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Previous calculations on model systems for the cooperative binding of two NO2 molecules to carbon
nanotubes using density functional theory and second order Moller–Plesset perturbation theory gave
results differing by 30 kcal/mol. Quantum Monte Carlo calculations are performed to study the role of
electronic correlations in these systems and resolve the discrepancy between these previous calculations.
Compared to QMC binding energies, MP2 and LDA are shown to overbind, while B3LYP and BPW91
underbind. PW91 gives the best agreement with QMC with a binding energy differing by only 3 kcal/
mol. Basis set effects are also shown to be important.
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1. Introduction

Understanding the interaction of molecular adsorbates with
carbon nanotubes (CNT) is important for many applications. Recent
experimental work [1] for example showed a two orders of magni-
tude increase in the conductivity of a semiconducting CNT after
exposure to small amounts of gaseous NO2. These results suggest
that CNTs might be utilized as very sensitive molecular sensors.
The mechanism for this phenomenon remains unclear with expla-
nations ranging from charge transfer between the adsorbate and
the nanotube to modifications of interface barriers at the contacts.
The viability of a charge transfer mechanism depends on the nat-
ure of the bonding between an adsorbate and a nanotube. In partic-
ular, formation of a chemical bond may be necessary to enable
significant charge transfer to occur.

Ab initio calculations by Ricca and Bauschlicher (RB) [2] based
on density functional theory (DFT), second order Moller–Plesset
perturbation theory (MP2), and coupled cluster singles and
doubles calculations including the effect of connected triples
determined using perturbation theory [CCSD(T)] examined the
interactions of NO2 molecules with (9,0) and (10,0) carbon nano-
tubes. Based on MP2 calculations of NO2 on coronene, they esti-
mated the binding energy of a single NO2 molecule to a carbon
nanotube to be roughly 5 kcal/mol, where binding energies are
defined as the energy of the free constituents minus the energy
B.V.
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of the composite system. The weak nature of this binding argues
against a charge transfer mechanism.

Another interesting possibility is that two NO2 molecules might
attach to neighboring carbons on the tube. In this scenario, the
breaking of the p bond between two carbons could make the for-
mation of two C–NO2 bonds energetically favorable [3]. To consider
this possibility, RB [2] performed DFT calculations using the B3LYP
functional and a small 6-31G* basis on nanotubes with periodic
boundary conditions (PBC). They found a binding energy of two
NO2 molecules to be �2 kcal/mol for the (9,0) metallic nanotube
and �10 kcal/mol for the semiconducting (10,0) tube. Similar peri-
odic calculations performed using a plane wave basis and the
PW91 functional [4] obtained binding energies of 4 and �6 kcal/
mol for two NO2 on (9,0) and (10,0) nanotubes, respectively.

However, DFT is known to perform poorly in situations involv-
ing weak binding. To assess the error in their DFT numbers, RB [2]
examined smaller model systems extracted from large tube geom-
etries. These systems were sufficiently small to permit calculations
using larger basis sets and more accurate correlated quantum
chemistry methods. The use of DFT, MP2, and CCSD(T) gave very
different answers for the binding energy, with results differing
over a range of 30 kcal/mol. We note that the accuracy of DFT for
CNT-adsorbate problems was also investigated in Ref. [5] where
the binding of a single O2 molecule to a CNT was also studied with
quantum Monte Carlo (QMC) techniques. For this weakly bound
complex, the local density approximation (LDA) was found to give
better agreement with QMC than the PBE generalized gradient
approximation.
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In this Letter, we use quantum Monte Carlo (QMC) to calculate
the binding energies and the bonding geometries for the reduced
models developed in Ref. [2] to describe the binding of two NO2

