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ABSTRACT
This work provides a self-consistent extension of the recently proposed density-based basis-set correction method for wave function
electronic-structure calculations [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)]. In contrast to the previously used approximation where
the basis-set correction density functional was a posteriori added to the energy from a wave-function calculation, here the energy minimiza-
tion is performed including the basis-set correction. Compared to the non-self-consistent approximation, this allows one to lower the total
energy and change the wave function under the effect of the basis-set correction. This work addresses two main questions: (i) What is the
change in total energy compared to the non-self-consistent approximation and (ii) can we obtain better properties, namely, dipole moments,
with the basis-set corrected wave functions. We implement the present formalism with two different basis-set correction functionals and test
it on different molecular systems. The main results of the study are that (i) the total energy lowering obtained by the self-consistent approach
is extremely small, which justifies the use of the non-self-consistent approximation, and (ii) the dipole moments obtained from the basis-set
corrected wave functions are improved, being already close to their complete basis-set values with triple-zeta basis sets. Thus, the present
study further confirms the soundness of the density-based basis-set correction scheme.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057957

I. INTRODUCTION

One of the main limitations of electronic-structure calculations
based on wave-function theory (WFT) is the slow convergence of
the results with respect to the size of the one-electron basis set.
This aspect is of fundamental importance in quantum chemistry as
WFT methods have otherwise many interesting features. In partic-
ular, in a given basis set B, WFT methods can usually be system-
atically improved toward the exact solution provided by full con-
figuration interaction (FCI). At the root of the slow convergence
of WFT lies the singularity of the Coulomb interaction: Because
it becomes infinite at electron–electron coalescence points, it cre-
ates a derivative discontinuity of the wave function at these points,
the so-called electron–electron cusp,1,2 which is not representable
by the usual incomplete basis sets employed. To cure the slow

convergence problem of WFT, two main approaches have emerged:
basis-set extrapolation techniques3,4 and explicitly correlated F12
methods.5–10 Basis-set extrapolation techniques consist in exploit-
ing the known asymptotic behavior of WFT properties as a func-
tion of the size of the basis set in order to estimate the complete
basis-set (CBS) limit based on several calculations with basis sets of
increasing sizes. Explicitly correlated F12 methods consist in sup-
plementing to the usual basis sets a correlation factor that restores
the electron–electron cusp and accelerates the convergence toward
the CBS limit. Although these F12 methods are increasingly pop-
ular in quantum chemistry,11 they have the drawback of needing
rather complex three- and four-electron integrals12 and, more gen-
erally, of involving a relatively complex mathematical formalism,
which makes the adaptation of a WFT method to its F12 version
a non-trivial task.
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An alternative path to speed up the convergence of WFT cal-
culations with respect to the size of the basis set has been recently
proposed by some of the present authors13 by exploiting the abil-
ity of range-separated density-functional theory (RSDFT) to recover
the short-range correlation effects missing from an incomplete basis
set. The central idea developed in Ref. 13 is to define a map-
ping between the electron–electron Coulomb interaction projected
into an incomplete basis set B and the non-diverging long-range
electron–electron interaction erf(μr12)/r12 used in RSDFT. The
connection is done through the definition of a range-separation
parameter μ, which varies in space and automatically adapts to
the basis set B. Once this adaptive range-separation parameter is
defined, one can use a special flavor of short-range correlation
density functionals used in RSDFT for the estimation of the cor-
relation energy missing in the considered basis set B. An impor-
tant property of this RSDFT-based approach is that the basis-set
energy correction properly vanishes in the CBS limit. This strat-
egy was successfully validated for the calculations of ionization
potentials,13,14 molecular atomization energies,15–17 and excitation
energies.18

All the previous applications of this method rely on a non-
self-consistent approximation in which the basis-set energy cor-
rection is just added a posteriori to a good estimate of the FCI
energy in a given basis set B. In the present work, we go beyond
this approximation and develop a self-consistent formalism in order
to answer two distinct questions: (i) How crude is the non-self-
consistent approximation for total energies and (ii) can the self-
consistent formalism yield effective wave functions with better
properties.

