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A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated
hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-
attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange
and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2)
correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in
some detail. Several semi-local approximations are developed for the short-range exchange-correlation
density functional involved in this scheme. After finding optimal values for the two parameters of the
CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence
and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions
globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme
represents a new family of double hybrids with minimal empiricism which could be useful for general
chemical applications. Published by AIP Publishing. https://doi.org/10.1063/1.5025561

I. INTRODUCTION

Over the past two decades, density-functional theory
(DFT)1 within the Kohn-Sham (KS) scheme2 has been a
method of choice to study ground-state properties of elec-
tronic systems. KS DFT is formally exact, but it involves
the so-called exchange-correlation energy functional whose
explicit form in terms of the electron density is still unknown.
Hence, families of approximations to this quantity have been
developed: semi-local approximations [local-density approxi-
mation (LDA), generalized-gradient approximations (GGAs),
and meta-GGAs], hybrid approximations, and approximations
depending on virtual orbitals (see, e.g., Ref. 3 for a recent
review).

This last family of approximations includes approaches
combining semi-local density-functional approximations
(DFAs) with Hartree–Fock (HF) exchange and second-order
Møller–Plesset (MP2) correlation, either based on a range sep-
aration of the electron-electron interaction or a linear separa-
tion. In the range-separated hybrid (RSH) variant, the Coulomb
electron-electron interaction wee(r12) = 1/r12 is decomposed
as4,5

wee(r12) = w lr,µ
ee (r12) + wsr,µ

ee (r12), (1)

where w
lr,µ
ee (r12)= erf(µr)/r12 is a long-range interac-

tion (written with the error function erf) and w
sr,µ
ee (r12)

= erfc(µr)/r12 is the complementary short-range interaction
(written with the complementary error function erfc), the
decomposition being controlled by the parameter µ (0 ≤ µ
<∞). HF exchange and MP2 correlation can then be used for
the long-range part of the energy, while a semi-local exchange-
correlation DFA is used for the complementary short-range
part, resulting in a method that is denoted by RSH+MP2.6
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Among the main advantages of such an approach are the
explicit description of van der Waals dispersion interactions
via the long-range MP2 part (see, e.g., Ref. 7) and the fast
(exponential) convergence of the long-range MP2 correlation
energy with respect to the size of the one-electron basis set.8

On the other hand, the short-range exchange-correlation DFAs
used still exhibit significant errors, such as self-interaction
errors,9 limiting the accuracy for the calculations of atom-
ization energies or non-covalent electrostatic interactions, for
example.

Similarly, the double-hybrid (DH) variant10 (see Ref. 11
for a review) for combining MP2 and a semi-local DFA can
be considered as corresponding to a linear separation of the
Coulomb electron-electron interaction12

wee(r12) = λwee(r12) + (1 − λ)wee(r12), (2)

where λ is a parameter (0 ≤ λ ≤ 1). If HF exchange and MP2
correlation is used for the part of the energy associated with the
interaction λwee(r12) and a semi-local exchange-correlation
DFA is used for the complementary part, then a one-parameter
version of the DH approximations is obtained.12,93 One of the
main advantages of the DH approximations is their quite effi-
cient reduction of the self-interaction error13 thanks to their
large fraction of HF exchange (λ ≈ 0.5 or more). On the other
hand, they inherit (a fraction of) the slow (polynomial) basis
convergence of standard MP2,14 and they are insufficiently
accurate for the description of van der Waals dispersion inter-
actions and need the addition of semi-empirical dispersion
corrections.15

In this work, we consider range-separated double-hybrid
(RSDH)16 approximations which combine the two above-
mentioned approaches, based on the following decomposition
of the Coulomb electron-electron interaction:

wee(r12) =
[
w

lr,µ
ee (r12) + λwsr,µ

ee (r12)
]

+ (1 − λ)wsr,µ
ee (r12), (3)

0021-9606/2018/148(16)/164105/16/$30.00 148, 164105-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5025561
https://doi.org/10.1063/1.5025561
mailto:toulouse@lct.jussieu.fr
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5025561&domain=pdf&date_stamp=2018-04-26


164105-2 C. Kalai and J. Toulouse J. Chem. Phys. 148, 164105 (2018)

where, again, the energy corresponding to the first part of the
interaction (in square brackets) is calculated with HF exchange
and MP2 correlation, and the complementary part is treated
by a semi-local exchange-correlation DFA. The expected fea-
tures of such an approach are the explicit description of van
der Waals dispersion interactions through the long-range part
and reduced self-interaction errors in the short-range part (and
thus improved calculations of properties such as atomization
energies).

The decomposition of Eq. (3) is in fact a special case of
the decomposition used in the Coulomb-attenuating method
(CAM)17

wee(r12) =
[
(α + β)w lr,µ

ee (r12) + αwsr,µ
ee (r12)

]

+
[
(1 − α − β)w lr,µ

ee (r12) + (1 − α)wsr,µ
ee (r12)

]
, (4)

with the parameters α + β = 1 and α = λ. The choice α + β = 1
is known to be appropriate for Rydberg and charge-transfer
excitation energies18 and for reaction-barrier heights.19 We
also expect it to be appropriate for the description of long-
range van der Waals dispersion interactions. It should be
noted that the CAM decomposition has been introduced in
Ref. 17 at the exchange level only, i.e., for combining HF
exchange with a semi-local exchange DFA without modifying
the semi-local correlation DFA. Only recently, Cornaton and
Fromager20 (see also Ref. 21) pointed out the possibility of
a CAM double-hybrid approximation but remarked that the
inclusion of a fraction of short-range electron-electron inter-
action in the MP2 part would limit the basis convergence and
preferred to develop an alternative approach which uses only
the perturbation expansion of a long-range interacting wave
function. Despite the expected slower basis convergence of
DH approximations based on the decomposition in Eq. (3) [or
in Eq. (4)] in comparison to the RSH+MP2 method based on
the decomposition in Eq. (1), we still believe it worthwhile to
explore this kind of DH approximations in light of the above-
mentioned expected advantages. In fact, we will show that the
basis convergence of the RSDH approximations is relatively
fast, owing to the inclusion of a modest fraction of short-range
MP2 correlation.

The decomposition in Eq. (3) has been used several times
at the exchange level.22–33 A few DH approximations includ-
ing either long-range exchange or long-range correlation terms
have been proposed. The ωB97X-2 approximation34 adds a
full-range MP2 correlation term to a hybrid approximation
including long-range HF exchange. The B2-P3LYP approxi-
mation35 and the lrc-XYG3 approximation36 add a long-range
MP2 correlation correction to a standard DH approximation
including full-range HF exchange. Only in Ref. 37 the decom-
position in Eq. (3) was consistently used at the exchange and
correlation level, combining a pair coupled-cluster doubles
approximation with a semi-local exchange-correlation DFA,
in the goal of describing static correlation. However, the for-
mulation of the exact theory based on the decomposition in
Eq. (3), as well as the performance of the MP2 and semi-local
DFAs in this context, has not been explored. This is what we
undertake in the present work.

The paper is organized as follows. In Sec. II, the the-
ory underlying the RSDH approximations is presented, and

approximations for the corresponding short-range correlation
density functional are developed. Computational details are
given in Sec. III. In Sec. IV, we give and discuss the results,
concerning the optimization of the parameters µ and λ on small
sets of atomization energies (AE6 set) and reaction barrier
heights (BH6 set), the study of the basis convergence, and the
tests on large sets of atomization energies (AE49 set), reaction
barrier heights (DBH24 set), and weak intermolecular interac-
tions (S22 set). Section V contains conclusions and future work
prospects. Finally, the Appendix contains the derivation of the
uniform coordinate scaling relation and the Coulomb/high-
density and short-range/low-density limits of the short-range
correlation density functional involved in this work. Unless
otherwise specified, Hartree atomic units are tacitly assumed
throughout this work.

II. RANGE-SEPARATED DOUBLE-HYBRID
DENSITY-FUNCTIONAL THEORY
A. Exact theory

The derivation of the RSDH density-functional theory
starts from the universal density functional,38

F[n] = min
Ψ→n
〈Ψ|T̂ + Ŵee |Ψ〉 , (5)

where T̂ is the kinetic-energy operator, Ŵ ee is the Coulomb
electron-electron repulsion operator, and the minimization is
done over normalized antisymmetric multideterminant wave
functions Ψ giving a fixed density n. The universal density
functional is then decomposed as

F[n] = Fµ,λ[n] + Ēsr,µ,λ
Hxc [n], (6)

where Fµ ,λ[n] is defined as

Fµ,λ[n] = min
Ψ→n
〈Ψ|T̂ + Ŵ lr,µ

ee + λŴ sr,µ
ee |Ψ〉 . (7)

In Eq. (7), Ŵ lr,µ
ee is the long-range electron-electron repul-

sion operator and λŴ sr,µ
ee is the short-range electron-electron

repulsion operator scaled by the constant λ, with expressions

Ŵ lr,µ
ee =

1
2

∫ ∫
w

lr,µ
ee (r12)n̂2

(
r1, r2

)
dr1dr2, (8)

Ŵ sr,µ
ee =

1
2

∫ ∫
w

sr,µ
ee (r12)n̂2(r1, r2)dr1dr2, (9)

where n̂2(r1, r2) = n̂(r1)n̂(r2) − δ(r1 − r2)n̂(r1) is the pair-
density operator, written with the density operator n̂(r).
Equation (6) defines the complement short-range Hartree-
exchange-correlation density functional Ēsr,µ,λ

Hxc [n] depending
on the two parameters µ and λ. It can itself be decomposed
as

Ēsr,µ,λ
Hxc [n] = Esr,µ,λ

H [n] + Ēsr,µ,λ
xc [n], (10)

where Esr,µ,λ
H [n] is the short-range Hartree contribution,

Esr,µ,λ
H [n] = (1 − λ)

1
2

∫ ∫
w

sr,µ
ee (r12)n(r1)n(r2)dr1dr2, (11)

and Ēsr,µ,λ
xc [n] is the short-range exchange-correlation contri-

bution.
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The exact ground-state electronic energy of an N-electron
system in the external nuclei-electron potential vne(r) can be
expressed as

