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ABSTRACT: A key goal in quantum chemistry methods, whether ab initio
or otherwise, is to achieve size consistency. In this work we formulate the
related idea of “Casimir−Polder size consistency” that manifests in long-
range dispersion energetics. We show that local approximations in time-
dependent density functional theory dispersion energy calculations violate
the consistency condition because of incorrect treatment of highly nonlocal
“xc kernel” physics, by up to 10% in our tests on closed-shell atoms.

Q uantum chemical approaches and electronic structure
theories more generally aim to reproduce the key

energetic physics of electrons with the goal of calculating
energies for systems of interest. To a leading approximation,
two infinitely separated quantum systems should have an
energy that is given by the sum of the energies of the two
components calculated separatelya feature known as size
consistency. Thus, quantum chemistry methods are generally
expected to reproduce this important property of quantum
mechanics. Although its violation is sometimes tolerated (see,
e.g., Nooijen et al.1) for greater accuracy or lower cost, it is
nonetheless broadly accepted that size consistency is an
important goal in method development as it captures a
fundamental property of electronic systems.
The size consistency concept does not just apply at leading

order, however. As two systems A and B approach each other,
additional terms contribute to the energy and these terms
depend on properties of the isolated individual systems and the
distance D between them. As D → ∞, the energy may thus be
written as
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depends in some factorizable way only on local properties p
X

of the isolated systems X = A,B. Thus, e.g., for systems with net
local charges QA and QB, we have a leading term UAB(D) →
QAQB/D (i.e., C1 = −QAQB).
Dipoles and higher multipoles yield similar expressions but

with larger exponents p > 1 and thus decay more rapidly. These
static and multipolar contributions, including the static
induction energy, are present at the electrostatic level and are
properly included, via the Hartree energy, in all size consistent

quantum chemical approximations the authors could think of.
Note that induction is sometimes considered to be a correlation
effect. Here we consider it to be an electostatic effect as it is
present at the self-consistent Hartree level, unlike dispersion.
The leading beyond-electrostatic term is the attractive

London dispersion (van der Waals) potential Udisp
AB (D) =

−C6D
−6, which is also the dominant asymptotic term for finite

neutral systems without a permanent dipole or quadrupole. The
coefficient,
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is obtained using an expression known as the Casimir−Polder
formula2 that is in the general form of eq 2. Equation 3 can also
be obtained by calculating C6,CP

AB = −limD→∞ D6UCP
AB(D) from
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sometimes called the generalized Casimir−Polder formula3

which applies to more general geometries. In this form it
involves the anistropic density−density imaginary-frequency
linear response functions χ ̂A/B ≡ χÂ/B(iω) of the isolated
systems and the Coulomb potential v ̂AB/BA between them. Here
and henceforth, products ĜĤ = ∫ dr G(r1,r) H(r,r2) indicate
convolutions over space variables and the trace Tr[Ĝ] ≡
∫G(r,r) dr is similarly defined.

Here the local variable X ≡ aX(iω) = − 1
3
Tr[(xx′ + yy′ +

zz′)χ ̂], from eq 2, is the spherically averaged imaginary-
frequency dipole polarizability of the system X and depends
only on properties of X calculated in isolation. Equation 3 has
proved to be exceedingly useful in practical calculations of
dispersion forces,4−15 which have been attracting much interest
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lately (see, e.g., refs 16−19 and references therein) because of
their increasingly recognized role in the behavior of multiple
chemical and material science processes.
Alternatively, we can adopt a direct route to calculating

dispersion energies. We recognize that dispersion forces are a
purely correlation effectthat is, they are absent in the Hartree
and exchange energy terms which capture all electrostatic
effects, at least for closed-shell systems. Thus, Udisp

AB (D) =
Ec
AB(D) − Ec

A − Ec
B → −C6/D

6, giving

= − − −
→∞
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where we calculate Ec
AB for the combined system AB separated

at distance D. Thus, any method that can calculate correlation
energies can be used to determine C6 coefficients.
This work now proceeds to formulate the idea of size

consistency of dispersion forces, called “Casimir−Polder size
consistency”.20 Then, it will show how time-dependent density
functional theory21 approximations can violate Casimir−Polder
size consistency. Next, it will give some examples illustrating the
magnitude of the effect. Finally, some conclusions will be drawn
and the impact discussed.
We first define Casimir−Polder size consistency. Equations 3

and 5 are obtainable from first principles and thus should give
the same result; i.e., coefficients obtained from the Casimir−
Polder formula should be the same as those obtained from
direct energy calculations. Thus, any theory for which eq 3
equals eq 5 is Casimir−Polder size consistent. Any approx-
imation where they are dif ferent is not Casimir−Polder size
consistent and violates a fundamental property of well-
separated systems.
We shall now proceed to show that, in time-dependent