The paper is organized as follows: In Sec. II A, we present
the exact theory of the self-consistent basis-set correction scheme
using either a function of density only or a function of both den-
sity and on-top pair density and we recall the non-self-consistent
approximation previously employed. In Sec. II B, we introduce our
approximations of the unknown exact basis-set correction func-
tional by short-range functionals. In Sec. II C, we explain how we
solve the self-consistent basis-set correction equations by a selected
configuration interaction algorithm. In Sec. III, we report and dis-
cuss the results on the total energies of the Be atom and the BH
molecule and on the dipole moments of the BH, FH, H2O, and CH2
molecules. Section IV contains our conclusions. Unless otherwise
specified, Hartree (Ha) atomic units (a.u.) are used throughout the
paper.

II. THEORY
A. Self-consistent basis-set correction
1. Basis-set correction as a function of density

We start by reviewing the scheme where the basis-set correc-
tion is written as a function of density, which was first developed in
Ref. 13. Given a basis set B, the exact ground-state energy E0 of an
electronic system can be approximated by the energy EB

0 obtained by
the following minimization over B-representable one-electron den-
sities nB, i.e., densities that can be obtained from a wave function
ΨB belonging to the N-electron Hilbert space generated by the basis
set B,

EB
0 = min

nB
{F[nB

] + ∫ dr vne(r) nB
(r)}, (1)

where vne(r) is the nuclei–electron interaction potential. In this
expression, F[nB

] is the standard Levy–Lieb constrained-search
universal density functional19,20 evaluated at nB,

F[nB
] = min

Ψ→nB
⟨Ψ∣T̂ + Ŵee∣Ψ⟩, (2)

where T̂ and Ŵee are the kinetic-energy operator and the Coulomb
electron–electron interaction operator, respectively, and the nota-
tion Ψ→ nB means a N-electron wave function yielding the density
nB. It is important to notice that the wave functions Ψ used in the
definition of F[nB

] in Eq. (2) are not restricted to be expandable in
the basis set B but should instead be thought of as expanded on a
complete basis set. The minimizing density nB

0 in Eq. (1) can be con-
sidered as the best variational approximation to the exact ground-
state density n0. Importantly, when the basis set B is increased up
to the CBS limit, the density nB

0 and energy EB
0 converge to the exact

ground-state density n0 and energy E0, respectively,

lim
B→CBS

nB
0 = n0 and lim

B→CBS
EB

0 = E0. (3)

Since the B-representability restriction is only applied to densities
and not to wave functions, the basis-set convergence of EB

0 to E0 is
much faster than in a usual WFT calculation.

We then decompose the universal Levy–Lieb density
functional as

F[nB
] = min

ΨB
→nB
⟨ΨB
∣T̂ + Ŵee∣ΨB

⟩ + ĒB
[nB
], (4)

where ΨB designates wave functions restricted to the N-electron
Hilbert space generated by the basis set B and ĒB

[nB
] is the com-

plementary basis-set correction density functional required to make
Eq. (4) exact. This basis-set correction functional ĒB

[nB
] recovers

the part of the energy that is missing in the first term of the right-
hand side of Eq. (4) due to the basis-set restriction of the wave
functions ΨB. Inserting Eq. (4) into Eq. (1) and recombining the two
minimizations, we can obtain EB

0 by the following minimization over
B-restricted wave functions ΨB:

EB
0 = min

ΨB
{⟨ΨB

∣T̂ + Ŵee + V̂ne∣ΨB
⟩ + ĒB

[nΨB]}, (5)

where V̂ne is the nuclei–electron interaction operator and nΨB(r)
= ⟨ΨB

∣n̂(r)∣ΨB
⟩ is the density of the wave function ΨB, where we

have introduced the density operator n̂(r) = ∑σ∈{↑,↓}ψ̂
†
σ(r)ψ̂σ(r)

written in real-space second quantization. The minimizing wave
function ΨB

0 in Eq. (5) satisfies the following self-consistent
Schrödinger-like equation:

