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Within exact electron density-functional theory, we investigate Kohn-Sham (KS) potentials, orbital energies,
and noninteracting kinetic energies of the fractional ions of Li, C, and F. We use quantum Monte Carlo densities as
input, which are then fitted, interpolated at noninteger electron numbers N, and inverted to produce accurate KS
potentials v (r). We study the dependence of the KS potential on N, and in particular we numerically reproduce
the theoretically predicted spatially constant discontinuity of v¥(r) as N passes through an integer. We further
show that, for all the cases considered, the inner orbital energies and the noninteracting kinetic energy are nearly
piecewise linear functions of N. This leads us to propose a simple approximation of the KS potential v (r) at
any fractional electron number N which uses only quantities of the systems with the adjacent integer electron

numbers.
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Over the past few decades, Kohn-Sham (KS) [1] density-
functional theory (DFT) [2] has become one of the most
important tools in electronic-structure theory. Given the
overwhelming popularity of density-functional approxima-
tions (DFAs) (e.g., Perdew-Burke-Ernzerhof [3], hybrids [4]),
surprisingly few studies have been dedicated to the detailed
properties of the exact KS system. This is despite the fact
that unusual properties [5] of the fictitious noninteracting
KS system serve a vitally important role in reproducing the
quantum mechanical properties of the interacting system in
cases where degeneracies are present in the ground state, or
where electrons are added and removed. In this paper we study
exact KS DFT properties of difficult, open quantum systems
with degenerate ground states—specifically open-shell atoms
with noninteger electron numbers. A primary aim is to provide
guidance for the construction of new DFAs.

In quantum mechanics, open electronic systems with a
noninteger average number of electrons naturally arise, for
example, as fragments from a molecular dissociation in entan-
gled quantum states. In particular, in DFT the study of systems
with fractional electron numbers is of great importance for
a better understanding of the theory (for a recent review,
see Ref. [6]). For such fractional systems, Perdew et al. [7]
proved [8] that the energy is a piecewise linear function of the
electron number between the adjacent integers. This led to the
theoretical prediction of the discontinuity of the KS potential
as the electron number passes through an integer, with many
important physical consequences concerning the description
of the fundamental gap [9,10], molecular dissociation [7],
or charge-transfer excitations [11]. This also led to the
explanation that the underestimation of energies obtained
with the usual semilocal DFAs for delocalized densities is a
consequence of their deviations from the exact piecewise linear
behavior of the energy [12-16]. These understandings have
guided the design of improved DFT approximations [17-22].
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Although the piecewise linear energy curve and the dis-
continuity of the KS potential have been widely discussed
in the literature, little else is known about the form of the
exact KS potential as a function of the fractional electron
number. In this Rapid Communication, we fill this gap by
providing and analyzing accurate KS potentials as a function
of the electron number for the fractional ions of Li, C, and
F, exploring a range from 2 to 10 electrons. For all these
systems, we numerically reproduce the discontinuity of the KS
potential. We then propose a simple approximation of the KS
potential at any fractional electron number which uses only
quantities of the systems with the adjacent integer electron
numbers.

KS DFT for fractional electron numbers. The ground-state
energy of a system with a fractional number of electrons N =
M + f (where M is an integer and 0 < f < 1) can be defined
in the zero-temperature grand-canonical ensemble formalism
as [7,22,23] (see also Refs. [24,25] for an alternative view)

EN = mln TI'[f‘(YAw + Vext + Wee)]» (1)
I'—-N

where Tr denotes the trace and the search is over all normalized
ensemble fermionic density matrices I yielding N electrons,
ie., Tr[f]V] = N where N is the number operator. In Eq. (1),
T is the kinetic energy operator, V. is the external potential
operator, and W, is the electron-electron interaction operator.
With the usual assumption that the ground-state energy for
integer electron numbers in a fixed external potential is a
convex function, EM < (EM+! 4 EM=1)/2 the minimizing
density matrix is obtained as a linear interpolation between
ground-state density matrices of the M and (M + 1)-electron
systems

