|r2 −
r1|)dr1dr2, and the exact correlation energy functional
vanishes

Ec[nδ, 0] = 0, (18)

where nδ is the density for δ spin-up electron with 0 �
δ � 1. For range-separated DFT, the same conditions
apply for systems with one or less spin-up electron, i.e.
the exact short-range exchange energy functional cancels
out the short-range Hartree energy

Esr
x [nδ, 0] = −Esr

H[nδ], (19)

where the exact short-range exchange functional is
defined as Esr

x [n↑, n↓] = −(1/2)
∑

σ

∫∫ |γσ (r1, r2)|2
wsr

ee(|r2 − r1|)dr1dr2, and the exact short-range correla-
tion energy functional vanishes

Esr
c [nδ, 0] = 0. (20)

The deviations from these exact conditions for the
fractional-charge H atom obtained with the full-range
PBE exchange and correlation density functionals and
with the short-range PBE exchange and correlation den-
sity functionals are plotted in Figure 2. Clearly, except
near δ = 1 (see below), the fractional-charge errors of
both the PBE and RSH calculations are dominated by
the error in the exchange functional.While the full-range
PBE and short-range PBE correlation functional give
nearly identical correlation energies for the fractional-
chargeH atom for all δ(whichmeans that the LC andRSH
schemes are nearly identical with this functional for this
system), the short-range PBE exchange functional used in
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Figure . Density-functional-approximation contributions to the
fractional-charge error in theH atomas a function of the fractional
electron number δ. For Kohn-Sham PBE calculations, we show the
error due to the PBE exchange energy, 
EPBEx = EPBEx [nδ, 0] +
EH[nδ], the PBE correlation energy
EPBEc = EPBEc [nδ, 0], and their
sum 
EPBExc = 
EPBEx + 
EPBEc , where the density nδ is from
the self-consistent PBE calculation at the value of δ. For the
RSH calculations, we show the error due to the short-range PBE
exchange energy, 
EsrPBEx = EsrPBEx [nδ, 0] + EsrH [nδ], the short-
range PBE correlation energy 
EsrPBEc = EsrPBEc [nδ, 0] and their
sum 
EsrPBExc = 
EsrPBEx + 
EsrPBEc , where the density nδ is from
the self-consistent RSH calculation at the value of δ. The errors are
multiplied by a factor of  to be directly comparable to Figure .

the RSH calculation has a fractional-charge error which
is almost an order of magnitude smaller than that of the
full-range PBE exchange functional for most δ (and it
becomes comparable to the fractional-charge error of the
correlation functional). This is consistent with the fact
that, in the limit of a very short-range electron–electron
interaction (i.e. when the range-separation parameterμ is
large), the exact short-range exchange density functional
becomes a local functional of the density and therefore
(semi)local-density approximations become exact [30].
In fact, a similar reduction of the fractional-charge errors
in the H atom was already observed for the short-range
LDAexchange-correlation density functional in Ref. [59].
Finally, note that the residual self-interaction error in the
present RSH calculation for δ = 1 mainly comes from
the short-range PBE correlation functional. As a matter
of fact, the Kohn-Sham PBE calculation of the H atom
(at δ = 1) largely benefits from a compensation of errors
between the errors made by the PBE exchange and PBE
correlation functionals. This compensation of errors is
much reduced in the case of RSH.
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Figure . Dissociation of He+
2 and corresponding fractional-charge analysis for the He atom. On the left panel, the dissociation energy

curve 
Edissoc(R) defined in Equation () is plotted as a function of the internuclear distance R for each method. On the right panel, the
fractional-charge error 
Efrac(δ) defined in Equation () is plotted as a function of δ for the same methods.

3.2. Dissociation of He+
2 and fractional-charge error

in He

The dissociation of He+
2 allows one to discuss an example

of the many-electron self-interaction error [5,6]. Similar
to the case of H+

2 , we show in Figure 3 the dissociation
curve calculated as


Edissoc(R) = E(He+
2 ,R) − [

E(He+) + E(He)
]
,

(21)
and the corresponding fractional-charge error

2
Efrac(δ) = 2E(He+(1−δ)) − 2
[
(1 − δ)E(He+) + δE(He)

]
.

(22)

Again, if spatial symmetry is not broken, we must have

Edissoc(R → �) = 2
Efrac(δ = 0.5), which can be seen
by comparing the left and right panels of Figure 3.

Similar conclusions as in the case of H+
2 can be drawn.