ĤB
eff[nΨB

0
]∣ΨB

0⟩ = EB
0 ∣Ψ

B
0⟩, (6)

where EB
0 is the Lagrange multiplier associated with the normaliza-

tion constraint of the wave function ΨB
0 , and the effective Hamilto-

nian is defined for a given density nB as

ĤB
eff[n

B
] = T̂B

+ ŴB
ee + V̂B

ne +
ˆ̄VB
[nB
]. (7)

In this expression, T̂B, ŴB
ee, and V̂B

ne are the kinetic,
electron–electron, and electron–nuclei operators projected in
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the N-electron Hilbert space generated by the basis set B, and
ˆ̄VB
[nB
] is the one-electron effective potential operator,

ˆ̄VB
[nB
] = ∫ dr v̄B

(r) n̂B
(r), (8)

where v̄B
(r) = δĒB

[nB
]/δnB

(r) and n̂B
(r) is the density operator

projected in the basis set B.
Using real-valued spatial orthonormal orbitals {ϕp} spanning

the same space as the basis set B, the expression of the effective
Hamiltonian in second quantization is

ĤB
eff[n

B
] =

B

∑
pq
(hpq + v̄

B
pq)Êpq +

1
2

B

∑
pqrs

wpqrsêpqrs, (9)

where Êpq = â†
p↑âq↑ + â†

p↓âq↓ and êpqrs = ÊprÊqs − δqrÊps are the spin-
singlet one- and two-particle elementary operators, hpq are the usual
one-electron integrals, wpqrs = ⟨pq∣rs⟩ are the usual two-electron
integrals, and v̄B

pq are the one-electron integrals associated with the
effective potential v̄B

(r),

v̄B
pq = ∫ drϕp(r)v̄B

(r)ϕq(r). (10)

Note that in Eq. (9), we put B on top of the sum symbols to indicate
that the sums run over all orbitals generated by the basis set B.

Finally, note that we have considered the total density nB for
simplicity, but the theory can be trivially extended to spin densities
nB
↑

and nB
↓
.

2. Basis-set correction as a function of density
and on-top pair density

We now extend the theory to allow for a basis-set correc-
tion functional depending on both the density nΨB(r) and the on-
top pair density n2,ΨB(r) = ⟨ΨB

∣n̂2(r)∣ΨB
⟩ of a wave function ΨB,

where we have introduced the on-top pair density operator n̂2(r)
= ∑σ∈{↑,↓}∑σ′∈{↑,↓}ψ̂

†
σ(r)ψ̂†

σ′(r)ψ̂σ′(r)ψ̂σ(r). In the spirit of the gen-
eralized Kohn–Sham scheme21 (see also Ref. 22), we write the
universal Levy–Lieb density functional as

F[nB
] = min

ΨB
→nB
{⟨ΨB

∣T̂ + Ŵee∣ΨB
⟩ + ĒB

[nΨB , n2,ΨB]}, (11)

where ĒB
[nΨB , n2,ΨB] can be any functional of nΨB and n2,ΨB such

that the minimization in Eq. (11) exactly gives F[nB
]. Insertion into

Eq. (1) leads to

EB
0 = min

ΨB
{⟨ΨB

∣T̂ + Ŵee + V̂ne∣ΨB
⟩ + ĒB

[nΨB , n2,ΨB]}, (12)

and the minimizing wave function ΨB
0 satisfies the following self-

consistent Schrödinger-like equation:

ĤB
eff[nΨB

0
, n2,ΨB

0
]∣ΨB

0⟩ = EB
0 ∣Ψ

B
0⟩, (13)

where the effective Hamiltonian is defined for a given B-
representable density nB and on-top pair density nB