E = min
n→N

{
F[n] +

∫
vne(r)n(r)dr

}

= min
n→N

{
Fµ,λ[n] + Ēsr,µ,λ

Hxc [n] +
∫
vne(r)n(r)dr

}

= min
Ψ→N

{
〈Ψ|T̂ + Ŵ lr,µ

ee + λŴ sr,µ
ee + V̂ne |Ψ〉 + Ēsr,µ,λ

Hxc [nΨ]
}
,

(12)

where n→N refers to N-representable densities,Ψ→N refers
to N-electron normalized antisymmetric multideterminant
wave functions, and nΨ denotes the density coming from Ψ,
i.e., nΨ(r) = 〈Ψ|n̂(r)|Ψ〉. In Eq. (12), the last line was obtained
by using the expression of Fµ ,λ[n] in Eq. (7), introducing the
nuclei-electron potential operator V̂ne = ∫ vne(r)n̂(r)dr and
recomposing the two-step minimization into a single one, i.e.,
minn→N minΨ→n = minΨ→N . The minimizing wave function
Ψµ ,λ in Eq. (12) satisfies the corresponding Euler-Lagrange
equation, leading to the Schrödinger-like equation(
T̂ + Ŵ lr,µ

ee + λŴ sr,µ
ee + V̂ne + V̂ sr,µ,λ

Hxc [nΨµ,λ ]
)
|Ψµ,λ〉= Eµ,λ |Ψµ,λ〉,

(13)

where Eµ,λ is the Lagrange multiplier associated with
the normalization constraint of the wave function. In
Eq. (13), V̂ sr,µ,λ

Hxc [n]= ∫ v
sr,µ,λ
Hxc (r)n̂(r)dr is the complement

short-range Hartree-exchange-correlation potential opera-
tor with v

sr,µ,λ
Hxc (r)= δĒsr,µ,λ

Hxc [n]/δn(r). Equation (13) defines

an effective Hamiltonian Ĥµ,λ = T̂ + V̂ne + Ŵ lr,µ
ee + λŴ sr,µ

ee
+ V̂ sr,µ,λ

Hxc [nΨµ,λ ] that must be solved iteratively for its ground-
state multideterminant wave function Ψµ ,λ which gives the
exact ground-state density and the exact ground-state energy
via Eq. (12), independently of µ and λ.

We have therefore defined an exact formalism combining
a wave-function calculation with a density functional. This
formalism encompasses several important special cases:

• µ = 0 and λ = 0. In Eq. (12), the electron-electron
operator vanishes, Ŵ lr,µ=0

ee + 0 × Ŵ sr,µ=0
ee = 0, and

the density functional reduces to the KS Hartree-
exchange-correlation density functional, Ēsr,µ=0,λ=0

Hxc [n]
= EHxc[n], so that we recover standard KS DFT

E = min
Φ→N

{
〈Φ|T̂ + V̂ne |Φ〉 + EHxc[nΦ]

}
, (14)

where Φ is a single-determinant wave function.
• µ → ∞ or λ = 1. In Eq. (12), the electron-electron

operator reduces to the Coulomb interaction Ŵ lr,µ→∞
ee

+ λŴ sr,µ→∞
ee = Ŵee or Ŵ lr,µ

ee + 1 × Ŵ sr,µ
ee = Ŵee, and

the density functional vanishes, Ēsr,µ→∞,λ
Hxc [n] = 0 or

Ēsr,µ,λ=1
Hxc [n] = 0, so that we recover standard wave-

function theory

E = min
Ψ→N

〈Ψ|T̂ + Ŵee + V̂ne |Ψ〉. (15)

• 0< µ<∞ and λ = 0. In Eq. (12), the electron-
electron operator reduces to the long-range interaction

Ŵ lr,µ
ee + 0× Ŵ sr,µ

ee = Ŵ lr,µ
ee , and the density functional

reduces to the usual short-range density functional,
Ēsr,µ,λ=0

Hxc [n]= Ēsr,µ
Hxc[n], so that we recover range-

separated DFT4,5

E = min
Ψ→N

{
〈Ψ|T̂ + Ŵ lr,µ

ee + V̂ne |Ψ〉 + Ēsr,µ
Hxc[nΨ]

}
. (16)

• µ= 0 and 0< λ < 1. In Eq. (12), the electron-electron
operator reduces to the scaled Coulomb interac-
tion Ŵ lr,µ=0

ee + λŴ sr,µ=0
ee = λŴee, and the density func-

tional reduces to the λ-complement density functional,
Ēsr,µ=0,λ

Hxc [n]= ĒλHxc[n], so that we recover the multide-
terminant extension of KS DFT based on the linear
decomposition of the electron-electron interaction12,39

E = min
Ψ→N

{
〈Ψ|T̂ + λŴee + V̂ne |Ψ〉 + ĒλHxc[nΨ]

}
. (17)

B. Single-determinant approximation

As a first step, we introduce a single-determinant approx-
imation in Eq. (12),

Eµ,λ
0 = min

Φ→N

{
〈Φ|T̂ + Ŵ lr,µ

ee + λŴ sr,µ
ee + V̂ne |Φ〉 + Ēsr,µ,λ

Hxc [nΦ]
}
,

(18)

where the search is over N-electron normalized single-
determinant wave functions. The minimizing single determi-
nant Φµ ,λ is given by the HF- or KS-like equation(

T̂ + V̂ne + V̂ lr,µ
Hx,HF[Φµ,λ] + λV̂ sr,µ

Hx,HF[Φµ,λ]

+ V̂ sr,µ,λ
Hxc [nΦµ,λ ]

)
|Φµ,λ〉 = Eµ,λ

0 |Φ
µ,λ〉, (19)

where V̂ lr,µ
Hx,HF[Φµ,λ] and V̂ sr,µ

Hx,HF[Φµ,λ] are the long-range and
short-range HF potential operators constructed with the sin-
gle determinant Φµ ,λ, respectively, and Eµ,λ

0 is the Lagrange
multiplier associated with the normalization constraint. Equa-
tion (19) must be solved self-consistently for its single-
determinant ground-state wave functionΦµ ,λ. Note that, due to
the single-determinant approximation, the density nΦµ,λ is not
the exact ground-state density and the energy in Eq. (18) is not
the exact ground-state energy and depends on the parameters
µ and λ. It can be rewritten in the form

Eµ,λ
0 = 〈Φµ,λ |T̂ + V̂ne |Φ

µ,λ〉 + EH[nΦµ,λ ]

+ Elr,µ
x,HF[Φµ,λ] + λEsr,µ

x,HF[Φµ,λ] + Ēsr,µ,λ
xc [nΦµ,λ ], (20)

where EH[n] = (1/2)∫ ∫ wee(r12)n(r1)n(r2)dr1dr2 is the stan-
dard Hartree energy with the Coulomb electron-electron inter-
action and Elr,µ

x,HF and Esr,µ
x,HF are the long-range and short-range

HF exchange energies. For µ = 0 and λ = 0, we recover stan-
dard KS DFT, while for µ→∞ or λ = 1 we recover standard
HF theory. For intermediate values of µ and λ, this scheme
is very similar to the approximations of Refs. 22–33, except
that the part of correlation associated with the interaction
w

lr,µ
ee (r12) + λwsr,µ

ee (r12) is missing in Eq. (20). The addition of
this correlation is done in a second step with MP2 perturbation
theory.
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C. Second-order Møller–Plesset perturbation theory

A rigorous non-linear Rayleigh-Schrödinger perturba-
tion theory starting from the single-determinant reference of
Sec. II B can be developed, similar to what was done for the
RSH+MP2 method in Refs. 6, 40, and 41 and for the one-
parameter DH approximations in Ref. 12. This is done by
introducing a perturbation strength parameter ε and defining
the energy expression

Eµ,λ,ε = min
Ψ→N

{
〈Ψ|T̂ + V̂ne + V̂ lr,µ

Hx,HF[Φµ,λ]

+ λV̂ sr,µ
Hx,HF[Φµ,λ] + εŴµ,λ

|Ψ〉 + Ēsr,µ,λ
Hxc [nΨ]

}
, (21)

where the search is over N-electron normalized antisymmet-

ric multideterminant wave functions, and Ŵµ,λ
is a Møller–

Plesset-type perturbation operator

Ŵµ,λ
= Ŵ lr,µ

ee + λŴ sr,µ
ee − V̂ lr,µ

Hx,HF[Φµ,λ]− λV̂ sr,µ
Hx,HF[Φµ,λ]. (22)

The minimizing wave function Ψµ ,λ,ε in Eq. (21) is given by
the corresponding Euler-Lagrange equation(

T̂ + V̂ne + V̂ lr,µ
Hx,HF[Φµ,λ] + λV̂ sr,µ

Hx,HF[Φµ,λ] + εŴµ,λ

+ V̂ sr,µ,λ
Hxc [nΨµ,λ,ε ]

)
|Ψµ,λ,ε 〉 = Eµ,λ,ε |Ψµ,λ,ε 〉. (23)

For ε = 0, Eq. (23) reduces to the single-determinant refer-
ence of Eq. (19), i.e., Ψµ ,λ,ε =0 = Φµ ,λ and Eµ,λ,ε=0 = Eµ,λ

0 .
For ε = 1, Eq. (23) reduces to Eq. (13), i.e., Ψµ ,λ,ε =1 = Ψµ ,λ

and Eµ,λ,ε=1 = Eµ,λ, and Eq. (21) reduces to Eq. (12), i.e., we
recover the physical energy Eµ ,λ,ε =1 = E, independently of µ
and λ. The perturbation theory is then obtained by expanding
these quantities in ε around ε = 0: Eµ,λ,ε =

∑∞
k=0 ε

kEµ,λ,(k),
Ψµ,λ,ε =

∑∞
k=0 ε

kΨµ,λ,(k), and Eµ,λ,ε =
∑∞

k=0 ε
kEµ,λ,(k). Fol-

lowing the same steps as in Ref. 6, we find the zeroth-order
energy,

Eµ,λ,(0) = 〈Φµ,λ |T̂ + V̂ne + V̂ lr,µ
Hx,HF[Φµ,λ]