PBE leads to large fractional-charge errors in the frac-
tional He atom, and these errors are decreased a bit when
using PBE0. Again, RSH shows much smaller fractional-
charge errors. Just as for the fractional-charge H atom,
the reduction of these errors essentially comes from the
exchange part of the short-range PBE functional (not
shown). Contrary to the case of H+

2 , here HF is not exact
and gives a concave curve as a function of δ, with a pos-
itive fractional-charge error of about 15 kcal.mol−1 at
δ = 0.5. This indicates that, if spatial symmetry were
allowed to break, the HF calculation of He+

2 would give a
lower energy curve with a dissociation limit correspond-
ing to localised electrons on each fragment, He + He+,
and thus 
Edissoc(R → �) would become zero (and the

calculation would properly be size consistent). However,
we are not interested in the case of symmetry break-
ing and we use the HF calculation of He+

2 as displayed
in Figure 3 for subsequent MP2 calculations. Full-range
HF+MP2 shows very small fractional-charge errors. The
range-separated RSH+MP2 method gives essentially the
same fractional-charge errors as the errors obtained at
the single-determinant RSH level. This is due to the fact
that the long-range correlation energy is very small in this
system.

3.3. Fractional-charge errors in larger atoms (Li, Be,
B, C, N, O, F) and inmolecules (N2, CO)

We now investigate fractional-charge errors in larger
atoms and in molecules. We consider the atoms Li, Be,
B, C, N, O, F and the molecules N2 and CO, and their
fractional cations and anions with electron numbers N =
Z + δ where Z is the total charge of the nuclei and −1 �
δ � 1. In Figure 4, we show the deviation from the exact
piecewise linear behaviour, i.e.


Efrac(δ) = E(X−δ ) − [−δE(X+) + (1 + δ)E(X)
]
,

(23)

for −1 � δ � 0, and


Efrac(δ) = E(X−δ ) − [
(1 − δ)E(X) + δE(X−)

]
,

(24)

for 0 � δ � 1.
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Figure . Fractional-charge errors of several methods for some atoms (Li, Be, B, C, N, O, F) andmolecules (N, CO) with fractional numbers
of electrons Z= Z+ δ, where Z is the total charge of the nuclei and−� δ � . The errors
Efrac(δ) defined in Eqs. () and () are plotted
as a function of δ.

For the atomic systems, a first observation is that the
maximal fractional-charge error tends to increase with
Z. For almost all systems, HF shows a strong concave
deviation. RSH gives fractional-charge errors that can
be either convex or concave, and are generally smaller
than in HF (the only exceptions being Li, and negatively
charged Be and N). The behaviour of the RSH fractional-
charge errors can be understood as being intermediate

between the concave fractional-charge errors of HF and
the convex fractional-charge errors of Kohn-Sham PBE.
The RSH fractional-charge errors are generally closer to
the HF ones for negatively charged systems than for pos-
itively charged systems. As pointed in Ref. 8, this can
be rationalised by the fact that negatively charged sys-
tems are more diffuse than positively charged systems,
and long-range HF exchange makes a larger contribution
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Figure . Dissociation of H and corresponding fractional-spin analysis for the H atom. On the left panel, the dissociation energy curve

Edissoc(R) defined in Eq. () is plotted as a function of the internuclear distance R for eachmethod. On the right panel, the fractional-spin
error 
Efrac(δ) defined in Eq. () is plotted as a function of δ for the same methods. The HF+MP and RSH+MP energies of H diverge
to−� in the dissociation limit and their corresponding fractional-spin errors in the H atom also diverge for all < δ < .

in such diffuse systems. In comparison to other meth-
ods, RSH gives particularly small errors for negatively
charged F, N2 and CO. The dependence of the accuracy of
RSH on the size of the system suggests to tune the range-
separation parameter in each system so as minimise the
deviation from the exact piecewise linear behaviour, as
done in Refs. 60 and 61. However, this approach has the
disadvantage of being non size consistent [62], so we pre-
fer to use a fixed value of the range-separation parame-
ter, independent of the system. Finally, we mention that
we have checked for the negatively charged F that the LC
scheme (using the same short-range PBE exchange func-
tional used in RSH) gives fractional-charge errors that are
essentially identical to the RSH ones, meaning the long-
range PBE correlation functional makes negligible con-
tributions to the errors. We expect indeed that RSH and
LC give very similar results in most systems.

Full-rangeMP2 almost always gives smaller fractional-
charge errors than HF, with the exception of Li and neg-
atively charged N. Depending on the system, the MP2
error curves are convex or concave, or have an S-shape
as already observed in Refs. 17 and 18. The largest MP2
fractional-charge errors are obtained for the negatively
charged atoms and for themolecules N2 and CO.We note
that the fractional-charge errors for negatively charged C
reported in Ref. 17 and for negatively charged O reported
in Ref. 18 appear to be significantly smaller than ours.
We attribute these differences to the fact that we use basis
sets augmented with diffuse basis functions, which has an
important impact for negatively charged systems.