2 as

ĤB
eff[n

B, nB
2] = T̂B

+ ŴB
ee + V̂B

ne +
ˆ̄VB
[nB, nB

2] +
ˆ̄WB
[nB, nB

2]. (14)

In this expression, ˆ̄VB
[nB, nB

2] is the one-electron effective potential
operator,

ˆ̄VB
[nB, nB

2] = ∫ dr v̄B
(r) n̂B

(r), (15)

where v̄B
(r) = δĒB

[nB, nB
2]/δnB

(r), and ˆ̄WB
[nB, nB

2] is the two-
electron effective interaction operator,

ˆ̄WB
[nB, nB

2] =
1
2 ∫

dr w̄B
(r) n̂B

2(r), (16)

where w̄B
(r) = 2δĒB

[nB, nB
2]/δnB

2(r) and n̂B
2(r) is the on-top pair

density operator projected in the basis set B. The second-quantized
expression of the effective Hamiltonian is

ĤB
eff[n

B, nB
2] =

B

∑
pq
(hpq + v̄

B
pq)Êpq +

1
2

B

∑
pqrs
(wpqrs + w̄

B
pqrs)êpqrs, (17)

where, as before, v̄B
pq are the one-electron integrals associated with

the effective potential v̄B
(r), and w̄B

pqrs are the two-electron integrals
associated with the effective interaction w̄B

(r),

w̄B
pqrs = ∫ drϕp(r)ϕr(r)w̄B

(r)ϕq(r)ϕs(r). (18)

Of course, since the effective Hamiltonians in Eqs. (7) and (14)
are different, their respective ground-state wave functions ΨB

0 are
also different, even though we used the same notation.

3. Non-self-consistent approximation
In previous works,13,15,17,18 the minimization in Eq. (5) or

Eq. (12) was not performed, but the minimizing wave function ΨB
0

was simply approximated by the standard FCI wave function ΨB
FCI

(or an estimate of it) in the basis set B,

ΨB
0 ≈ Ψ

B
FCI, (19)

leading to the following approximation for EB
0 , for the basic theory

of Sec. II A 1:
EB

0 ≈ EB
FCI + ĒB

[nΨB
FCI
], (20)

where EB
FCI is the standard FCI energy (or an estimate of it) in the

basis set B, and for the extended theory of Sec. II A 2,

EB
0 ≈ EB

FCI + ĒB
[nΨB

FCI
, n2,ΨB

FCI
]. (21)

The approximation in Eq. (19) is in fact equivalent to approximating
the minimizing density nB

0 in Eq. (1) by the standard FCI ground-
state density nΨB

FCI
,

nB
0(r) ≈ nΨB

FCI
(r), (22)

which seems intuitively a reasonable approximation as one expects
nΨB

FCI
and nB

0 to be both close to the exact density n0, and the encour-
aging numerical results obtained for energies with this non-self-
consistent approximation tend to confirm the validity of Eq. (22).
Nevertheless, in the present study, we will investigate the quan-
titative effect on energies and dipole moments of performing the
minimization in Eq. (5) or Eq. (12).
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B. Approximations for the basis-set correction
functional ĒB

1. Local range-separation parameter
As originally proposed in Ref. 13, the basis-set correction func-

tional ĒB can be mapped to the so-called short-range correlation
functional with multideterminant reference introduced in Ref. 23 in
the context of RSDFT. This mapping relies on the definition of a
local range-separation parameter μB(r),13

μB(r) =
√
π

2
WB
(r), (23)

which provides a local measure of the incompleteness of the basis
set B. It is defined such that the long-range electron–electron
interaction of RSDFT, wlr

(r12) = erf(μr12)/r12, coincides at coales-
cence (i.e., at r12 = 0) with an effective interaction representing the
Coulomb electron–electron interaction projected in the basis set B.
The expression of this effective interaction at coalescence is13