density functional theory (TDDFT) calculations of dispersion
energies with a local exchange kernel, the two approaches give
different results, and thus such theories are not Casimir−Polder
size consistent. Furthermore, other high-level quantum
chemical approaches based on screened response formalisms
are also unlikely to be Casimir−Polder size consistent. Such
approaches are attracting interest22−29 because of their seamless
inclusion of correlation physics, ability to deal with metals and
gapped systems, and moderate cost. Any inconsistencies
highlight a formal weakness of such approaches.
TDDFT offers two routes to dispersion energies. First, it can

be used to calculate dipole polarizabilities for use in the
Casimir−Polder formula [eq 3] or the density−density linear
response functions for eq 4. Second, it can be used to obtain
correlation energies by using the adiabatic connection
formula30 and fluctuation dissipation theorem (ACFD).
Energies thus obtained include dispersion forces seam-
lessly18,31,32 (through eq 5), making ACFD very useful for
systems where dispersion competes with other effects, in stark
contrast to semilocal theories which do not include any long-
range dispersion.
It thus serves as a go-to approach for attacking dispersion

calculations when beyond-empirical accuracy is required but
when more advanced quantum mechanical methods are
infeasible. For example, TDDFT has been used to calculate
C6 coefficients of open-shell atoms and ions, giving good
agreement with experiment and more advanced methods.14,33 A
growing number of researchers are using TDDFT and ACFD
for increasingly complex calculations18,25−29,34,35 that are not
yet feasible in wave function methods.
The ACFD correlation energy,
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of an electronic system is given in terms of χ0̂, the linear
response of its density to changes in the effective potential vŝ,
and χ ̂λ, the equivalent linear response to an external potential at
variable electron−electron interaction strength λ. Notably, χ1̂ is
the response of the real system to the external potential and is
the density−density linear response used in eq 4.
The relationship between these response functions is χλ̂ = χ0̂

+ χ0̂[λ(v ̂ + fx̂) + fĉ,λ]χλ̂, where all terms depend a priori on r, r′,
and iω, except for the Coulomb potential v ̂ = 1/|r − r′|, which
does not depend on iω. fx̂ is the exchange kernel,

24,36−41 which
is usually approximated. Finally, the correlation kernel fĉ,λ

21 is
defined similarly to fx̂ but shall be assumed to be zero
throughout this work.
We have so far kept the ACFD general. We now consider

specifically the AB system, and introduce the “locality”
assumption that occurs in most TDDFT approximations, i.e.,
that the exchange kernel is short-ranged in |r − r′| and depends
only on the properties of the local system. We first partition
space, as illustrated in Figure 1, between systems A and B to

define u ̂ = ∑X=A,B(v ̂XX + fx̂
XX) ≡u ̂AA + u ̂BB, uĤ = ∑X=A,Bv ̂XX, and ŵ

= v ̂AB + v ̂BA. Here û captures all intrasystem interactions from
both the Coulomb v ̂XX (corresponding to uĤ) and exchange
kernel fx̂

XX terms, where fx̂
XX depends on properties of system X

only. ŵ includes just the long-ranged intersystem Coulomb
interactions v ̂AB/v ̂BA and thus contains all dependencies on D.
Then, we write the bare response χ ̂0 = χ0̂

A + χ0̂
B as a sum of

subsystem responses χ0̂
X calculated in isolation.

Note that for our present purposes we can now see that
TDDFT offers a conceptual advantage over wave function
methods: both the Casimir−Polder formula and the ACFD
expression are well-defined for any given kernel. Thus, we can
unequivocally talk about a subsystem calculation of the
polarizability, and a correlation energy calcuation of the
supersystem, at the same level of theory, i.e., for a given kernel
approximation.

Figure 1. Interactions occur within (uAA, uBB) and between (vAB, vBA)
systems A and B. Switching off vAB/vBA isolates the two systems.

Journal of Chemical Theory and Computation Letter

DOI: 10.1021/acs.jctc.7b00996
J. Chem. Theory Comput. 2017, 13, 5829−5833

5830

http://dx.doi.org/10.1021/acs.jctc.7b00996
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jctc.7b00996&iName=master.img-001.jpg&w=208&h=208


Now that the details of the different response functions and
interactions have been established, we shall next proceed to
show that coefficients calculated using eq 3 (via eq 4) are
inconsistent with coefficients obtained from eq 5 (via eq 6) in a
common class of approximations, which thus lack Casimir−
Polder size consistency.
With the assumptions described above, the TDDFT equation

for the response χ ̂λγ of the combined system, with intrasystem
interaction strength λ and intersystem interaction strength γ, is