Range-separated MP2 gives fractional-charge errors
than can be either smaller or larger than the RSH and
full-range HF+MP2 ones, depending on the system.
Specifically, in comparison to full-range HF+MP2, the
RSH+MP2 fractional-charge errors are larger for the
more compact systems (Li, Be andpositively chargedB,C,
N, O, F), and smaller for the more diffuse systems (neg-
atively charged B, C, N, O, F and the molecules N2 and
CO).

3.4. Dissociation of H2 and fractional-spin error in H

The dissociation of H2 is a prototypical example for
studying the static-correlation error. In the left panel
of Figure 5, the total energy of H2 calculated by each
method, preserving spin symmetry in the calculation, is
plotted as a function of the internuclear distanceR, taking
as zero energy reference twice the energy of the isolated
atom H calculated with the same method


Edissoc(R) = E(H2,R) − 2E(H). (25)

On the right panel of Figure 5, for each corresponding
method, we plot twice the error in the total energy of a
H atom with fractional spin-up and spin-down electron
numbersN↑ = 1− δ andN↓ = δ, denoted asH1 − δ, δ , with
respect to the energy of the normal H atom as a function
of δ with 0 � δ � 1

2
Efrac(δ) = 2E(H1−δ,δ ) − 2E(H). (26)
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According to the constancy condition of Equation (2), we
should have
Efrac(δ)= 0 for all 0� δ � 1. For all the SCF
methods considered here, H2 dissociates into two hydro-
gen atoms with each half spin-up and half spin-down
electron, i.e. E(H2, R → �) = E(H0.5, 0.5 + H0.5, 0.5) =
2E(H0.5, 0.5). The dissociation limit of each energy curve
is thus


Edissoc(R → ∞) = 2E(H0.5,0.5) − 2E(H)

= 2
Efrac(δ = 0.5). (27)

Thus, the value 2
Efrac(δ = 0.5) corresponds to the static-
correlation error in H2 in the dissociation limit. More
generally, the curve of the fractional-spin error 
Efrac(δ)
is a convenient way to analyse the static-correlation error
of a method.

As well known, (spin-restricted) HF gives a large
static-correlation error in H2 in the dissociation limit, or
equivalently a large fractional-spin error in the H atom
at δ = 0.5 (about 180 kcal.mol−1). RSH only decreases
a bit the fractional-spin errors (about 160 kcal.mol−1 at
δ = 0.5). PBE0 hasmuch less fractional-spin errors (about
80 kcal.mol−1 at δ = 0.5). Expectedly, the PBE calcula-
tion, which does not include any HF exchange, leads to
the smallest fractional-spin errors (about 50 kcal.mol−1

at δ = 0.5). The HF+MP2 and RSH+MP2 energies of
H2 diverge to −� in the dissociation limit. Their cor-
responding fractional-spin errors in the H atom also
diverge for all 0 < δ < 1 due to the contribution from
i = a and j = b in Equation (11), where i and j are the
degenerate fractionally occupied spin-up and spin-down
orbitals, respectively. In fact, as noted in Ref. 17, the MP2
correlation energy always diverges if more than one spin
orbital within a degenerate set is fractionally occupied.

As for the fractional-charge H atom, it is interest-
ing to analyse the contributions to the fractional-spin
error coming from the approximate exchange and corre-
lation density functionals used. InKohn-ShamDFT, since
the fractional-spin H atom contains only one electron,
the exact exchange-correlation functional cancels out the
Hartree energy

Exc[n1−δ, nδ] = −EH[n1−δ + nδ], (28)

when n1 − δ and nδ are the spin-up and spin-down densi-
ties, respectively. However, the correlation part does not
vanish, contrary to the case of the fractional-charge H
atom [see Eq. (18)]. This can be seen as follows. The
Hartree energy can be decomposed as

EH[n1−δ + nδ] = EH[n1−δ] + EH[nδ] +U [n1−δ, nδ],
(29)

where U[n1 − δ , nδ] is the Coulomb interaction between
the spin-up and spin-down densities

U [n1−δ, nδ] =
∫∫

n1−δ(r1)nδ(r2)wee(|r2 − r1|)dr1dr2.
(30)

Since the exact exchange functional cancels out only the
Hartree energy of each separate spin density

Ex[n1−δ, nδ] = − (EH[n1−δ] + EH[nδ]) , (31)

the exact correlation energy functional must cancel the
term U[n1 − δ , nδ]