+ λV̂ sr,µ
Hx,HF[Φµ,λ]|Φµ,λ〉 + Ēsr,µ,λ

Hxc [nΦµ,λ ], (24)

and the first-order energy correction,

Eµ,λ,(1) = 〈Φµ,λ |Ŵµ,λ
|Φµ,λ〉 , (25)

so that the zeroth+first order energy gives back the energy of
the single-determinant reference in Eq. (20),

Eµ,λ,(0) + Eµ,λ,(1) = Eµ,λ
0 . (26)

The second-order energy correction involves only double-
excited determinants Φµ,λ

ij→ab (of energy Eµ,λ
0,ij→ab) and takes

the form a MP2-like correlation energy, assuming a non-
degenerate ground state in Eq. (19),

Eµ,λ,(2) = Eµ,λ
c,MP2 = −

occ∑
i<j

vir∑
a<b

����〈Φ
µ,λ
ij→ab |Ŵ

µ,λ
|Φµ,λ〉

����
2

Eµ,λ
0,ij→ab − E

µ,λ
0

= −

occ∑
i<j

vir∑
a<b

���〈 ij |ŵ
lr,µ
ee + λŵsr,µ

ee |ab〉 − 〈 ij |ŵ lr,µ
ee + λŵsr,µ

ee |ba〉���
2

εa + εb − εi − εj
, (27)

where i and j refer to occupied spin orbitals and a and b
refer to virtual spin orbitals obtained from Eq. (19), εk are
the associated orbital energies, and 〈 ij |ŵ lr,µ

ee + λŵ
sr,µ
ee |ab〉 are

the two-electron integrals corresponding to the interaction
w

lr,µ
ee (r12) + λwsr,µ

ee (r12). Note that the orbitals and orbital ener-
gies implicitly depend on µ and λ. Just like in standard
Møller–Plesset perturbation theory, there is a Brillouin the-
orem making the single-excitation term vanish (see Ref. 6).
Also, contrary to the approach of Refs. 20 and 21, the second-
order energy correction does not involve any contribution from
the second-order correction to the density. The total RSDH
energy is finally

Eµ,λ
RSDH = Eµ,λ

0 + Eµ,λ
c,MP2. (28)

It is instructive to decompose the correlation energy in
Eq. (27) as

Eµ,λ
c,MP2 = Elr,µ

c,MP2 + λElr−sr,µ
c,MP2 + λ2Esr,µ

c,MP2, (29)

with a pure long-range contribution,

Elr,µ
c,MP2 = −

occ∑
i<j

vir∑
a<b

���〈 ij |ŵ
lr,µ
ee |ab〉 − 〈 ij |ŵ lr,µ

ee |ba〉���
2

εa + εb − εi − εj
, (30)

a pure short-range contribution,

Esr,µ
c,MP2 = −

occ∑
i<j

vir∑
a<b

���〈 ij |ŵ
sr,µ
ee |ab〉 − 〈 ij |ŵsr,µ

ee |ba〉���
2

εa + εb − εi − εj
, (31)

and a mixed long-range/short-range contribution,

Elr−sr,µ
c,MP2 = −

occ∑
i<j

vir∑
a<b

(
〈 ij |ŵ lr,µ

ee |ab〉 − 〈 ij |ŵ lr,µ
ee |ba〉

) (
〈ab|ŵsr,µ

ee |ij〉 − 〈ba|ŵsr,µ
ee |ij〉

)
εa + εb − εi − εj

+ c.c., (32)
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where c.c. stands for the complex conjugate. The exchange-
correlation energy in the RSDH approximation is thus

Eµ,λ
xc,RSDH = Elr,µ

x,HF + λEsr,µ
x,HF + Elr,µ

c,MP2

+ λElr−sr,µ
c,MP2 + λ2Esr,µ

c,MP2 + Ēsr,µ,λ
xc [n]. (33)

It remains to develop approximations for the complement
short-range exchange-correlation density functional Ēsr,µ,λ

xc [n],
which is done in Sec. II D.

D. Complement short-range exchange-correlation
density functional
1. Decomposition into exchange and correlation

The complement short-range exchange-correlation den-
sity functional Ēsr,µ,λ

xc [n] can be decomposed into exchange
and correlation contributions,

Ēsr,µ,λ
xc [n] = Esr,µ,λ

x [n] + Ēsr,µ,λ
c [n], (34)

where the exchange part is defined with the KS single
determinant Φ[n] and is linear with respect to λ,

Esr,µ,λ
x [n] = 〈Φ[n]|(1 − λ)Ŵ sr,µ

ee |Φ[n]〉 − Esr,µ,λ
H [n]

= (1 − λ)Esr,µ
x [n], (35)

where Esr,µ
x [n] = Esr,µ,λ=0

x [n] is the usual short-range exchange
density functional, as already introduced, e.g., in Ref. 5.
Several (semi-)local approximations have been proposed for
Esr,µ

x [n] (see, e.g., Refs. 4, 5, and 42–49). By contrast, the com-
plement short-range correlation density functional Ēsr,µ,λ

c [n]
cannot be exactly expressed in terms of the short-range cor-
relation density functional Ēsr,µ

c [n] = Ēsr,µ,λ=0
c [n] of Ref. 5

for which several (semi-)local approximations have been pro-
posed.5,45–50 Note that in the approach of Ref. 20 the comple-
ment density functional was defined using the pure long-range
interacting wave function Ψµ = Ψµ ,λ=1 and it was possible,
using uniform coordinate scaling relations, to find an exact
expression for it in terms of previously studied density func-
tionals. This is not the case in the present approach because
the complement density functional is defined using the wave
function Ψµ ,λ obtained with both long-range and short-range
interactions. As explained in the Appendix, uniform coordi-
nate scaling relations do not allow one to obtain an exact
expression for Ēsr,µ,λ

c [n] in terms of previously studied den-
sity functionals. Therefore, the difficulty lies in developing
approximations for Ēsr,µ,λ

c [n]. For this, we first give the exact
expression of Ēsr,µ,λ

c [n] in the Coulomb limit µ→ 0 (and the
related high-density limit) and in the short-range limit µ→∞
(and the related low-density limit).

2. Expression of Ēsr,µ,λ
c [n] in the Coulomb limit

µ→ 0 and in the high-density limit

The complement short-range correlation density func-
tional Ēsr,µ,λ

c [n] can be written as

Ēsr,µ,λ
c [n] = Ec[n] − Eµ,λ

c [n], (36)

where Ec[n] is the standard KS correlation density functional
and Eµ,λ

c [n] is the correlation density functional associated
with the interaction w lr,µ

ee (r12) + λwsr,µ
ee (r12).

For µ= 0, the density functional Eµ=0,λ
c [n]=Eλc [n]

corresponds to the correlation functional associated with
the scaled Coulomb interaction λwee(r12), which can be
exactly expressed as Eλc [n] = λ2Ec[n1/λ],51,52 where n1/λ(r)
= (1/λ3)n(r/λ) is the density with coordinates uniformly scaled
by 1/λ. Therefore, for µ = 0, the complement short-range
correlation density functional is

Ēsr,µ=0,λ
c [n] = Ec[n] − λ2Ec[n1/λ], (37)

which is the correlation functional used in the density-scaled
one-parameter double-hybrid (DS1DH) scheme of Sharkas
et al.12 For a KS system with a non-degenerate ground state,
we have in the λ→ 0 limit Ec[n1/λ] = EGL2

c [n] +O(λ), where
EGL2

c [n] is the second-order Görling–Levy (GL2) correlation
energy.53 Therefore, in this case, Ēsr,µ=0,λ

c [n] has a quadratic
dependence in λ near λ = 0. In practice with GGA functionals,
it has been found that the density scaling in Eq. (37) can some-
times be advantageously neglected, i.e., Ec[n1/λ] ≈ Ec[n],12,39

giving

Ēsr,µ=0,λ
c [n] ≈ (1 − λ2)Ec[n]. (38)

Even if we do not plan to apply the RSDH scheme
with µ = 0, the condition in Eq. (37) is in fact relevant
for an arbitrary value of µ in the high-density limit, i.e.,
nγ(r) = γ3n(γr) with γ → ∞, since in this limit the short-
range interaction becomes equivalent to the Coulomb interac-
tion in the complement short-range correlation density func-
tional: limγ→∞ Ēsr,µ,λ

c [nγ] = limγ→∞ Ēsr,µ=0,λ
c [nγ] (see the

Appendix). In fact, for a KS system with a non-degenerate
ground state, the approximate condition in Eq. (38) is suffi-
cient to recover the exact high-density limit for an arbitrary
value of µ which is (see the Appendix)

lim
γ→∞

Ēsr,µ,λ
c [nγ] = (1 − λ2)EGL2

c [n]. (39)

3. Expression of Ēsr,µ,λ
c [n] in the short-range limit

µ→ ∞ and the low-density limit

The leading term in the asymptotic expansion of Ēsr,µ,λ
c [n]

as µ→∞ is (see the Appendix)

Ēsr,µ,λ
c [n] = (1 − λ)

π

2µ2

∫
n2,c[n](r, r)dr + O

(
1

µ3

)
, (40)

where n2,c[n](r, r) is the correlation part of the on-top pair den-
sity for the Coulomb interaction. We thus see that, for µ→∞,
Ēsr,µ,λ

c [n] is linear with respect to λ. In fact, since the asymp-
totic expansion of the usual short-range correlation functional
is Ēsr,µ

c [n] = π/(2µ2) ∫ n2,c[n](r, r)dr+O(1/µ3),5 we can write
for µ→∞

Ēsr,µ,λ
c [n] = (1 − λ)Ēsr,µ

c [n] + O
(

1

µ3

)
. (41)

The low-density limit, i.e., nγ(r) = γ3n(γr) with γ → 0,
is closely related to the limit µ→∞ (see the Appendix),

Ēsr,µ,λ
c [nγ] ∼

γ→0

γ3(1 − λ)π

2µ2

∫
n1/γ

2,c [n](r, r)dr

∼
γ→0

γ3(1 − λ)π

4µ2

∫ [
−n(r)2 + m(r)2

]
dr, (42)
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in which appears n1/γ
2,c [n](r, r), the on-top pair density for

the scaled Coulomb interaction (1/γ)wee(r12), and its strong-
interaction limit limγ→0 n1/γ

2,c [n](r, r) = −n(r)2/2 + m(r)2/2,54

where m(r) is the spin magnetization. Thus, in the low-density
limit, contrary to the usual KS correlation functional Ec[n]
which goes to zero linearly in γ,51 times the complicated non-
local strictly correlated electron functional,55 the complement
short-range correlation functional Ēsr,µ,λ

c [n] goes to zero like
γ3 and becomes a simple local functional of n(r) and m(r).