molecules to a carbon nanotube. These models exhibit complex
interactions (electrostatic, van der Waals, p–p interactions, etc.)
that are representative of a broad class of CNT-adsorbate problems.
While DFT (often with small basis sets) is the method of choice for
calculations involving full nanotubes due to their large size, the
significant spread of binding energies found by RB [2] when using
different ab initio approaches for the reduced models indicate that
correlation effects play an important role. We choose QMC to
investigate these correlation effects and assess the performance
of other theoretical approaches in describing these systems. QMC
enjoys a more favorable scaling with system size compared to con-
ventional highly correlated quantum chemistry methods, and
therefore it has a considerable advantage as the models we con-
sider contain up to 108 electrons and the computations are there-
fore quite demanding.
Table 1
Binding energies (BE) (kcal/mol) for Ndown and Odown calculated by DFT, MP2, and
QMC using 6-31G*, cc-pVTZ, and ECP basis sets as indicated. The Ndown/Odown
energy difference is D = EOdown � ENdown (kcal/mol). Binding energies are positive for
bound systems. QMC statistical error on binding energies is 1 kcal/mol.

BE(Ndown) BE(Odown) D

All-electron calculations
B3LYP/6-31G* �29.2 �22.6 �6.6
BPW91/6-31G* �26.0 �23.3 �2.7
PW91/6-31G* �14.2 �12.7 �1.5
LDA/6-31G* 18.6 10.9 7.7
MP2/6-31G* �9.3 �11.6 2.3

B3LYP/cc-pVTZ �36.5 �30.2 �6.3
BPW91/cc-pVTZ �33.6 �31.2 �2.4
PW91/cc-pVTZ �22.5 �21.1 �1.4
LDA/cc-pVTZ 12.3 4.3 8.0
MP2/cc-pVTZ �7.9 �12.9 5.0

All-electron symmetrized models [2]
CCSD(T)/6-31G* �18.9

ECP calculations
HF �69.0 �48.3 �20.8
B3LYP �37.5 �30.9 �6.6
MP2 �9.4 �13.8 4.4

Single determinant/ECP QMC
VMC �25.3 �38.5 13.2
DMC �19.4 �18.2 �1.3

Multi CSF/ECP QMC
VMC 9.4
DMC �2.5
2. Method

We employ two quantum Monte Carlo (QMC) methods [6,7].
First the variational Monte Carlo (VMC) method is used to compute
the energy expectation value of an optimized trial wave function.
Second, starting from this optimized wave function, the fixed-node
diffusion Monte Carlo (DMC) method is used to project onto the
ground state subject to the constraint that the nodes of the pro-
jected wave function are the same as those of the trial wave
function.

The N-electron trial wave function WT(R) has the form

WTðp;RÞ ¼ Jða;RÞ
XNCSF

i¼1

ciCiðk;RÞ; ð1Þ

where R = (r1, . . . , rN) represents the 3N electron coordinates, a are
the Jastrow parameters and J(a,R) = ef(a,R) is a Jastrow factor with
f(a,R) a sum of two body (electron–electron, electron–nucleus)
and three body (electron–electron–nucleus) correlation terms. The
electron–nucleus and the electron–electron–nucleus Jastrow
parameters are different for each atom type. The configuration state
functions (CSF’s), Ci(k,R), are symmetry adapted linear combinations
of Slater determinants built from single-particle orbitals
wlðrÞ ¼

PNB
m¼1kl;mvmðrÞ which in turn are expanded on a set of basis

functions {vm(r)}. The total set of possible variational parameters
p consist of those for the Jastrow parameters, a, the CSF coefficients
c, the orbital coefficients k, and the exponents of the basis functions
[8]. The wave function parameters p = (a,c) were optimized using
recently developed energy minimization methods [9–11], that have
been shown to perform significantly better than the standard vari-
ance minimization algorithm [12]. The orbital coefficients k and the
basis exponents were kept fixed.

Monte Carlo integration is used to estimate the variational
energy

EVMC ¼
hWT jĤjWTi
hWT jWTi

¼ 1
M

X
m

ELðRmÞ þ Oð1=
ffiffiffiffiffi
M
p
Þ; ð2Þ

where EL(R) = HWT(R)/WT(R) is the local energy and the Monte Carlo
points, Rm, are sampled from a probability distribution
j WTðRÞj2=

R
dR j WTðRÞj2 using an accelerated version [13] of the

Metropolis–Hastings algorithm [14,15]. The variational theorem
guarantees that EVMC is an upper bound for the ground state energy.