N =1 — M 4 M+ 2)
where T =Y w,|[WM)(WM| (with 3, w, = 1) is made

of the possibly degenerate M-electron ground states, and
similarly for I'M*+! Equation (2) immediately implies that
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the ground-state energy and the one-electron density are also
piecewise linear in f:

EN =1 - f)EM 4+ fEM*, 3)

V@)= (1 — HnME) + (), )

where n (r) is the density corresponding to the density matrix
"M and similarly for n*!(r). The freedom in the choice of
the ensemble weights w, can be used to impose symmetries.
For example, for atoms with an incomplete p shell, one can
choose w, so as to obtain a spherically symmetric density
nM(r).

In KS DFT, a universal functional can be defined for any
fractional electron density n(r) with the constrained-search
formalism [7]

F[n] = min Tr[[(T + Wee)l, (5)
I'—n
where I" — n refers to all normalized ensemble fermionic
density matrices ) yielding the density n(r), i.e., Tr[f‘ﬁ(r)] =
n(r) where 7(r) is the density operator. Decomposing this
functional as

F[n] = T[n] + Euxc[n], (6)

where T[n] = ming_,, Tr[f‘f] is the KS noninteracting
kinetic-energy functional and FEpyy.[rn] is the remaining
Hartree-exchange-correlation functional, leads to the KS
expression for the exact ground-state energy

EN = min{Tr[[(T + Vex)] + Enselng 1}, (7
r

where the functional Eyy is evaluated at the density coming
from I'. The minimizing density matrix is assumed to have the
form

B == O + I, (8)

where [/ = 3 w,|®)"7) (@27 | is a density matrix made
of M-electron single-determinant wave functions (which de-
pend on f), and similarly for ¥ +.f , and again the ensemble
weights w, can be used to impose symmetries. All the M- and
(M + 1)-electron single determinants are constructed from a
common set of KS orbitals {¢>iN (r)} determined by (in atomic
units)

[—3V2 + o) ]g () = &8 (), ©)
where v¥ (r) is the KS potential,

SEch[nN]

N _
Vg () = Vexi(r) + sn(r)

, (10)
and slN are the KS orbital energies (siN < 89’ fori < j). In
Eq. (10), the KS potential is evaluated at the exact density
n™ (r) which is also the density given by the KS density matrix
'V and can be written in terms of the KS orbitals and fractional
occupation numbers { f; }:

Ny =Y filgl ()

2
’

Y

where f; =2 for the Niye lowest inner doubly occupied
orbitals, D", fs = N — 2Niner for the fractionally occupied
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degenerate highest occupied orbitals (HOMOs), and f; = 0 for
the remaining unoccupied orbitals. Unlike other work [26,27],
we use a spin-restricted open-shell formalism, and thus avoid
dealing with spin dependence.

In principle, if density variations changing the electron
number are allowed in the functional derivative of Eq. (10), the
KS potential v¥(r) including its spatial-constant component
is uniquely determined. In practice, for any fixed N, if an
accurate electron density n™(r) is known, one can find the
corresponding KS potential v (r) obeying v¥ (|r| — o0) = 0
by ensuring that the orbitals satisfying Eq. (9) give the density
through Eq. (11). In this work, we make use of this mapping
to obtain accurate KS potentials v (r), orbital energies slN ,
and KS kinetic energies 7.V = Ti[n"] as a function of the
fractional electron number N.

Computational method. We consider atoms with external
potential ve(r) = —Z/r. Using Eq. (4), the density for
an ion with any fractional electron number between Z — 1
and Z 4+ 1 can be obtained from the densities for Z — 1,
Z, and Z + 1 electrons. We thus first calculate (spherically
averaged) accurate densities n™(r) for these integer electron
numbers using quantum Monte Carlo (QMC). Specifically,
the densities are calculated in diffusion Monte Carlo with an
improved statistical estimator [28], using Jastrow full-valence
complete-active-space wave functions fully optimized at the
variational Monte Carlo level [29]. As an accurate inversion
requires a density to be free from statistical errors, we fit these
QMC densities with a simple, yet asymptotically accurate (as
r — oo) function that ensures that the density corresponds
to a HOMO with the eigenenergy ¢, equal to the negative
of the ionization energy, and to a KS potential with correct
asymptotic behavior vf”(r —> o)~ (—Z+ M —1)/r. The
fitting function and parameters given in the Supplemental
Material [30] give densities that are accurate to within the
QMC statistical error.