4. Approximations for Ēsr,µ,λ
c [n]

We now propose several simple approximations for
Ēsr,µ,λ

c [n]. On the one hand, Eq. (38) suggests the approxi-
mation

Ēsr,µ,λ
c,approx1[n] = (1 − λ2)Ēsr,µ

c [n], (43)

which is correctly quadratic in λ at µ = 0 but is not linear
in λ for µ → ∞. On the other hand, Eq. (41) suggests the
approximation

Ēsr,µ,λ
c,approx2[n] = (1 − λ)Ēsr,µ

c [n], (44)

which is correctly linear in λ for µ→∞ but not quadratic in
λ at µ = 0.

However, it is possible to impose simultaneously the two
limiting behaviors for µ = 0 and µ → ∞ with the following
approximation:

Ēsr,µ,λ
c,approx3[n] = Ēsr,µ

c [n] − λ2Ēsr,µ
√
λ

c [n], (45)

which reduces to Eq. (38) for µ = 0 and satisfies Eq. (40) for
µ→∞. Another possibility, proposed in Ref. 37, is

Ēsr,µ,λ
c,approx4[n] = Ēsr,µ

c [n] − λ2Ēsr,µ/λ
c [n1/λ], (46)

which correctly reduces to Eq. (37) for µ = 0. For µ→∞, its
asymptotic expansion is

Ēsr,µ,λ
c,approx4[n] =

π

2µ2

∫
n2,c[n](r, r)dr − λ4 π

2µ2

×

∫
n2,c[n1/λ](r, r)dr + O

(
1

µ3

)
, (47)

i.e., it does not satisfy Eq. (40). Contrary to what was suggested
in Ref. 37, Eq. (46) is not exact but only an approximation.
However, using the scaling relation on the system-averaged
on-top pair density54∫

n2,c[nγ](r, r)dr = γ3
∫

n1/γ
2,c [n](r, r)dr, (48)

it can be seen that, in the low-density limit γ → 0, Eq. (47)
correctly reduces to Eq. (42). In Ref. 37, the authors propose
to neglect the scaling of the density in Eq. (46) leading to

Ēsr,µ,λ
c,approx5[n] = Ēsr,µ

c [n] − λ2Ēsr,µ/λ
c [n], (49)

which reduces to Eq. (38) for µ= 0, but which has also a wrong
λ-dependence for large µ

Ēsr,µ,λ
c,approx5[n] = (1−λ4)

π

2µ2

∫
n2,c[n](r, r)dr +O

(
1

µ3

)
, (50)

and does not anymore satisfy the low-density limit.
Another strategy is to start from the decomposition of

the MP2-like correlation energy in Eq. (29) which suggests

the following approximation for the complement short-range
correlation functional:

Ēsr,µ,λ
c,approx6[n] = (1 − λ)Elr−sr,µ

c [n] + (1 − λ2)Esr,µ
c [n], (51)

where Elr−sr,µ
c [n] = Ēsr,µ

c [n] − Esr,µ
c [n] is the mixed long-

range/short-range correlation functional56,57 and Esr,µ
c [n] is

the pure short-range correlation functional associated with the
short-range interaction wsr,µ

ee (r12).56,57 An LDA functional has
been constructed for Esr,µ

c [n].58 Since Elr−sr,µ=0
c [n] = 0 and

Esr,µ=0
c [n] = Ec[n], the approximation in Eq. (51) reduces to

Eq. (38) for µ = 0. For µ → ∞, since Esr,µ
c [n] decays faster

than 1/µ2, i.e., Esr,µ
c [n] = O(1/µ3),58 Elr−sr,µ

c [n] and Ēsr,µ
c [n]

have the same leading term in the large-µ expansion, i.e.,
Elr−sr,µ

c [n] = Ēsr,µ
c [n] + O(1/µ3), and thus the approximation

in Eq. (51) satisfies Eq. (40) or (41). One can also enforce the
exact condition at µ = 0, Eq. (38), by introducing a scaling of
the density

Ēsr,µ,λ
c,approx7[n] = (1 − λ)Elr−sr,µ

c [n] + Esr,µ
c [n] − λ2Esr,µ/λ

c [n1/λ].

(52)

5. Assessment of the approximations for Ēsr,µ,λ
c [n]

on the uniform-electron gas

We now test the approximations for the complement short-
range correlation functional Ēsr,µ,λ

c [n] introduced in Sec. II D
4 on the spin-unpolarized uniform-electron gas.

As a reference, for several values of the Wigner-Seitz
radius rs = (3/(4πn))1/3 and the parameters µ and λ, we have
calculated the complement short-range correlation energy per
particle as

ε̄
sr,µ,λ
c,unif (rs) = εc,unif(rs) − ε

µ,λ
c,unif(rs), (53)

where εc,unif(rs) is the correlation energy per particle of
the uniform-electron gas with the Coulomb electron-electron
wee(r12) and ε

µ,λ
c,unif(rs) is the correlation energy per parti-

cle of an uniform-electron gas with the modified electron-
electron w lr,µ

ee (r12) + λwsr,µ
ee (r12). We used what is known today

as the direct random-phase approximation + second-order
screened exchange (dRPA+SOSEX) method (an approxima-
tion to coupled-cluster doubles)59,60 as introduced for the
uniform-electron gas by Freeman61 and extended for modi-
fied electron-electron interactions in Refs. 4 and 45 and which
is known to give reasonably accurate correlation energies per
particle of the spin-unpolarized electron gas (error less than
1 millihartree for rs < 10). We note that these calculations
would allow us to construct a complement short-range LDA
correlation functional, but we refrain from doing that since
we prefer to avoid having to do a complicated fit of ε̄sr,µ,λ

c (rs)
with respect to rs, µ, and λ. Moreover, this would only give a
spin-independent LDA functional. We thus use these uniform-
electron gas calculations only to test the approximations of
Sec. II D 4.

For several values of rs, µ, and λ, we have calculated
the complement short-range correlation energy per particle
corresponding to the approximations 1 to 7 using the LDA
approximation for Ēsr,µ

c [n] from Ref. 50 (for approxima-
tions 1–7), as well as the LDA approximation for Esr,µ

c [n]
from Ref. 58 (for approximations 6 and 7), and the errors
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with respect to the dRPA+SOSEX results are reported in
Fig. 1. Note that the accuracy of the dRPA+SOSEX refer-
ence decreases as rs increases, the error being of the order of
1 millihartree for rs = 10, which explains why the curves on
the third graph of Fig. 1 appear shifted with respect to zero at
large rs.

By construction, all the approximations become exact for
λ = 0 (and trivially for λ = 1 or in the µ → ∞ limit since
the complement short-range correlation energy goes to zero
in these cases). For intermediate values of λ and finite values

FIG. 1. Error on the complement short-range correlation energy per particle
ε̄

sr,µ,λ
c,unif (rs) of the uniform-electron gas obtained with approximations 1–7 of

Sec. II D 4 with respect to the dRPA+SOSEX results.

of µ, all the approximations, except approximation 2, tend to
give too negative correlation energies. As it could have been
expected, approximation 2, which is the only one incorrectly
linear in λ at µ= 0, gives quite a large error (of the order of 0.01
hartree or more) for small µ, intermediate λ, and small rs (it
in fact diverges in the high-density limit rs→ 0), but the error
goes rapidly to zero as µ increases, reflecting the fact that this
approximation has the correct leading term of the asymptotic
expansion for µ→∞. On the contrary, approximation 1, being
quadratic in λ, gives a smaller error (less than 0.005 hartree)
for small µ but the error goes slower to zero as µ increases.
Approximation 3 combines the advantages of approximations
1 and 2: it gives a small error for small µ which goes rapidly
to zero as µ increases. Approximation 4, which contains the
scaling of the density, is exact for µ = 0 and gives a small
error (at most about 0.003 hartree) for intermediate values of
µ, but the error does not go rapidly to zero as µ increases.
Again, this reflects the fact that this approximation does not
give the correct leading term of the asymptotic expansion for
µ → ∞ for arbitrary λ and rs. This confirms that Eq. (46)
does not give the exact complement short-range correlation
functional, contrary to what was thought in Ref. 37. A nice
feature however of approximation 4 is that it becomes exact in
the high-density limit rs → 0 of the uniform-electron gas (the
scaling of the density at µ = 0 is needed to obtain the correct
high-density limit in this zero-gap system). Approximation 5,
obtained from approximation 4 by neglecting the scaling of the
density in the correlation functional and used in Ref. 37, gives
quite large errors for the uniform-electron gas, approaching
0.01 hartree. Approximations 6 and 7 are quite good. They both
have the correct leading term of the asymptotic expansion for
µ→ ∞, but approximation 7 has the additional advantage of
having also the correct µ→ 0 or rs→ 0 limit. Approximation
7 is our best approximation, with a maximal error of about 1
millihartree.