Ec[n1−δ, nδ] = −U [n1−δ, nδ]. (32)

The correlation energy in Equation (32) is clearly char-
acteristic of static (or strong) correlation: it is first order
in the electron–electron interaction and it has only a
correlation potential contribution (and not a correlation
kinetic contribution). The term U[n1 − δ , nδ] is a spu-
rious interaction between the densities of the two ele-
ments of the spin-up/down ensemble. As pointed out in
Ref. [36], it is analogous to the unphysical ‘ghost’ inter-
action of ensemble DFT for excited states [63] (see also
Refs. 29 and 59). This term could be removed by an ad
hoc correction [11] or, more generally, by a redefinition
of the Hartree/exchange/correlation decomposition for
situations with fractional-occupation numbers [36]. For
range-separated DFT, similar expressions apply for the
fractional-spin H atom. The exact short-range exchange
functional is

Esr
x [n1−δ, nδ] = − (

Esr
H[n1−δ] + Esr

H[nδ]
)
, (33)

and the exact short-range correlation functional is

Esr
c [n1−δ, nδ] = −U sr[n1−δ, nδ], (34)

whereUsr[n1 − δ , nδ] is a spurious short-range interaction
between the spin-up and spin-down densities

U sr[n1−δ, nδ] =
∫∫

n1−δ(r1)nδ(r2)wsr
ee(|r2 − r1|)dr1dr2.

(35)

Again, this spurious ‘ghost’ interaction Usr[n1 − δ , nδ]
could be removed from the correlation term by a redef-
inition of the short-range Hartree/exchange/correlation
decomposition in the ensemble formalism (see in partic-
ular Ref. 37).

In Figure 6, we show as a function of δ the full-range
exchange and correlation energies of Equations (31) and
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Figure . ‘Exact’ exchange and correlation energies in the H atom
with fractional spin-up and spin-down electron numbers N↑ = 
− δ and N↓ = δ as a function of δ. For the full-range case, the
exchange and correlation energies were calculated as Ex[n− δ , nδ]= −(EH[n− δ] + EH[nδ]) and Ec[n− δ , nδ] = −U[n− δ , nδ], where
the spin densities n− δ and nδ are not exact but obtained from
a self-consistent PBE calculation at the value of δ. For the range-
separated case, the short-range exchange and correlation ener-
gies were calculated as Esrx [n1−δ, nδ] = − (

EsrH [n1−δ] + EsrH [nδ]
)

and Esrc [n1−δ, nδ] = −Usr[n1−δ, nδ], where the spin densities n− δ

and nδ are not exact but obtained from a self-consistent RSH cal-
culation at the value of δ. The energies are multiplied by a factor
of  to be directly comparable to Figure .

(32), and the short-range exchange and correlation ener-
gies of Equations (33) and (34). In principle, in this sys-
tem, the full-range exchange-correlation energy of Equa-
tion (28), or its short-range variant, is constant with
respect to δ since in the exact theory n1 − δ +nδ =n, where
n is the density of the H atom independent of δ. However,
due to the fact that we have used approximate spin den-
sities n1 − δ and nδ obtained from a self-consistent PBE or
RSH calculation at each value of δ, in practice the full-
range or short-range exchange-correlation energies are
only approximately constant with respect to δ. For both
the full-range and short-range cases, the correlation con-
tribution is zero at δ = 0 and δ = 1, and passes by a max-
imum (in absolute value) at δ = 0.5, where the exchange
and correlation energies are equal. The exchange con-
tribution exhibits a symmetrically opposite behaviour
(being minimum in absolute value at δ = 0.5) so as
to make the sum of the exchange and correlation ener-
gies approximately constant with respect to δ. This illus-
trates the fact that the decomposition into exchange and
correlation is somewhat artificial for strongly correlated
systems. The large HF fractional-spin error reported in
Figure 5 obviously comes from the fact that inHFonly the
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Figure . Density-functional-approximation contributions to the
fractional-spin error in the H atom with fractional spin-up and
spin-down electron numbers N↑ = − δ and N↓ = δ as a function
of δ. For Kohn-Sham PBE calculations, we show the error due to
the PBE exchange energy, 
EPBEx = EPBEx [n1−δ, nδ] + EH[n1−δ] +
EH[nδ], the PBE correlation energy 
EPBEc = EPBEc [n1−δ, nδ] +
U[n1−δ, nδ], and their sum 
EPBExc = 
EPBEx + 
EPBEc , where the
spin densities n− δ and nδ are from the self-consistent PBE cal-
culation at the value of δ. For the RSH calculations, we show the
error due to the short-range PBE exchange energy, 
EsrPBEx =
EsrPBEx [n1−δ, nδ] + EsrH [n1−δ] + EsrH [nδ], the short-range PBE cor-
relation energy 
EsrPBEc = EsrPBEc [n1−δ, nδ] +Usr[n1−δ, nδ], and
their sum
EsrPBExc = 
EsrPBEx + 
EsrPBEc , where the spin densities
n− δ and nδ are from the self-consistent RSH calculation at the
value of δ. The errors are multiplied by a factor of  to be directly
comparable to Figure .