After obtaining the density at fractional electron num-
bers nV(r) via Eq. (4), we calculate the KS poten-
tial by using a numerically stabilized modification of
Wang and Parr’s iterative approach [31]. The KS poten-
tial at iteration m + 1 is found from the quantities at
the previous iteration m through v¥"*l(r) = vN-"(r) +

N(oy_ N N.
oo 1) (QN,Z(” @ where GN(r) =Y, filpN ()P /eN " +

max[0,(1/e, — 1/e) ") n¥(r) — nV"(r)}], and Q >0 is a
convergence parameter. By starting from fractional LEXX [21]
potentials and orbitals we achieve [ dr|n™(r)—n""(r)| <
1079, albeit with increasing errors in vé\’ for N < Z —0.8.

Results and discussion. In Fig. 1 we show the KS
potentials vZ¢(r) (plots of its components are shown in
the Supplemental Material [30]) as a function of the ra-
dial distance r and the fractional excess electron num-
ber c = N — Z where —1 < ¢ < 1, i.e., for ions from A™
through A to A~ for Li, C, and F. Calculations are per-
formed for ¢ € {—1, —0.99, —0.95, —0.8, —0.6, —0.4, —0.2,
0,0.01,0.05,0.2,0.4,0.6,0.8,1}.

The most obvious feature of these plots is the presence
of a discontinuity in the potentials as the electron number N
crosses an integer. Let us concentrate on the discontinuity at
N = Z,ie., c = 0. At first sight, in Fig. 1, this discontinuity
seems to be dependent on r, decreasing at large distances. To
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FIG. 1. (Color online) KS potentials vZ™(r) (hartree) as a function of the radial distance r and the fractional excess electron number
¢ = N — Z for Li (left), C (middle), and F (right). Colors indicate height (from red to green for USZ“'(r) < 0, white for vf*"(r) ~ (0, blue for

vZ*e(r) > 0).

analyze the discontinuity more precisely we plot in Fig. 2 the
quantity vZ*(r) — vZ (r) as a function of ¢ (interpolated in
—0.99 < ¢ <0 and 0.01 < ¢ <1) for selected values of r.
It is now clear that, if we extrapolate the plots from ¢ > 0
toward the limit ¢ — 0T, the results are consistent with the
KS potential having a constant discontinuity
A? =0 (r)—vE () =1 - A, (12)
at N = Z, independent of r. For the open-shell systems
considered here, the discontinuity AZ s equal to the difference
between the ionization energy I and the electronic affinity A
of the neutral atom. Therefore, the present results numerically
reproduce the theoretically predicted [32,33] spatially constant
discontinuity of the KS potential when the electron number N
crosses an integer M = 3, 6, or 9, which had been so far
numerically observed only for M = 1 [32-34]. The values of
AZ are found to be 0.178, 0.368, and 0.519 hartree, for Li,
C, and F, respectively, very close to 0.175, 0.366, and 0.516
hartree found using I — A.
Besides the discontinuity, it is interesting to note that the
potential is sensitive to the order of the limits ¢ — 0% and
r — oo [33]. It is clear from Figs. 1 and 2 that as r increases

Vg(r;Z+C)-vg(r;2) [hartree]

in
vZt(r) — vZ (r) as a function of ¢ > —1 for Li (top), C (middle),
and F (bottom), for selected values of r.