Unfortunately, approximations 6 and 7 involve the pure
short-range correlation functional Esr,µ

c [n], for which we cur-
rently have only a spin-unpolarized LDA approximation.58 For
this reason, we do not consider these approximations in the
following for molecular calculations. We will limit ourselves
to approximations 1–5 which only involve the complement
short-range correlation functional Ēsr,µ

c [n], for which we have
spin-dependent GGAs.5,46–49

III. COMPUTATIONAL DETAILS

The RSDH scheme has been implemented in a develop-
ment version of the molpro 2015 program.62 The calculation
is done in two steps: first a self-consistent-field calculation is
perform according to Eqs. (18)–(20), and then the MP2-like
correlation energy in Eq. (27) is evaluated with the previously
calculated orbitals. The λ-dependent complement short-range
exchange functional is calculated according to Eq. (35) and
the approximations 1 to 5 [see Eqs. (43)–(49)] have been
implemented for the complement short-range correlation func-
tional, using the short-range Perdew-Burke-Ernzerhof (PBE)
exchange and correlation functionals of Ref. 48 for Esr,µ

x [n]
and Ēsr,µ

c [n].
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The RSDH scheme was applied on the AE6 and BH6
sets,63 as a first assessment of the approximations on molecu-
lar systems and in order to determine the optimal parameters
µ and λ. The AE6 set is a small representative benchmark of
six atomization energies consisting of SiH4, S2, SiO, C3H4

(propyne), C2H2O2 (glyoxal), and C4H8 (cyclobutane). The
BH6 set is a small representative benchmark of forward and
reverse hydrogen transfer barrier heights of three reactions,
OH + CH4 → CH3 + H2O, H + OH → O + H2, and H
+ H2S → HS + H2. All the calculations for the AE6 and
BH6 sets were performed with the Dunning cc-pVQZ basis
set64 at the geometries optimized by quadratic configuration
interaction with single and double excitations with the mod-
ified Gaussian-3 (QCISD/MG3) basis set.65 The reference
values for the atomization energies and barrier heights are
the non-relativistic frozen-core coupled-cluster singles dou-
bles (triples) [FC-CCSD(T)]/cc-pVQZ-F12 values of Refs. 66
and 67. For each approximation, we have first varied µ and
λ between 0 and 1 by steps of 0.1 to optimize the parame-
ters on each set. We have then refined the search by steps of
0.02 to find the common optimal parameters on the two sets
combined.

The RSDH scheme was then tested on the AE49 set of 49
atomization energies68 (consisting of the G2-1 set69,70 stripped
of the six molecules containing Li, Be, and Na71) and on the
DBH24/08 set72,73 of 24 forward and reverse reaction barrier
heights. These calculations were performed with the cc-pVQZ
basis set, with MP2(full)/6-31G∗ geometries for the AE49
set, and with the aug-cc-pVQZ basis set74 with QCISD/MG3

geometries for the DBH24/08 set. The reference values for the
AE49 set are the non-relativistic FC-CCSD(T)/cc-pVQZ-F12
values of Ref. 75, and the reference values for the DBH24/08
set are the zero-point exclusive values from Ref. 73.

Finally, the RSDH scheme was tested on the S22 set of
22 weakly interacting molecular complexes.77 These calcula-
tions were performed with the aug-cc-pVDZ and aug-cc-pVTZ
basis sets and the counterpoise correction, using the geometries
from Ref. 77 and the complete-basis-set (CBS)-extrapolated
CCSD(T) reference interaction energies from Ref. 78. The
local MP2 approach79 is used on the largest systems in the
S22 set.

Core electrons are kept frozen in all our MP2 calculations.
Spin-restricted calculations are performed for all the closed-
shell systems, and spin-unrestricted are performed calculations
for all the open-shell systems.

As statistical measures of goodness of the different meth-
ods, we compute mean absolute errors (MAEs), mean errors
(MEs), root mean square deviations (RMSDs), mean abso-
lute percentage errors (MA%E), and maximal and minimal
errors.

IV. RESULTS AND DISCUSSION
A. Optimization of the parameters on the AE6
and BH6 sets

We start by applying the RSDH scheme on the small AE6
and BH6 sets and determining optimal values for the param-
eters µ and λ. Figure 2 shows the MAEs for these two sets

FIG. 2. MAEs for the AE6 and BH6 sets obtained with the RSDH scheme using approximations 1–5 of Sec. II D 4 (with the short-range PBE exchange-correlation
functional of Ref. 48) as a function of λ for µ = 0.5 and µ = 0.6. The basis set used is cc-pVQZ.
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TABLE I. Atomization energies (in kcal/mol) of the AE49 set calculated by DS1DH (with the PBE exchange-
correlation functional76), RSH+MP2, RSDH with approximations 3 and 4 of Sec. II D 4 (with the short-range
PBE exchange-correlation functional of Ref. 48), and MP2. The calculations were carried out using the cc-pVQZ
basis set at MP2(full)/6-31G∗ geometries and with parameters (µ, λ) optimized on the AE6+BH6 combined set.
The reference values are the non-relativistic FC-CCSD(T)/cc-pVQZ-F12 values of Ref. 75.

DS1DH RSH+MP2 RSDH approx3 RSDH approx4
Molecule (µ, λ) = (0,0.70) (0.58,0) (0.46,0.58) (0.62,0.60) MP2 Reference

CH 81.13 78.38 79.93 79.58 79.68 83.87

CH2
(3B1

)
190.68 190.19 190.42 190.32 188.70 189.74

CH2
(1A1

)
175.20 170.26 173.36 173.24 174.45 180.62

CH3 305.32 302.91 304.43 304.34 303.36 306.59

CH4 415.79 410.84 414.23 414.45 414.83 418.87

NH 81.39 81.09 80.28 79.49 78.57 82.79

NH2 179.12 177.12 177.03 176.22 176.65 181.96

NH3 293.24 288.76 290.33 290.02 293.11 297.07

OH 105.26 104.49 104.02 103.81 105.78 106.96

OH2 229.78 225.48 226.96 227.21 233.83 232.56

FH 140.11 137.20 138.16 138.35 144.17 141.51

SiH2
(1A1

)
146.66 143.21 146.22 146.15 145.90 153.68

SiH2
(3B1

)
130.48 133.05 130.56 130.39 128.93 133.26

SiH3 222.07 220.05 222.39 222.21 220.51 228.08

SiH4 315.08 311.89 315.80 315.81 314.27 324.59

PH2 148.62 146.37 147.60 146.98 144.95 153.97

PH3 233.35 229.18 232.06 231.69 230.24 241.47

SH2 178.66 174.18 177.29 177.66 178.55 183.30

ClH 105.39 101.63 104.43 104.90 106.53 107.20

HCCH 406.75 399.05 403.84 405.17 409.58 402.76

H2CCH2 561.56 554.55 559.03 559.63 561.38 561.34

H3CCH3 708.35 701.94 706.59 706.98 707.15 710.20

CN 178.63 172.93 174.03 172.54 168.84 180.06

HCN 315.27 305.21 310.17 310.79 319.26 311.52

CO 262.93 254.60 258.48 258.64 269.29 258.88

HCO 283.19 277.00 278.81 278.50 285.79 278.28

H2CO 375.40 367.85 370.90 370.96 379.19 373.21

H3COH 510.48 505.00 507.31 507.41 513.32 511.83

N2 229.78 218.09 223.07 222.86 234.80 227.44

H2NNH2 433.52 428.92 428.93 427.80 432.46 436.70

NO 156.24 151.17 151.16 149.94 156.94 152.19

O2 126.21 119.73 120.29 119.49 128.55 120.54

HOOH 267.02 259.77 260.59 260.11 272.51 268.65

F2 38.66 31.64 32.30 31.17 42.18 38.75

CO2 400.49 390.46 393.18 393.30 409.33 388.59

Si2 71.64 67.21 69.78 70.72 70.56 73.41

P2 112.91 107.27 111.26 112.87 113.59 115.95

S2 104.29 100.90 102.71 103.56 103.67 103.11

Cl2 58.97 54.19 57.31 57.94 60.43 59.07

SiO 192.77 185.82 189.17 189.93 200.09 192.36

SC 172.35 163.07 164.01 170.43 175.16 170.98

SO 127.74 122.46 123.89 123.77 129.29 125.80

ClO 62.96 60.81 59.82 58.55 59.69 64.53

ClF 62.43 57.94 58.98 58.50 65.20 62.57

Si2H6 521.08 517.07 522.83 522.88 519.17 535.47

CH3Cl 393.93 388.23 392.44 393.14 394.57 394.52

CH3SH 470.26 463.90 468.46 469.10 469.94 473.49

HOCl 164.83 158.46 160.70 160.75 168.50 165.79

SO2 260.22 244.46 250.91 251.27 270.72 259.77

MAE 3.19 5.49 4.31 4.31 5.37

ME �1.18 �6.32 �3.98 �3.97 �0.24

RMSD 4.98 7.41 5.13 5.18 6.75

Min error �14.39 �18.40 �12.64 �12.59 �16.30
Max error 11.90 1.87 4.59 4.71 20.74



164105-10 C. Kalai and J. Toulouse J. Chem. Phys. 148, 164105 (2018)

obtained with approximations 1–5 of Sec. II D 4 as a function of
λ for µ= 0.5 and µ= 0.6. We choose to show plots for only these
two values of µ since they are close to the optimal value of µ for
RSH+MP212,80 and also for RSDH with all the approximations
except approximation 2. This last approximation is anyhow of
little value for thermochemistry since it gives large MAEs on
the AE6 set for intermediate values of λ, which must be related
to the incorrect linear dependence in λ of this approximation in
the limit µ→ 0 or the high-density limit. We thus only discuss
next the other four approximations.

Let us start by analyzing the results for the AE6 set. For the
approximations 1, 3, 4, and 5, we can always find an intermedi-
ate value of λ giving a smaller MAE than the two limiting cases
λ = 0 (corresponding to RSH+MP2) and λ = 1 (correspond-
ing to standard MP2). Among these four approximations, the
approximations 1 and 5 are the least effective to reduce the
MAE in comparison to RSH+MP2 and MP2, which may be
connected to the fact that these two approximations are both
incorrect in the low-density limit. The approximations 3 and 4,
which become identical in the high- and low-density limits (for
systems with non-zero gaps), are the two best approximations,
giving minimal MAEs of 2.2 and 2.3 kcal/mol, respectively,
at the optimal parameter values (µ, λ) = (0.5, 0.6) and (0.6,
0.65), respectively.

Let us consider now the results for the BH6 set. Each MAE
curve displays a marked minimum at an intermediate value of
λ, at which the corresponding approximation is globally more

accurate than both RSH+MP2 and MP2. All the approxima-
tions perform rather similarly, giving minimal MAEs of about
1 kcal/mol. In fact, for µ = 0.5 and µ = 0.6, the approximations
3 and 4 give essentially identical MAEs for all λ. The opti-
mal parameter values for these two approximations are (µ, λ)
= (0.5, 0.5), i.e., relatively close to the optimal values found
for the AE6 set.