χ χ χ λ γ χ̂ = ̂ + ̂ ̂ + ̂ ̂λγ λγu w( )00 00 (7)

where the bare response is χ0̂0 ≡ χ0̂ = χ0̂
A + χ0̂

B. We start with λ =
γ = 0 and first switch on the intrasystem interaction λ while
keeping γ = 0 (equivalent to D → ∞), to obtain the isolated
system response χλ̂0 = χ ̂λ0A + χλ̂0

B = ∑X [1−λχ ̂00X u ̂X]−1χ0̂0X from

χ χ λχ χ̂ = ̂ + ̂ ̂ ̂λ λu0 00 00 0 (8)

Then we switch on the intersystem interaction γ to obtain

χ χ γχ χ̂ = ̂ + ̂ ̂ ̂λγ λ λ λγw0 0 (9)

It is readily verified that eq 7 is reproduced by substituting the
solution of eq 8 into eq 9.
Next we use eq 6 to write

∫ ∫ω
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where the equivalence between γ = 0 and D → ∞ gives Θλ =
Tr[χ ̂λγ(ûH + ŵ) − χλ̂0ûH]γ=λ. Iteration of eq 9 to second order in
γ (since intersystem interactions ŵ are small) then gives χ ̂λγ ≈
χ ̂λ 0 + γχ̂λ0ŵχλ̂0 + γ2 χλ̂0ŵχλ̂0ŵχλ̂0 and

λχ χ λ χ χ χΘ = ̂ ̂ ̂ ̂ + ̂ ̂ ̂ ̂ ̂ ̂λ λ λ λ λ λw w w w uTr[ ]0 0
2

0 0 0 H (10)

to leading order. Here we dropped terms involving odd powers
of ŵ as these are exactly zero in the trace.
We now digress from the general formula to consider the

direct random-phase approximation (dRPA) which is the most
popular, albeit flawed, approach to the seamless calculation of
molecular and material properties using ACFD.18,35,42−47 The
dRPA consists of totally neglecting the exchange−correlation
kernel ( f xc = 0), giving u ̂ = v ̂AA + v ̂BB ≡ uĤ. Taking the total
derivative of eq 8 gives ∂λ χλ̂0 = χλ̂0u ̂Hχλ̂0 so that eq 10 becomes
Θλ

dRPA = 1
2
∂λ Tr[λ

2χλ̂0ŵχλ̂0ŵ] = ∂λ(λ
2Tr[χλ̂0

A ŵABχλ̂0
B ŵBA]), since ŵ

cannot couple points in the same subsystem. The occurrence of
a perfect λ derivative can be derived as follows: (i) recognize
that the explicit O(λ) term can be expanded as λTr-
[χ ̂λ0A ŵABχλ̂0

B ŵBA + B ⇔A] = 2λTr[χλ̂0
A ŵABχλ̂0

B ŵBA]; (ii) then use
∂λ χ ̂λ0X = χ ̂λ0X v ̂XXχ ̂λ0X in the explicit O(λ2) term to get
λ2Tr[χλ̂0

A ŵABχλ̂0
B v ̂BBχλ̂0B ŵBA + B ⇔A] = λ2Tr[χλ̂0

A ŵAB [∂λχλ̂0
B ]ŵBA

+ B ⇔A], which can be written using the cyclic properties of
the trace as λ2∂λTr[χλ̂0

A ŵABχλ̂0
B ŵBA]; (iii) add the two terms to

get Θλ
dRPA = ∂λ(λ

2 Tr[χλ̂0
A ŵABχλ̂0

B ŵBA]), as desired.
Integrating over λ then gives48

∫ ω
π

χ χ= − ̂ ̂ ̂ ̂
∞

U v v
d
2

Tr[ ]AB A AB B BA
dRPA

0 dRPA dRPA (11)

to second order in ŵ, which is eq 4 calculated using χd̂RPA
X ≡ [1

− χ0̂0
X v ̂XX]−1χ0̂0X , the dRPA response of the isolated system with

full-strength (λ = 1) internal Coulomb interaction v ̂XX. Thus,
the energy calculated using the dRPA on the total system (eq
5) is the same as that calculated using the Casimir−Polder

formula (eq 11 or 3) with the dRPA response functions. The
dRPA is Casimir−Polder size consistent.20
However, the dRPA is crude and relies on a cancellation of

short-range errors32 for its successes. Thus, work is ongoing to
improve on the dRPA by modeling the kernel.22−29 We now
consider an exchange term f x in our intrasystem interactions to
get u ̂ = ûH + fx̂. Now, ∂λ χλ̂0 = χλ̂0(u ̂H + fx̂)χ ̂λ0, and we get Θλ

x =
1
2
∂λ Tr[λ

2χλ̂0ŵχλ̂0w] − λ2Tr[χλ̂0ŵχλ̂0wχλ̂0 fx̂] via a similar set of

steps exhibited above for the dRPA.
Thus, in contrast to the dRPA, local TDDFT theories have

an additional term in Θλ that cannot be written as a derivative.
After integration, the derivative term gives the expected
Casimir−Polder formula of eq 3 calculated with the appropriate
response χ1̂0