The second step in a QMC computation is diffusion Monte Carlo
(DMC). In DMC, the optimized trial wave function WT(R) is evolved
according to the integral representation of the Schrodinger equa-
tion in imaginary time
WTðRÞWðR; t þ sÞ ¼
Z

GðR;R0; sÞWTðR0ÞWðR0; tÞdR0; ð3Þ

where G(R,R0,s) is an approximation to the importance-sampled
Green function WTðRÞW�1

T ðR
0ÞhR j e�sĤ j R0i. In the limit s ?1,

W(R,t + s) will approach the true ground state. In practice the pro-
jection is subjected to the fixed-node constraint which gives the
best wave function that has the same nodes as the trial wave func-
tion. The resulting fixed-node DMC energy is an upper bound to the
ground state energy if the potential is local. The ‘fixed-node error’ is
the principal error in a DMC computation. It can be greatly reduced
by optimizing the determinantal parameters c, k and the basis expo-
nents in the presence of the Jastrow factor. Although the Jastrow
factor does not by itself affect the location of the nodal surface, it
has an indirect effect on the nodal surface because the optimal
determinantal parameters depend on the Jastrow parameters a.
Optimizing the variational parameters also reduces other less
important systematic errors in DMC, as well as, the statistical error
for a given number of Monte Carlo steps. The DMC algorithm has a
time-step error due to the use of an approximate G(R,R

0
,s). We em-

ploy a DMC algorithm [16] that takes into account the singularities
in G(R,R

0
,s) and has a small time-step error.

We employed both single determinant and multideterminant
trial wave functions. The single-determinant wave functions were
constructed from B3LYP orbitals using GAMESS [17]. Simultaneous
optimization of the orbital coefficients and basis exponents to-
gether with the Jastrow and CSF coefficients can be done using en-
ergy minimization methods [10,18], but in this work we kept the
orbital coefficients fixed at their B3LYP values. The large size of
the systems makes such calculations prohibitive.

We use norm-conserving sp-non-local effective core potentials
(ECP) for carbon, nitrogen and oxygen, generated in all-electron
Hartree–Fock calculations for the atoms [19]. These ECPs are finite
at the nucleus and are therefore more suitable for QMC calcula-
tions with a Gaussian basis than are other singular ECPs commonly
used in quantum chemical calculations. They avoid divergences
in the local energy when an electron approaches the nucleus since
the orbitals expressed on an atomic Gaussian basis do not exactly
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satisfy the electron–nucleus cusp condition. The potential of
the hydrogen atom is also softened by removing the Coulombic
divergence following the construction given in [20]. This potential
reproduces the exact s eigenvalue of �0.5 Hartree to better than
10�4 Hartree. Note however that the hydrogen ECP does not
reduce the number of electrons. The orbitals in the determinantal
component of the wave functions are expanded in contracted
Gaussian basis sets (11s11p2d)/[4s4p2d] for carbon and nitrogen,
(12s12p2d)/[5s5p2d] for oxygen, and (11s2p)/[3s2p] for hydrogen.
The approximate treatment of the non-local ECPs in DMC [21]
results in an ECP ‘locality error’ that is reduced by using well opti-
mized trial wave functions.

QMC calculations have smaller basis-size errors than do most
other quantum chemistry methods. The basis set, used in our
QMC calculations, has better than valence triple zeta (VTZ) quality.
The B3LYP and MP2 binding energies using this basis are in good
agreement with the binding energies obtained from all-electron
calculations using the (cc-pVTZ) basis set of Dunning and cowork-
ers [22], the largest difference being 1.5 kcal/mol (see Table 1).