For each of our two best approximations 3 and 4, we
also determine optimal values of µ and λ that minimize the
total MAE of the combined AE6 + BH6 set, which could
be used for general chemical applications. For the approxi-
mation 3, the optimal parameter values are (µ, λ) = (0.46,
0.58), giving a total MAE of 1.68 kcal/mol. For the approxima-
tion 4, the optimal parameter values are (µ, λ) = (0.62, 0.60),
giving a total MAE of 1.98 kcal/mol. In the following, we
further assess the approximations 3 and 4 with these optimal
parameters.

B. Assessment on the AE49 and DBH24/08 sets
of atomization energies and reaction barrier heights

We assess now the RSDH scheme with the approx-
imations 3 and 4, evaluated with the previously deter-
mined optimal parameters (µ, λ), on the larger AE49 and
DBH24/08 sets of atomization energies and reaction barrier
heights. The results are reported in Tables I and II and com-
pared with other methods corresponding to limiting cases of

TABLE II. Forward (F) and reverse (R) reaction barrier heights (in kcal/mol) of the DBH24/08 set calculated by DS1DH (with the PBE exchange-correlation
functional76), RSH+MP2, RSDH with approximations 3 and 4 of Sec. II D 4 (with the short-range PBE exchange-correlation functional of Ref. 48), and MP2.
The calculations were carried out using the aug-cc-pVQZ basis set at QCISD/MG3 geometries and with parameters (µ, λ) optimized on the AE6+BH6 combined
set. The reference values are taken from Ref. 73.

DS1DH RSH+MP2 RSDH approx3 RSDH approx4
Reaction (µ, λ) = (0,0.70) (0.58,0) (0.46,0.58) (0.62,0.60) MP2 Reference

F/R F/R F/R F/R F/R F/R

Heavy-atom transfer
H + N2O→ OH + N2 21.64/75.80 19.34/77.14 22.76/80.39 25.01/82.80 35.94/89.26 17.13/82.47
H + ClH→ HCl + H 18.51/18.51 19.77/19.77 20.23/20.23 20.99/20.99 22.79/22.79 18.00/18.00
CH3 + FCl→ CH3F + Cl 7.54/60.77 8.21/63.59 9.79/64.81 11.25/66.64 19.74/74.29 6.75/60.00

Nucleophilic substitution
Cl� · · ·CH3Cl→ ClCH3 · · ·Cl� 12.45/12.45 15.40/15.40 14.36/14.36 9.90/9.90 14.64/14.64 13.41/13.41
F� · · ·CH3Cl→ FCH3 · · ·Cl� 2.83/27.93 4.72/31.46 3.99/30.52 4.27/30.67 4.59/28.88 3.44/29.42
OH� + CH3F→ HOCH3 + F� �3.11/16.76 �1.59/21.56 �1.92/19.23 �1.53/19.56 �1.75/17.86 �2.44/17.66

Unimolecular and association
H + N2 → HN2 16.36/10.27 14.03/13.09 17.00/11.57 18.75/11.45 27.60/8.06 14.36/10.61
H + C2H4 → CH3CH2 4.15/44.13 2.70/45.76 4.34/45.49 5.40/45.89 9.32/46.54 1.72/41.75
HCN→ HNC 49.13/33.01 48.52/34.81 49.07/33.59 50.05/33.95 34.46/52.09 48.07/32.82

Hydrogen transfer
OH + CH4 → CH3 + H2O 4.54/19.33 6.03/19.75 6.53/20.38 7.33/21.35 7.66/25.01 6.70/19.60
H + OH→ O + H2 12.22/11.02 13.44/10.00 13.49/12.64 14.47/13.94 17.56/15.58 10.70/13.10
H + H2S→ H2+ HS 4.04/15.09 4.73/15.35 5.00/15.81 5.46/15.96 6.42/16.36 3.60/17.30

MAE 1.52 2.01 1.85 2.65 6.17
ME �0.09 1.06 1.50 1.95 4.70
RMSD 2.09 2.36 2.30 3.26 8.56
Min error �6.67 �5.33 �2.08 �3.51 �13.61
Max error 4.51 4.01 5.63 7.88 19.61
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the RSDH scheme: DS1DH12 (with the PBE exchange-
correlation functional76) corresponding to the µ = 0 limit of
the RSDH scheme with approximation 4, RSH+MP26 corre-
sponding to the λ = 0 limit of the RSDH scheme, and standard
MP2 corresponding to the µ→∞ or λ = 1 limit of the RSDH
scheme.

On the AE49 set, the two RSDH approximations (3 and
4) give very similar results. With a MAE of 4.3 kcal/mol
and a RMSD of about 5.1 kcal/mol, they provide an over-
all improvement over both RSH+MP2 and standard MP2
which give MAEs larger by about 1 kcal/mol and RMSDs
larger by about 2 kcal/mol. It turns out that the DS1DH
approximation gives a smaller MAE of 3.2 kcal/mol than
the two RSDH approximations, but a similar RMSD of 5.0
kcal/mol. On the DBH24/08 set, the two RSDH approxima-
tions give less similar but still comparable results with MAEs
of 1.9 and 2.7 kcal/mol for approximations 3 and 4, respec-
tively. This is a big improvement over standard MP2 which
gives a MAE of 6.2 kcal/mol, but similar to the accuracy of
RSH+MP2 which gives a MAE of 2.0 kcal/mol. Again, the
smallest MAE of 1.5 kcal/mol is obtained with the DS1DH
approximation.

The fact that the DS1DH approximation appears to be
globally more accurate than the RSDH approximations on
these larger sets but not on the small AE6 and BH6 sets points
to a limited representativeness of the latter small sets and

suggests that there may be room for improvement by opti-
mizing the parameters on larger sets.

C. Assessment of the basis convergence

We study now the basis convergence of the RSDH scheme.
Figure 3 shows the convergence of the total energy of He, Ne,
N2, and H2O with respect to the cardinal number X for a series
of Dunning basis sets cc-pVXZ (X = 2, 3, 4, 5), calculated
with MP2, RSH+MP2, and RSDH with approximations 3 and
4 [with the parameters (µ, λ) optimized on the AE6+BH6
combined set].

The results for MP2 and RSH+MP2 are in agreement with
what is already known. MP2 has a slow basis convergence,
with the error on the total energy decreasing as a third-power
law, ∆EMP2 ∼ A X�3,81,82 due to the difficulty of describing
the short-range part of the correlation hole near the electron-
electron cusp. RSH+MP2 has a fast basis convergence, with
the error decreasing as an exponential law, ∆ERSH+MP2 ∼ B
e�βX ,8 since it involves only the long-range MP2 correlation
energy.

Unsurprisingly, the RSDH scheme displays a basis con-
vergence which is intermediate between that of MP2 and
RSH+MP2. What should be remarked is that, for a given
basis, the RSDH basis error is closer to the RSH+MP2

FIG. 3. Convergence of the total energy with respect to the basis set for He, Ne, N2, and H2O, as measured by the basis error with respect to the V6Z basis
set, ∆E = EVX Z � EV6Z, where VXZ stands for cc-pVXZ with X = 2 (D), 3 (T), 4 (Q), 5, calculated with RSH+MP2, RSDH with approximations 3 and 4 of
Sec. II D 4 (with the short-range PBE exchange-correlation functional of Ref. 48), and MP2. The parameters (µ, λ) used are the ones optimized on the AE6+BH6
combined set.
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TABLE III. Interaction energies (in kcal/mol) for the complexes of the S22 set calculated by DS1DH (with the PBE exchange-correlation functional76),
RSH+MP2, RSDH with approximations 3 and 4 of Sec. II D 4 (with the short-range PBE exchange-correlation functional of Ref. 48), and MP2. The parameters
(µ, λ) used are the ones optimized on the AE6+BH6 combined set, except for the RSH+MP2 values which are taken from Ref. 83 in which µ = 0.50 was used.
The basis sets used are aVDZ and aVTZ which refer to aug-cc-pVDZ and aug-cc-pVTZ, respectively, and the counterpoise correction is applied. The values in
italics were obtained using the local MP2 approach, the ones with an asterisk (∗) were obtained in Ref. 84 with the density-fitting approximation, and the ones
with a dagger (†) were obtained with the approximation: EaVTZ(RSDH approx4) ≈ EaVDZ(RSDH approx4) + EaVTZ(RSDH approx3) � EaVDZ(RSDH approx3).
The geometries of the complexes are taken from Ref. 77 and the reference interaction energies are taken as the CCSD(T)/CBS estimates of Ref. 78. The MP2
values are also taken from Ref. 78.

DS1DH
RSH+MP2 RSDH approx3 RSDH approx4

(µ, λ) = (0,0.70)
(0.50,0) (0.46,0.58) (0.62,0.60) MP2

Complex aVDZ aVDZ aVTZ aVDZ aVTZ aVDZ aVTZ aVDZ aVTZ Reference

Hydrogen-bonded complexes
Ammonia dimer �2.70 �3.13 �3.25 �3.00 �3.18 �2.94 �3.16 �2.68 �2.99 �3.17
Water dimer �4.63 �5.34 �5.45 �5.03 �5.19 �4.93 �5.12 �4.36 �4.69 �5.02
Formic acid dimer �17.28 �21.20 �21.57 �19.31 �20.14 �18.86 �19.80 �15.99 �17.55 �18.80
Formamide dimer �14.63 �17.44 �17.64 �16.30 �16.81 �15.98 �16.60 �13.95 �15.03 �16.12
Uracil dimer C2h �18.86 �22.62 �22.82∗ �20.52 �21.77 �20.53 �21.78† �18.41 �19.60 �20.69
2-pyridoxine/2-aminopyridine �18.65 �18.86 �18.60∗ �17.43 �17.93 �17.04 �17.55† �15.56 �16.64 �17.00
Adenine/thymine WC �17.52 �18.26 �18.12∗ �16.47 �17.28 �16.23 �17.04† �14.71 �15.80 �16.74

MAE 1.16 1.34 1.42 0.26 0.68 0.23 0.51 1.70 0.75
ME 0.46 �1.33 �1.42 �0.07 �0.68 0.22 �0.50 1.70 0.75
RMSD 1.28 1.56 1.66 0.29 0.81 0.29 0.64 1.88 0.85
MA%E 9.00 8.36 9.03 2.04 4.14 2.35 3.01 12.63 5.62