X = [1 − χ0̂0(uĤ + fx̂)]
−1χ0̂0 including the exchange

kernel. The other term thus quantif ies the violation of Casimir−
Polder size consistency by the approximation, which we can
express as

∫ ∫ ∑ω
π

λ λ χ χ χ

Δ
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where Y ≠ X indicates the other system.
Equation 12 represents the key theoretical result of this work,

either directly or via its contribution ΔC6
x = −limD→∞

D6ΔUx
AB(D) to the C6 coefficient. It illustrates that ACFD

methods with beyond-Coulomb kernels acting within systems A
or B, but only Coulomb interactions acting between systems A
and B can give rise to a difference in energies calculated using
the Casimir−Polder formula versus a full correlation energy
calculation of the AB system. Such approaches are not Casimir−
Polder size consistent and thus violate a fundamental quantum
mechanical constraint.
We now investigate the magnitude of eq 12 on a selection of

atomic systems using an adiabatic local density approximation49

for the exchange kernel only (ALDAx). Thus, f x(r,r′) ≡ δ(r −
r′)f xALDA(n(r)) where f xALDA(n) is the second-order derivative of
the exchange energy density of the homogeneous electron gas
with respect to the density n. This kernel is chosen not for its
accuracy but because it, like all semilocal kernels, is obviously
consistent with the assumptions we made about u ̂XX depending
only on properties of system X, and ŵ neglecting kernel terms
entirely.
It is worth noting that the local kernel used here produces a

divergent on-top correlation hole but a finite correlation
energy. Our general form eq 12 is not restricted to such local
kernels and can accommodate more accurate short-range
physics. The size consistency issue is related to the long-
range physics, however, and is unlikely to be systematically
improved through better short-range physics.
Table 1 reports C6 values calculated (see Gould and Bucǩo14

for numerical details) using eqs 3 and 5 within ALDAx and

Table 1. C6 Coefficients Calculated Using ALDAx in
Equations 3 and 5a

He Be Ne Mg Ar Ca Zn Kr

eq 3 1.39 260 5.62 695 63.7 2420 349 132
eq 5 1.37 235 5.59 635 63.0 2170 332 130
ΔC6, % 1.0 9.5 0.5 8.6 1.1 10.5 4.9 1.3

aΔC6 quantifies the Casimir−Polder size consistency violation.
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shows the difference as a percent. In some cases the difference
between the C6 coefficients derived from the Casimir−Polder
formula and the energy of the system as a whole is substantial.
For the highly polarizable alkaline earth metals it can be as
much as 10% of the total coefficient, a difference similar to the
predicted accuracy of TDDFT-derived coefficients.14 By
contrast, for noble gases the difference is ∼1%, similar to
numerical errors.
In conclusion, we have shown that local approximations to

TDDFT kernels violate a constraint we call “Casimir−Polder
size consistency”, because the dispersion C6 coefficient
calculated from properties of the two systems A and B (eq 3)
differs from that calculated, within the same approximations,
from the two systems studied together (eq 5). This result is
inconsistent with ideas of separability as manifested in eqs 1
and 2. In the worst cases tested here, alkaline earth atoms, we
find significant deviations of ∼10% using an exchange-only
adiabatic local density approximation. Worryingly, the deviation
seems to affect the most polarizable atoms the most, suggesting
its importance is amplif ied in the very systems where dispersion
contributes most greatly to energetics.
Generalization of our results suggests that even sophisticated

“local” correlation kernels (e.g., rALDA25) cannot resolve the
issue. We believe that similar problems will manifest in some
time-dependent generalized Kohn−Sham schemes involving
four-point kernels, although notably it was observed by Szabo
and Ostlund50 that a variant of RPA with a nonlocal Hartree−
Fock exchange kernel is Casimir−Polder size consistent (see
also the discussion in ref 51). Work is ongoing to elucidate
more general cases, including important wave function
methods.
Caution is thus advised when comparing long-range forces

calculated using polarizabilities, or via systems as a whole. Such
approaches include range-separated approaches.51−55 Guaran-
teeing Casimir−Polder size consistency should be a goal for
new kernel approximations.3 Similarly, one might look for
response models that can reproduce by construction quantum
chemical theories of supersystems and thus automatically avoid
Casimir−Polder size consistency issues.
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