3. Model

The geometries for our calculations were taken from the work
of Ricca and Bauschlicher [2], who constructed (9,0) and (10,0) car-
bon nanotubes in periodic cells and studied them using various
DFT functionals and basis sets, and different bonding configura-
tions depending on the orientation of the two NO2 molecules.
The (9,0) CNT was further studied using short capped tubes (C150

and C186) optimized at the BPW91/4-31G level of theory. From
the C150 tube, reduced models were extracted that included the
adsorbates and a curved piece of the tube consisting of 16 carbon
atoms. Dangling bonds were passivated with hydrogen atoms.
We consider here three of their reduced models. We call ‘Ndown’
(see Fig. 1) the bonding configuration where both NO2 molecules
have their nitrogen atoms bonded to the tube. The other configura-
Fig. 1. Bonding configuration for NO2 called ‘Ndown’ where the N atoms are
bonded to the nanotube model fragment.
tion called ‘Odown’ (see Fig. 2) has one oxygen per molecule
bonded to the tube. The puckering of the carbon atoms near the
adsorption sites shows the local effect of the adsorbates on
the tube. The third system is a curved piece of nanotube without
the adsorbates that we loosely call ‘pyrene’. After removing the
core electrons through the use of ECPs, NO2 has 17 electrons,
pyrene has 74 electrons and Ndown and Odown each have 108
electrons.

It is important to note several aspects of our reduced models.
Firstly, the geometries have not been reoptimized for the reduced
models, and therefore, they are not equilibrium geometries. Reop-
timization would flatten the curved carbon part of the configura-
tions. We want to maintain the curvature of the carbon part
since curved geometries are expected to be more reactive and we
expect that will be important for the binding of adsorbates. Sec-
ondly, the physics of our finite, curved configurations is different
than that of a full carbon nanotube. In particular, the electrostatic
moments will be different for a open, curved piece of carbon com-
pared to a closed tube. Finally, the p-bonding interactions relative
to a full tube can be different since the p bonding network has been
truncated. Because of all these differences, the binding energies we
obtain directly from the QMC energies of the models do not repre-
sent the true binding of two NO2 molecules to complete carbon
nanotubes. Our principal objective is not to determine that true
binding from these calculations, but rather to compare methods
typically used for these types of systems and to determine their
relative accuracy on a simplified model. We will however use re-
sults from these models to make estimates of the binding energies
to complete carbon nanotubes. To do that, we will assume that
most of the effects that are missing from the reduced models can
be estimated from the difference of the DFT energies obtained from
the reduced models and the complete CNT,

EDMC;CNT ¼ EDMC;model þ EDFT;CNT � EDFT;model; ð4Þ

where the DFT energies are computed using the same exchange-
correlation functional and the same quality basis set. This type of
extrapolation formula has been previously used in various contexts
(see, e.g., [23]).
Fig. 2. Bonding configuration for NO2 called ‘Odown’ where the O atoms are bonded
to the nanotube model fragment.
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4. Results

We performed all-electron DFT calculations using the LDA [24],
PW91 [25], BPW91 [26,25], and B3LYP [26–30] functionals and
MP2 calculations. We employed both the 6-31G* basis set as well
as the larger correlation consistent cc-pVTZ basis set, and used
the GAMESS [17] and GAUSSIAN03 packages [31]. For all DFT func-
tionals, we repeated the calculations with the cc-pVQZ basis, which
yielded binding energies compatible with the cc-pVTZ results to
better than 1 kcal/mol. Therefore, the DFT/cc-pVTZ calculations
are already well converged with respect to the basis set. The DFT
and MP2 results are collected in Table 1, where we use the conven-
tion that bound systems have positive binding energies.

We first analyze the results obtained with the small 6-31G* ba-
sis set and note that our B3LYP and MP2 results with this basis set
reproduce those reported in Ref. [2]. While both MP2 and B3LYP do
not bind the adsorbates, MP2 gives considerably more binding
than B3LYP (20 kcal/mol more for Ndown and 11 kcal/mol for
Odown). The BPW91 and B3LYP binding energies are similar, while
PW91 (which was used in the periodic calculations of Ref. [4]) is
found to bind more strongly than B3LYP by 15 kcal/mol for Ndown
and 10 kcal/mol for Odown. In contrast to other functionals and
MP2, LDA yields a positive binding energy for both Ndown and
Odown, and a binding for Ndown which differs from the B3LYP va-
lue by almost 50 kcal/mol. Finally, we note that the Ndown/Odown
energy difference (denoted by D in Table 1) changes sign depend-
ing on the method. The sign of D indicates the preferred bonding
geometry, with B3LYP, BPW91, and PW91 favoring Odown
whereas MP2 and LDA favor Ndown.