Complexes with predominant dispersion contribution
Methane dimer �0.25 �0.46 �0.48 �0.42 �0.47 �0.42 �0.47 �0.39 �0.46 �0.53
Ethene dimer �0.84 �1.45 �1.55 �1.38 �1.68 �1.33 �1.55 �1.18 �1.46 �1.50
Benzene/methane �0.87 �1.62 �1.71 �1.56 �1.70 �1.56 �1.63 �1.47 �1.71 �1.45
Benzene dimer C2h �7.21 �4.08 �4.24∗ �3.52 �3.78 �4.14 �4.40† �4.25 �4.70 �2.62
Pyrazine dimer �8.97 �5.97 �6.04∗ �6.50 �6.21 �6.02 �5.73† �6.00 �6.55 �4.20
Uracil dimer C2 �13.31 �11.76 �11.95∗ �12.70 �11.42 �10.77 �9.49† �9.80 �10.63 �9.74
Indole/benzene �17.26 �6.95 �6.96∗ �8.83 �6.97 �9.25 �7.39† �7.13 �7.74 �4.59
Adenine/thymine stack �20.84 �15.11 �14.71∗ �14.28 �14.56 �14.25 �14.53† �13.24 �14.26 �11.66

MAE 4.54 1.42 1.43 1.67 1.33 1.50 1.19 1.01 1.43
ME �4.16 �1.39 �1.42 �1.61 �1.31 �1.43 �1.11 �0.90 �1.40
RMSD 6.14 1.83 1.80 2.23 1.67 2.10 1.65 1.37 1.85
MA%E 102.09 28.48 29.60 34.02 28.31 34.42 27.45 27.96 33.65

Mixed complexes
Ethene/ethyne �1.28 �1.62 �1.68 �1.57 �1.68 �1.43 �1.67 �1.39 �1.58 �1.51
Benzene/water �2.66 �3.49 �3.68 �3.33 �3.55 �3.29 �3.53 �2.98 �3.35 �3.29
Benzene/ammonia �1.70 �2.49 �2.63 �2.39 �2.58 �2.38 �2.59 �2.21 �2.52 �2.32
Benzene/hydrogen cyanide �3.86 �5.31 �5.38 �4.93 �5.26 �4.89 �5.26 �4.37 �4.92 �4.55
Benzene dimer C2v �4.57 �3.33 �3.49∗ �3.26 �3.47 �3.26 �3.47† �3.09 �3.46 �2.71
Indole/benzene T-shaped �11.71 �6.55 �6.85∗ �7.49 �6.50 �7.91 �6.92† �6.10 �6.71 �5.62
Phenol dimer �8.05 �8.05 �8.09∗ �6.89 �7.57 �7.15 �7.83† �6.79 �7.36 �7.09

MAE 1.58 0.54 0.67 0.45 0.50 0.48 0.60 0.27 0.40
ME �0.97 �0.54 �0.67 �0.40 �0.50 �0.46 �0.60 0.02 �0.40
RMSD 2.31 0.76 0.86 0.75 0.57 0.90 0.71 0.50 0.69
MA%E 38.01 12.34 17.40 10.43 13.78 11.03 15.28 7.55 10.58

Total MAE 2.52 1.11 1.18 0.83 0.86 0.77 0.75 0.99 0.89
Total ME �1.67 �1.09 �1.18 �0.73 �0.85 �0.60 �0.75 0.22 �0.40
Total RMSD 4.03 1.45 1.49 1.42 1.15 1.37 1.13 1.35 1.25
Total MA%E 52.08 16.95 19.06 16.34 16.00 16.77 15.80 16.59 17.36

basis error than to the MP2 basis error. The basis depen-
dence of RSDH is thus only moderately affected by the
presence of short-range MP2 correlation. This can be under-
stood by the fact that RSDH contains only a modest fraction

λ2 ≈ 0.35 of the pure short-range MP2 correlation energy
Esr,µ

c,MP2 [see Eq. (29)], which should have a third-power-law
convergence, while the pure long-range correlation energy
Elr,µ

c,MP2 and the mixed long-range/short-range correlation
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energy Elr−sr,µ
c,MP2 both should have an exponential-law conver-

gence. We thus expect the RSDH error to decrease as ∆ERSDH

∼ λ2A X�3 + B e�βX , with constants A, B, β a priori different
from the ones introduced for MP2 and RSH+MP2. The results
of Figure 3 are in fact in agreement with such a basis depen-
dence with similar constants A, B, β for MP2, RSH+MP2, and
RSDH.

D. Assessment on the S22 set
of intermolecular interactions

We finally test the RSDH scheme on weak intermolecular
interactions. Table III reports the interaction energies for the
22 molecular dimers of the S22 set calculated by RSH+MP2,
RSDH (with approximations 3 and 4), and MP2, using the aug-
cc-pVDZ and aug-cc-pVTZ basis sets. We also report DS1DH
results, but since this method is quite inaccurate for dispersion
interactions we only did calculations with the aug-cc-pVDZ
basis set for a rough comparison. Again, the basis dependence
of RSDH is intermediate between the small basis dependence
of RSH+MP2 and the larger basis dependence of standard
MP2. The basis convergence study in Sec. IV C suggests that
the RSDH results with the aug-cc-pVTZ basis set are not far
from the CBS limit.

The two approximations (3 and 4) used in the RSDH
scheme give overall similar results, which may be rational-
ized by the fact that low-density regions primarily contribute
to these intermolecular interaction energies and the approxi-
mations 3 and 4 become identical in the low-density limit. For
hydrogen-bonded complexes, RSDH with the aug-cc-pVTZ
basis set gives a MA%E of about 3%-4%, similar to standard
MP2 but in clear improvement over RSH+MP2 which tends
to give too negative interaction energies. Presumably, this is
so because the explicit wave-function treatment of the short-
range interaction λwsr,µ

ee (r12) makes RSDH accurately describe
the short-range component of the intermolecular interaction
while still correctly describe the long-range component. For
complexes with a predominant dispersion contribution, RSDH
with the aug-cc-pVTZ basis set gives too negative interaction
energies by about 30%, similar to both MP2 and RSH+MP2.
Notably, DS1DH gives much too negative interaction ener-
gies for the largest and most polarizable systems, leading to a
MA%E of more than 100% with the aug-cc-pVDZ basis set.
This can be explained by the fact that the reduced amount of
HF exchange at long range in DS1DH leads to smaller HOMO-
LUMO gaps in these systems in comparison with RSH+MP2
and RSDH, causing a overlarge MP2 contribution. For mixed
complexes, RSDH with the aug-cc-pVTZ basis set gives a
MA%E of about 14%-15%, which is a bit worse than MP2 but
slightly better than RSH+MP2. Again, DS1DH tends to give
significantly too negative interaction energies for the largest
dimers.

Overall, for weak intermolecular interactions, RSDH thus
provides a big improvement over DS1DH and a small improve-
ment over RSH+MP2 and is quite similar to standard MP2.

V. CONCLUSION

We have studied a wave-function/DFT hybrid approach
based on a CAM-like decomposition of the electron-electron

interaction in which a correlated wave-function cal-
culation associated with the two-parameter interaction
w

lr,µ
ee (r12) + λwsr,µ

ee (r12) is combined with a complement short-
range density functional. Specifically, we considered the case
of MP2 perturbation theory for the wave-function part and
obtained a scheme that we named RSDH. This RSDH scheme
is a generalization of the usual one-parameter DHs (corre-
sponding to the special case µ= 0) and the range-separated
MP2/DFT hybrid known as RSH+MP2 (corresponding to the
special case λ = 0). It allows one to have both 100% HF
exchange and MP2 correlation at long interelectronic distances
and fractions of HF exchange and MP2 correlation at short
interelectronic distances. We have also proposed a number
of approximations for the complement short-range exchange-
correlation density functional, based on the limits µ= 0 and
µ→∞, and showed their relevance on the uniform-electron
gas with the corresponding electron-electron interaction, in
particular in the high- and low-density limits.

The RSDH scheme with complement short-range DFAs
constructed from a short-range version of the PBE func-
tional has then been applied on small sets of atomization
energies (AE6 set) and reaction barrier heights (BH6 set)
in order to find optimal values for the parameters µ and
λ. It turns out that the optimal values of these parameters
for RSDH, µ≈ 0.5–0.6 and λ ≈ 0.6, are very similar to the
usual optimal values found separately for RSH+MP2 and one-
parameter DHs. With these values of the parameters, RSDH
has a relatively fast convergence with respect to the size of the
one-electron basis, which can be explained by the fact that
it contains only a modest fraction λ2 ≈ 0.35 of pure short-
range MP2 correlation. We have tested the RSDH scheme
with the two best complement short-range DFAs (referred
to as approximations 3 and 4) on large sets of atomization
energies (AE49 set), reaction barrier heights (DBH24 set),
and weak intermolecular interactions (S22 set). The results
show that the RSDH scheme is either globally more accu-
rate or comparable to RSH+MP2 and standard MP2. If we
had to recommend a computational method for general chem-
ical applications among the methods tested in this work,
it would be RSDH with approximation 3 with parameters
(µ, λ) = (0.46, 0.58).