exchange contribution is included and the equally impor-
tant correlation contribution is neglected. The short-
range exchange and correlation energies are about four
times smaller than the full-range exchange and correla-
tion energies, but they behave similarly with respect to δ.

The deviations from the exact expressions of
Equations (31)–(34) obtained with the PBE exchange and
correlation density functionals and with the short-range
PBE exchange and correlation density functionals are
plotted in Figure 7. The fractional-spin errors stem-
ming from the full-range PBE exchange and full-range
PBE correlation functionals are large but of opposite
signs, leading to a large compensation of errors between
exchange and correlation and thus to the relatively
good performance of Kohn-Sham PBE for the dissoci-
ation of H2. Both the short-range PBE exchange and
short-range PBE correlation functionals have consider-
ably smaller fractional-spin errors than their full-range
counterparts. We note that, as for the fractional-charge
H atom, the full-range PBE correlation energy and



172 B. MUSSARD ET AL.

short-range PBE correlation energy are nearly identical
(not shown) in this system, so the smaller errors in
the short-range PBE correlation functional are in fact
due to the smaller magnitude of the exact short-range
correlation energy −Usr[n1 − δ , nδ] compared to the
exact full-range correlation energy −U[n1 − δ , nδ] (as
shown in Figure 6). However, the compensation of
errors between short-range exchange and short-range
correlation is less dramatic than in the full-range case,
and the fractional-spin errors in the short-range PBE
exchange-correlation functional are reduced by only
about of factor of 2 compared to the full-range PBE
exchange-correlation functional. At first sight, the fact
that the fractional-spin errors in the short-range PBE
functional are smaller than the ones of the full-range
PBE functional seems to be in contradiction with the
worse performance of RSH compared to Kohn-Sham
PBE for the fractional-spin H atom seen in Figure 5.
In fact, the additional error seen in the RSH results
comes from the fact that the long-range HF exchange
energy is not compensated by an appropriate long-range
correlation energy. If the long-range correlation energy
were calculated by methods capable of dealing with static
correlation, such as multiconfiguration self-consistent
field (MCSCF) or density-matrix functional theory
(DMFT), then the fractional-spin errors would only
come from the short-range exchange-correlation density
functional and would be smaller than the errors obtained
in Kohn-Sham calculations. It is indeed what has been
observed in range-separated MCSCF+DFT [31,33,64]
and range-separated DMFT+DFT [65,66] calculations of
H2 in the dissociation limit.

4. Conclusion

In this work, we have investigated fractional-charge and
fractional-spin errors in atoms and molecules obtained
with range-separated DFT schemes, namely the RSH
method which combines long-range HF exchange with
a short-range PBE exchange-correlation functional, and
the RSH+MP2 method which adds long-range MP2 cor-
relation. Very similarly to the LC scheme, RSH gives
much smaller fractional-charge errors than standard
Kohn-Sham applied with the semilocal PBE or hybrid
PBE0 approximation. RSH also generally leads to smaller
fractional-charge errors than standard HF. As regards
RSH+MP2, it tends to have smaller fractional-charge
errors than standard MP2 for the most diffuse systems
(molecules and negatively charged atoms) but larger
fractional-charge errors for the more compact systems
(positively charged atoms).

Even though the individual contributions to the
fractional-spin errors in the H atom coming from the

short-range PBE exchange and correlation density func-
tionals are smaller than the corresponding contributions
for the full-range PBE exchange and correlation den-
sity functionals, RSH gives fractional-spin errors that are
larger than in standard Kohn-ShamPBE and only slightly
smaller than in standard HF. Moreover, adding long-
range MP2 correlation only leads to infinite fractional-
spin errors. This points to the necessity of accounting for
long-range static correlation by appropriate methods, e.g.
MCSCF, DMFT, or certain variants of RPA. Only with
such approaches, together with improved short-range
exchange-correlation approximations, one can expect to
have range-separated schemeswith both small fractional-
charge and fractional-spin errors. Work in this direction
is underway.
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