We find that some of these differences become even more pro-
nounced when using the larger cc-pVTZ basis set. In particular, the
B3LYP, BPW91, PW91, and LDA binding energies decrease by 7–
8 kcal/mol for both bonding configurations while the MP2 num-
bers change by only about 1 kcal/mol. The significant difference
between the B3LYP and LDA energies persists with the larger basis
set, and is therefore due to the approximate treatment of electron
correlation. The cc-pVTZ results also suggest that DFT calculations
with the small 6-31G* basis set on full nanotube geometries [2]
may have a similarly strong basis set dependence.

In Table 1, we include Hartree–Fock (HF), B3LYP, and MP2 cal-
culations performed using the same ECP and basis sets as for the
QMC computations. The HF binding energies of �69 kcal/mol for
Ndown and �48 kcal/mol are considerably less than the values ob-
tained with B3LYP and MP2 indicating that correlation effects are
important. From the D values, we note that HF favors Odown by
21 kcal/mol, B3LYP favors Odown by 6 kcal/mol, while MP2 favors
Ndown by 5 kcal/mol. The B3LYP and MP2 binding energies using
the ECP agree with the all-electron numbers using the cc-pVTZ ba-
sis set. The corresponding total energies are included for compari-
son with the QMC total energies in Table 2.
Table 2
Total energies (Hartrees) for the Ndown and Odown composites and the pyrene and
NO2 fragments. The statistical error on the QMC total energies is 1 mHartree.

Ndown Odown Pyrene NO2

ECP calculations
HF �175.951 �175.984 �93.918 �41.072
B3LYP �180.033 �180.044 �96.454 �41.819
MP2 �179.612 �179.605 �96.240 �41.693

Single determinant/ECP QMC
VMC �180.002 �179.981 �96.522 �41.760
DMC �180.306 �180.308 �96.705 �41.816

Multi CSF/ECP QMC
VMC �180.011 �179.996
DMC �180.314 �180.318
In addition to B3LYP and MP2 calculations, RB [2] performed
CCSD(T) calculations using the 6-31G* basis set. Due to the large
system sizes, the Ndown and pyrene geometries were symme-
trized, and B3LYP, MP2, and CCSD(T) calculations were performed
with these new structures. Since the symmetrized geometries are
different from the ones used in this work, our results are not
strictly comparable to the CCSD(T) calculations. On the other hand,
the effect of symmetrization does not appear to be large since the
B3LYP binding energy changes by only �3 kcal/mol to a value of
�32 kcal/mol while the MP2 value remains essentially unchanged
at �9 kcal/mol [2]. The CCSD(T) calculation for Ndown gives
�18.9 kcal/mol which lies between the PW91/cc-pVTZ and MP2/
cc-pVTZ values. The CCSD(T) numbers are also included in Table
1 for comparison.
4.1. Single-determinant QMC

Single-determinant trial wave functions were constructed from
Slater determinants of B3LYP orbitals multiplied by a Jastrow fac-
tor optimized by energy minimization. The Jastrow factor had 81
free parameters for Ndown and Odown and 43 parameters for pyr-
ene and NO2. The resulting binding energies and the total VMC and
DMC energies are reported in Tables 1 and 2, respectively. Statisti-
cal errors are less than 1 mHartrees for the total energies and less
than 1 kcal/mol for the binding energies.

From the total energies in Table 2, we observe that QMC has
gained considerable correlation energy relative to HF both at the
VMC and the DMC level. However, we also note from Table 1 that
VMC and DMC yield significantly different binding energies as well
as Ndown/Odown energy differences. In particular, while VMC fa-
vors Ndown by 13 kcal/mol, DMC stabilizes the binding energies to
�19.4 kcal/mol for Ndown and �18.2 kcal/mol for Odown. The
DMC energy difference between the Ndown and Odown configura-
tions is compatible with zero within statistical error and, therefore,
one bonding configuration is not preferred over the other.