There is much room however for improvement and exten-
sion. The parameters µ and λ could be optimized on larger
training sets. More accurate complement short-range DFAs
should be constructed. The MP2 correlation term could be
replaced by random-phase approximations, which would more
accurately describe dispersion interactions,59,83 or by mul-
tireference perturbation theory,85 which would capture static
correlation effects. The RSDH scheme could be extended to
linear-response theory for calculating excitation energies or
molecular properties, e.g., by generalizing the methods of
Refs. 86–89. Finally, the RSDH scheme could be extended
to periodic systems, generalizing the work of Ref. 92.
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APPENDIX: UNIFORM COORDINATE SCALING
RELATION AND COULOMB/HIGH-DENSITY
AND SHORT-RANGE/LOW-DENSITY LIMITS
OF Ēsr,µ,L

c [n]

1. Scaling relation for Ēsr,µ,λ
c [n]

Here, we generalize the uniform coordinate scaling rela-
tion, known for the KS correlation functional Ec[n]51,52,90

and for the complement short-range correlation functional
Ēsr,µ

c [n],56,91 to the λ-dependent complement short-range cor-
relation functional Ēsr,µ,λ

c [n]. We first define the universal
density functional, for arbitrary parameters µ ≥ 0, λ ≥ 0, and
ξ ≥ 0,

Fµ,λ,ξ [n] = min
Ψ→n
〈Ψ|T̂ + ξŴ lr,µ

ee + λŴ sr,µ
ee |Ψ〉, (A1)

which is a simple generalization of the universal functional
Fµ ,λ[n] in Eq. (7) such that Fµ ,λ,ξ=1[n] = Fµ ,λ[n]. The mini-
mizing wave function in Eq. (A1) will be denoted byΨµ ,λ,ξ [n].
Let us now consider the scaled wave function Ψµ/γ,λ/γ,ξ/γ

γ [n]
defined by, for N electrons,

Ψ
µ/γ,λ/γ,ξ/γ
γ [n](r1, . . . , rN )

= γ3N/2
Ψ
µ/γ,λ/γ,ξ/γ[n] (γr1, . . . , γrN ), (A2)

where γ > 0 is a scaling factor. The wave function
Ψ
µ/γ,λ/γ,ξ/γ
γ [n] yields the scaled density nγ(r) = γ3n(γr) and

minimizes 〈Ψ|T̂ + ξŴ lr,µ
ee + λŴ sr,µ

ee |Ψ〉 since

〈Ψ
µ/γ,λ/γ,ξ/γ
γ [n]|T̂ + ξŴ lr,µ

ee + λŴ sr,µ
ee |Ψ

µ/γ,λ/γ,ξ/γ
γ [n]〉

= γ2 〈Ψµ/γ,λ/γ,ξ/γ[n]|T̂ + (ξ/γ)Ŵ lr,µ/γ
ee

+ (λ/γ)Ŵ sr,µ/γ
ee |Ψµ/γ,λ/γ,ξ/γ[n]〉 , (A3)

where the right-hand side is minimal by definition of
Ψµ /γ ,λ/γ ,ξ /γ[n]. Therefore, we conclude that

Ψ
µ,λ,ξ [nγ] = Ψµ/γ,λ/γ,ξ/γ

γ [n] (A4)

and
Fµ,λ,ξ [nγ] = γ2Fµ/γ,λ/γ,ξ/γ[n]. (A5)

Consequently, the corresponding correlation functional,

Eµ,λ,ξ
c [n] = 〈Ψµ,λ,ξ [n]|T̂ + ξŴ lr,µ

ee + λŴ sr,µ
ee |Ψ

µ,λ,ξ [n]〉

− 〈Φ[n]|T̂ + ξŴ lr,µ
ee + λŴ sr,µ

ee |Φ[n]〉, (A6)

with the KS single-determinant wave function Φ[n]
= Ψµ=0,λ=0,ξ [n], satisfies the same scaling relation

Eµ,λ,ξ
c [nγ] = γ2Eµ/γ,λ/γ,ξ/γ

c [n]. (A7)

Similarly, the associated short-range complement correlation
functional,

Ēsr,µ,λ,ξ
c [n] = Eξ

c [n] − Eµ,λ,ξ
c [n], (A8)

with Eξ
c [n] = Eµ→∞,λ,ξ

c [n], satisfies the scaling relation

Ēsr,µ,λ,ξ
c [nγ] = γ2Ēsr,µ/γ,λ/γ,ξ/γ

c [n]. (A9)

Applying this relation for ξ = 1 gives the scaling relation for
Ēsr,µ,λ

c [n],

Ēsr,µ,λ
c [nγ] = γ2Ēsr,µ/γ,λ/γ,1/γ

c [n], (A10)

from which we see that the high-density limit γ→∞ is related
to the Coulomb limit µ→ 0 and the low-density limit γ → 0
is related to the short-range limit µ→∞ of Ēsr,µ,λ

c [n].
Note that by applying Eq. (A9) with λ = 0 and γ = ξ

we obtain the short-range complement correlation func-
tional associated with the interaction ξw

lr,µ
ee in terms of the

short-range complement correlation functional associated with
the interaction w

lr,µ/ξ
ee , i.e., Ēsr,µ,0,ξ

c [n] = ξ2Ēsr,µ/ξ ,0,1
c [n1/ξ ]

= ξ2Ēsr,µ/ξ
c [n1/ξ ], as already explained in Ref. 91. Also,

by applying Eq. (A9) with ξ = 1 and γ = λ, we obtain the
short-range complement correlation functional associated with
the interaction w

lr,µ
ee + λw

sr,µ
ee in terms of the short-range

complement correlation functional associated with the inter-
action (1/λ)w lr,µ/λ

ee + w
sr,µ/λ
ee , i.e., Ēsr,µ,λ

c [n] = Ēsr,µ,λ,1
c [n]

= λ2Ēsr,µ/λ,1,1/λ
c [n1/λ]. However, since the functional

Ēsr,µ,1,ξ
c [n] is equally unknown as the functional Ēsr,µ,λ

c [n], this
relation is not useful to obtain an expression for the functional
Ēsr,µ,λ

c [n].

2. Coulomb limit and high-density limit of Ēsr,µ,λ
c [n]

We first give the limit of Ēsr,µ,λ,ξ
c [n] as µ → 0. Starting

from Eq. (A8) and noting that Eµ=0,λ,ξ
c [n] = Eλc [n], we obtain

Ēsr,µ=0,λ,ξ
c [n] = Eξ

c [n] − Eλc [n] = ξ2Ec[n1/ξ ] − λ2Ec[n1/λ],

(A11)

where we have used the well-known relation, Eλc [n]
= λ2Ec[n1/λ]12,51,52 [a special case of Eq. (A7)]. In particular,
for ξ = 1, we obtain the limit of Ēsr,µ,λ

c [n] as µ→ 0,

Ēsr,µ=0,λ
c [n] = Ec[n] − λ2Ec[n1/λ]. (A12)

We can now derive the high-density limit of Ēsr,µ,λ
c [n]

using the scaling relation in Eq. (A10) and the limit µ→ 0 in
Eq. (A11),

lim
γ→∞

Ēsr,µ,λ
c [nγ] = lim

γ→∞
γ2Ēsr,µ/γ,λ/γ,1/γ

c [n]

= lim
γ→∞

(
Ec[nγ] − λ2Ec[nγ/λ]

)
=

(
1 − λ2

)
EGL2

c [n], (A13)

where we have used limγ→∞ Ec[nγ] = EGL2
c [n]53 assuming a

KS system with a non-degenerate ground state.

3. Short-range limit and low-density limit of Ēsr,µ,λ
c [n]

We first derive the leading term of the asymptotic expan-
sion of Ēsr,µ,λ,ξ

c [n] as µ → ∞. Taking the derivative with
respect to λ of Eq. (A6) and using the Hellmann-Feynman
theorem which states that the derivative of Ψµ ,λ,ξ [n] does not
contribute, we obtain

∂Eµ,λ,ξ
c [n]
∂λ

= 〈Ψµ,λ,ξ [n]|Ŵ sr,µ
ee |Ψ

µ,λ,ξ [n]〉−〈Φ[n]|Ŵ sr,µ
ee |Φ[n]〉

=
1
2

∫∫
nµ,λ,ξ

2,c [n](r1, r2)wsr,µ
ee (r12)dr1dr2, (A14)

where nµ,λ,ξ
2,c [n](r1, r2) = 〈Ψµ,λ,ξ [n]|n̂2(r1, r2)|Ψµ,λ,ξ [n]〉

− 〈Φ[n]|n̂2(r1, r2)|Φ[n]〉 is the correlation part of the pair den-
sity associated with the wave function Ψµ ,λ,ξ [n]. Noting from
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Eq. (A8) that ∂Ēsr,µ,λ,ξ
c [n]/∂λ = −∂Eµ,λ,ξ

c [n]/∂λ, integrating
over λ, and using Ēsr,µ,λ=ξ ,ξ

c [n] = 0, we arrive at the exact
expression

Ēsr,µ,λ,ξ
c [n] =

1
2

∫ ξ

λ

dα
∫∫

nµ,α,ξ
2,c [n](r1, r2)wsr,µ

ee (r12)dr1dr2.

(A15)

Using now the asymptotic expansion of the short-range inter-
action,5

w
sr,µ
ee (r12) =

π

µ2
δ(r12) + O

(
1

µ3

)
, (A16)

we obtain the leading term of the asymptotic expansion of
Ēsr,µ,λ,ξ

c [n] as µ→∞,

Ēsr,µ,λ,ξ
c [n] = (ξ − λ)

π

2µ2

∫
nξ2,c[n](r, r)dr +O

(
1

µ3

)
, (A17)

where nξ2,c[n](r, r) = nµ→∞,α,ξ
2,c [n](r, r) is the correlation part

of the on-top pair density associated with the scaled Coulomb
interaction ξwee(r12). For the special case ξ = 1, we obtain the
leading term of the asymptotic expansion of Ēsr,µ,λ

c [n],

Ēsr,µ,λ
c [n] = (1 − λ)

π

2µ2

∫
n2,c[n](r, r)dr + O

(
1

µ3

)
, (A18)

where n2,c[n](r, r) is the correlation part of the on-top pair
density associated with the Coulomb interaction.

We can now derive the low-density limit of Ēsr,µ,λ
c [n] using

the scaling relation in Eq. (A10) and the asymptotic expansion
as µ→∞ in Eq. (A17),

Ēsr,µ,λ
c [nγ] = γ2Ēsr,µ/γ,λ/γ,1/γ

c [n]

∼
γ→0

γ3(1 − λ)
π

2µ2

∫
n1/γ

2,c [n](r, r)dr

∼
γ→0

γ3(1 − λ)
π

4µ2

∫ [
−n(r)2 + m(r)2

]
dr, (A19)

where we have used the strong-interaction limit of the
on-top pair density, limγ→0 n1/γ

2,c [n](r, r)=−n(r)2/2 + m(r)2/2

= −2n↑(r)n↓(r),54 where m(r) is the spin magnetization and
nσ(r) are the spin densities (σ =↑, ↓).
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