FIG. 2. (Color online) Change Kohn-Sham  potentials

the KS potentials go to zero in a larger and larger range of
¢, except near the limit ¢ — 0" where it becomes more and
more curved. This is understandable since st“(r) — vszf r)
must go to AZ in the limit ¢ — 0T, but at the same time, for
any finite value of c, the KS potential for M < N < M + 1
must have the same asymptotic behavior as the KS potential
for the (M + 1)-electron system, v (r — o) ~ vM+D"(r) ~
(—=Z + M)/r [35], and therefore must go to zero for large r.

In Fig. 3 we plot as a function of ¢ the difference between
the orbital energies at the fractional electron number Z + ¢
and their neutral atomic values: siZ+C — &7 . As expected,
all orbital energies have a discontinuity of A? at ¢ =
0. As required by theory the HOMO energy is constant,
within numerical noise, between integer electron numbers:
eN = el + AM = MV Interestingly, we find that the
energies of the inner orbitals follow an almost piecewise linear
behavior

el ~(1— e + aM] + e+,

where i < Niner- We also plot in Fig. 4 the KS kinetic energy
T7*¢ and the exact kinetic energy T#%¢ = —E#* (by the
virial theorem) as a function of ¢, adjusted by their neutral

13)
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FIG. 3. (Color online) Change in Kohn-Sham orbital energies for
all orbitals ¢/*° —¢?  as a function of ¢ > —1 for Li (top), C

(middle), and F (bottom).
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FIG. 4. (Color online) Change in Kohn-Sham kinetic energy
TZ*¢ — T and kinetic energy T#*¢ — TZ as a function of c.

atomic ¢ = 0 values. Unlike 7', T is not piecewise linear but
was theoretically shown to be a convex function of f [36].
Our numerical results confirm this convex behavior. However,
for all the systems studied here, T; turns out to be remarkably
close to linearity

TN ~ (1 - HTY + TN, (14)

with the maximum deviation from linearity being —3.3
mhartree for Li~%*, —8.9 mhartree for C*4 and
—15.3 mhartree for F*%6. This near linearity was previ-
ously observed only for weakly interacting two-electron
systems [37].

The near linearity of 7Y and & suggest that the KS
orbitals change in a predictable fashion as partial electrons are
added to the atoms, even in the difficult, degenerate systems
considered here. If Egs. (13) and (14) apply more generally
they could provide desirable local and global constraints on
new DFAs. Furthermore, since the KS kinetic energy TSN , the
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KS potential v (r), and the orbital energies ¢ are linked by
the KS energy expression TV + [nN(rwl(r)dr =Y, fiel
at fractional electron number N, the linear approximations
of Egs. (13) and (14) suggest a linear approximation for
Nl (r),

Nl ~ 1= HinME)[vM )+ AM]
+ M MY (). (15)

Indeed, we found that Eq. (15) is an excellent approximation
to v (r) for all cases studied here, especially when considered
against the electronic density. Details are provided in the
Supplemental Material [30]. We note that this approximation
becomes exact in two limits: close to a nucleus where the KS
potentials are dominated by the diverging electron-nucleus
potential vex(7), and in the asymptotic region |r| — oo where
the density n™*!(r) dominates over n¥ (r) and the KS potential
vN(r) reduces to vV (r). It can also be shown that this
approximation is exact in the trivial case 0 < N < 1 and
in the case 1 < N < 2 if n(r) = 2n'(r). Preliminary work
suggests that this approximation may be valid in a wider range
of systems than those explored here.

Conclusions. We have shown that accurate KS potentials
vN(r) at noninteger electron numbers N can be obtained by
inversion of accurate ab initio electron densities. This has
allowed us to numerically reproduce on systems with more
than two electrons the theoretically predicted spatially constant
discontinuity of the KS potential when the electron number
crosses an integer. We have also found that, for all the atomic
systems studied here, both the energies /" of the inner orbitals
(below the HOMO) and the KS kinetic energy 7.V are nearly
piecewise linear functions of N. This has led us to propose the
simple approximation of Eq. (15) for the KS potential v (r) at
any fractional electron number N which uses only quantities
of the systems with adjacent integer electron numbers. This
approximation appears to work very well for all the cases
considered and its generality and potential application to
fragment and partition DFT [38—40] will be explored in future
work.
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