If we compare the DMC binding energies with the DFT/cc-pVTZ
and the MP2/cc-pVTZ results, we note that PW91 gives the best
agreement with DMC, yielding roughly 3 kcal/mol less binding
than DMC. Larger differences are seen with BPW91, B3LYP, MP2,
and especially LDA which binds Ndown and Odown more strongly
than DMC by 30 and 22 kcal/mol, respectively. It is also interesting
to note that the DMC number for the binding of Ndown agrees very
well with the CCSD(T) value of �18.9 kcal/mol obtained by RB
using the symmetrized geometries and the smaller 6-31G* basis
set.

In the DMC calculations we used a time step of Ds = 0.1
Hartree�1. To assess the time-step error we did additional calcula-
tions for Ds = 0.05. The binding energy changes were on the order
of 1 kcal/mol, comparable to the statistical uncertainty on the
energies.
4.2. Multi-CSF QMC

Calculations using multi-CSF trial wave functions were per-
formed in order to reduce the DMC fixed-node error. The multi-
CSF wave functions are needed for a good description of static
(near-degeneracy) correlation, whereas the Jastrow factor and
the DMC projection take care of the dynamic correlation. For small
systems, it is feasible to perform multiconfiguration self-consistent
field (MCSCF) calculations with a complete active space (CAS), i.e.,
to include all the CSFs that can be obtained from excitations from a
certain number of active orbitals. Such wave functions, with CSF
coefficients reoptimized in the presence of the Jastrow factor, yield
good DMC binding energies [8], but they are not feasible for
systems as large as those in this Letter.



Table 3
Estimated binding energies (BE) (kcal/mol) of the Ndown configuration on a full CNT.
We list the DFT binding energies from periodic-cell calculations, the QMC correlation
corrections (see text for details), and estimates for the full tube binding energies.

DFT BE QMC correction Estimated BE

(9,0) Carbon nanotube
B3LYP/6-31G* �1.6 [2] 9.8 8.2
BPW91/6-31G* �4.1 [2] 6.6 2.5
PW91/plane wave 4.0 [4] 3.1 7.1

(10,0) Carbon nanotube
B3LYP/6-31G* �14.3 [2] 9.8 �4.5
BPW91/6-31G* �14.2 [2] 6.6 �7.6
PW91/plane wave �6.3 [4] 3.1 �3.2
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For the composite systems, Ndown and Odown, we first did a
restricted CAS(24,24) (24 electrons distributed among 24 orbitals)
calculation where we considered only singles and doubles excita-
tions. To reduce the computational burden, we retained only the
7 CSFs (17 determinants) with coefficients larger than 0.0545.
The MCSCF orbitals optimized for full expansions are not always
better than the B3LYP orbitals when used in the truncated expan-
sion and in the presence of a Jastrow factor. So, we used B3LYP
orbitals for constructing the QMC wave functions; the CAS calcula-
tion was employed only to select the important CSFs. The CSF and
Jastrow coefficients were optimized simultaneously. We do not ex-
pect these truncated wave functions to give reliable binding ener-
gies, but they can be used to compare the Ndown and Odown total
energies.

As can be seen from Table 2 including additional CSFs improved
the VMC energies by 9 and 15 mHartrees, and the DMC energies by
8 and 10 mHartrees for Ndown and Odown, respectively. As shown
in Table 1, the difference between the Odown and Ndown multi-
CSF DMC energies is 2.5 kcal/mol while the difference between
the single-determinant DMC energies is 1.3 kcal/mol. The statisti-
cal error on both Ndown/Odown differences is 1 kcal/mol, so the
single-determinant and multi-CSF DMC differences are both
compatible with zero within less than a three-standard-deviation
statistical error. Thus, the multi-CSF calculations confirm the
single-determinant result for D.

4.3. Full tube binding energy estimates

Ricca and Bauschlicher [2] estimated the binding of two Ndown
NO2 molecules to a nanotube to be 16 kcal/mol for a (9,0) tube and
8 kcal/mol for a (10,0) tube. These values were computed starting
from the B3LYP/6-31G* binding energies of �2 kcal/mol for the
(9,0) and �10 kcal/mol for the (10,0) tube obtained in their
small-cell PBC calculations. These DFT values were then corrected
for the correlation error (13.7 kcal/mol estimated as the difference
between the CCSD(T)/6-31G* and B3LYP/6-31G* calculations on
the small symmetrized model) and the basis set error (3.8 kcal/
mol estimated from MP2 calculations with 6-311G(2d,p) and 6-
31G* basis sets).