WB
(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

f B
ΨB

loc
(r)

n2,ΨB
loc
(r)

if n2,ΨB
loc
(r) ≠ 0,

∞ otherwise,

(24)

with

f B
ΨB

loc
(r) =

B

∑
pqrstu

wpqrsΓrstuϕp(r)ϕq(r)ϕt(r)ϕu(r), (25)

where Γpqrs = 2⟨ΨB
loc∣â

†
r↓ â

†
s↑ âq↑ âp↓ ∣Ψ

B
loc⟩ is the opposite-spin two-

electron density matrix of some “localizing” wave function ΨB
loc, and

n2,ΨB
loc
(r) is its associated on-top pair density,

n2,ΨB
loc
(r) =

B

∑
pqrs

Γpqrsϕp(r)ϕq(r)ϕr(r)ϕs(r). (26)

The wave function ΨB
loc is only used to localize the effective interac-

tion projected in the basis set B. The local range-separation param-
eter is very weakly dependent on this wave function ΨB

loc. It should
be thought of as essentially dependent on the basis set B. Impor-
tantly, in the CBS limit, the effective interaction goes to the Coulomb
interaction that diverges at coalescence, and consequently, the local
range-separation parameter goes to infinity,

lim
B→CBS

μB(r) =∞, (27)

independently ofΨB
loc, which is fundamental to guarantee the correct

behavior of the theory in the CBS limit.

2. Approximate basis-set correction functionals
from short-range functionals

Approximations for the basis-set correction functional ĒB are
obtained by using the previously defined local range-separation
parameter in short-range correlation functionals. Specifically, for
the basis-set correction functional in Eq. (5), we use the so-called
PBE-UEG basis-set correction functional (UEG stands for “uniform
electron gas”),15

ĒB
PBE−UEG[n] = ∫ dr ēsr,PBE

c,md (n(r),∇n(r), nUEG
2 (r),μ(r)), (28)

and for the basis-set correction functional in Eq. (12), we use the
so-called PBE-OT basis-set correction functional (OT stands for
“on-top”),16

ĒB
PBE−OT[n, n2] = ∫ dr ēsr,PBE

c,md (n(r),∇n(r), n̊2(r),μ(r)), (29)

where we have dropped the superscript B in the density, in the
on-top pair density, and in the local range-separation parame-
ter for simplicity. In these expressions, the short-range (sr) cor-
relation energy density with multideterminant (md) reference
ēsr,PBE

c,md (n,∇n, n2,μ) has the following generic form in terms of the
density n, the density gradient ∇n, the on-top pair density n2, and
the range-separation parameter μ,24

ēsr,PBE
c,md (n,∇n, n2,μ) =

ePBE
c (n,∇n)

1 + β(n,∇n, n2) μ3 , (30)

β(n,∇n, n2) =
ePBE

c (n,∇n)
c n2

, (31)

where ePBE
c (n,∇n) is the usual Perdew–Burke–Ernzerhof (PBE)

correlation energy density25 and c = (2
√
π(1 −

√
2))/3.

The key difference between the PBE-UEG and PBE-OT func-
tionals is the on-top pair density used. The PBE-UEG functional uses
nUEG

2 (r), which is an estimate of the exact on-top pair density using
a parametrization of the on-top pair density of the uniform electron
gas (UEG) at density n(r),

nUEG
2 (r) = n(r)2g0(n(r)), (32)

where the on-top pair-distribution function g0(n) is taken from Eq.
(46) of Ref. 26. By contrast, the PBE-OT functional uses n̊2(r), which
is an estimate of the exact on-top pair density obtained from extrap-
olating the input on-top pair density n2(r) of the wave function ΨB

to the limit μ→∞ (see Ref. 26),

n̊2(r) = (1 +
2

√
πμ(r)

)

−1

n2(r). (33)

As shown in Ref. 16, the difference between the two flavors of on-
top pair densities comes from the treatment of strong correlation.
While nUEG

2 (r) is a good approximation of the exact on-top pair den-
sity for weakly correlated situations, when strong-correlation effects
are present, it fails to represent the large depletion of the exact on-
top pair density, and in this case, n̊2(r) provides a much better
approximation of the exact on-top pair density.