In the same spirit, we can estimate a ‘correlation correction’ for
the periodic B3LYP/6-31G* and BPW91/6-31G* calculations of the
full nanotube reported in Ref. [2] and for the plane-wave PW91 cal-
culation of Ref. [4]. We define this correction to be the difference
between the DMC cluster binding energy and the cluster binding
energies computed with the same DFT functional and the same
quality basis set as in the full tube calculations Eq. (4). For example,
for the periodic B3LYP/6-31G* calculation of Ref. [2], we obtain a
correction of 9.7 kcal/mol, which yields an estimate for the binding
of two Ndown NO2’s to a nanotube of 8.1 kcal/mol for a (9,0) tube
and �4.6 kcal/mol for a (10,0) tube. Note that RB used results from
small cell (80 carbons) calculations to form their estimates. We on
the other hand use their large cell (120 carbons) numbers which
we expect to be slightly better for our updated estimates. Similarly,
we can compute estimates for the BPW91/6-31G* [2] and the
plane-wave PW91 [4] calculations. These results are collected in
Table 3.

We note that the full tube calculation with PW91 and a plane
wave basis binds more strongly for both the (9,0) and the (10,0)
tube by 8 kcal/mol compared to B3LYP/6-31G* and BPW91/6-
31G*. While different geometries and basis sets may explain some
of the differences between these results, the fact that PW91 binds
more strongly for the full tube is consistent with the trends we ob-
serve for the clusters.

Compared to the earlier calculations of Ref. [2], the correlation
estimates derived from the present DMC calculations have the
advantages of much smaller basis-set errors and of not employing
the symmetrized model. Moreover, when using the plane-wave
PW91 binding energies for the full nanotube [4] in combination
with our PW91/cc-pVTZ results for the cluster, we have also largely
eliminated the basis set error coming from the DFT calculations,
which is instead present in the 6-31G* estimates. Unfortunately,
we still use the extrapolation formula Eq. (4) to estimate the bind-
ing energy to the CNT, which certainly limits the accuracy of our
final estimate as the correlation correction has been computed
on relatively small cluster models. In fact, we expect the extrapo-
lation scheme to work if the correlation correction is not too large
and if the DFT binding energies computed on the fragments are not
far from the infinite limit. The limitations of the extrapolation
scheme in our case are apparent from Table 3 as the estimated
binding energies have a non negligible spread. More accurate esti-
mates would require QMC calculations on larger clusters or on the
fully periodic system. Nevertheless, we see that the three estimates
we derive from the different methods are roughly consistent, and it
is therefore reasonable to conclude that the binding of two NO2’s to
a nanotube is very weak with a (9,0) tube binding more strongly
than a (10,0) tube.

5. Conclusion

In this work, we used QMC to study the role of electronic cor-
relations in a model system representing the adsorption of two
NO2 molecules to a carbon nanotube. Interest in this system is
motivated by the observed two orders of magnitude change in
the conductivity of the tubes after exposure to trace amounts of
gaseous NO2. We performed calculations using both single deter-
minant and multi-CSF wave functions. Our calculated DMC bind-
ing energies for the model systems are �19.4 ± 1.2 kcal/mol for
the Ndown configuration and �18.2 ± 1.2 kcal/mol for the Odown
configuration which indicates that there is not a clearly preferred
bonding configuration in these models. We find that basis set and
correlations effects are important for these systems. In particular,
compared with the QMC results, we find that MP2 and LDA over-
bind while B3LYP and BPW91 underbind. The PW91 functional
gives the best agreement with the DMC results. Using these bind-
ing energies, we update previous estimates by RB [2] for the bind-
ing to the full tube. The weakness of the binding for the two NO2

adsorbates puts the charge transfer mechanism in CNT molecular
sensors in further doubt, and suggests that the conductivity
change observed in these systems results from another
mechanism.
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