The explicit expression of the one-electron effective potential
associated with the PBE-UEG functional,

v̄B
PBE−UEG(r) =

δĒB
PBE−UEG[n]
δn(r)

, (34)

was already given in a previous study.14 The corresponding potential
for the PBE-OT functional,

v̄B
PBE−OT(r) =

δĒB
PBE−OT[n, n2]

δn(r)
, (35)
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has a very similar expression, with the simplification that the on-
top pair density n2 in Eq. (29) is taken as independent of the den-
sity, whereas nUEG

2 in Eq. (28) is a function of density. For the
PBE-OT functional, we have in addition the two-electron effective
interaction,

w̄B
PBE−OT(r) =

δĒB
PBE−OT[n, n2]

δn2(r)
. (36)

Its explicit expression

w̄B
PBE−OT(r) =

∂ēsr,PBE
c,md

∂n2
(n(r),∇n(r), n̊2(r),μ(r))

∂n̊2(r)
∂n2(r)

, (37)

where

∂n̊2(r)
∂n2(r)

= (1 +
2

√
πμ(r)

)

−1

, (38)

and
∂ēsr,PBE

c,md (n,∇n, n2,μ)
∂n2

=
ēsr,PBE

c,md (n,∇n, n2,μ)2 μ3

c (n2)2 . (39)

Note that the localizing wave function ΨB
loc used in the definition

of the local range-separation parameter (see Sec. II B 1) is taken
as fixed, i.e., we do not consider variations of ΨB

loc. Importantly,
since the local range-separation parameter diverges in the CBS
limit [Eq. (27)] and since the correlation energy per particle
ēsr,PBE

c,md (n,∇n, n2,μ) in Eq. (30) vanishes for μ→∞, both basis-set
correction functionals correctly vanish in the CBS limit,

lim
B→CBS

ĒB
PBE−UEG[n] = 0, (40)

lim
B→CBS

ĒB
PBE−OT[n, n2] = 0, (41)

i.e., the CBS limit is unaltered by the correction.

3. Frozen-core version of the basis-set correction
functionals

When the wave function ΨB is calculated in the frozen-core
approximation, we use the frozen-core version of the basis-set cor-
rection functionals introduced in Ref. 15. The basis-set correction
functionals become

ĒB
[nΨB]→ ĒB

[nΨB
val
], (42)

and
ĒB
[nΨB , n2,ΨB]→ ĒB

[nΨB
val

, n2,ΨB
val
], (43)

whereΨB
val is the wave functionΨB truncated to the “valence” orbital

space (i.e., with all core orbitals removed). Accordingly, the local
range-separation parameter becomes

μB(r)→ μBval(r), (44)

where

μBval(r) =
√
π

2
WB

val(r). (45)

The valence-only effective interaction at coalescence is

WB
val(r) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

f B
ΨB

loc,val
(r)

n2,ΨB
loc,val
(r)

if n2,ΨB
loc,val
(r) ≠ 0,

∞ otherwise,

(46)

where

f B
ΨB

loc,val
(r) =

B

∑
pq

Bval

∑
rstu

wpqrsΓrstuϕp(r)ϕq(r)ϕt(r)ϕu(r), (47)

where Γpqrs = 2⟨ΨB
loc, val∣â

†
r↓ â

†
s↑ âq↑ âp↓ ∣Ψ

B
loc, val⟩ is the opposite-spin two-

electron density matrix of the localizing wave function truncated to
the valence orbital space ΨB

loc, val, and n2,ΨB
loc,val
(r) is its associated on-

top pair density,

n2,ΨB
loc,val
(r) =

Bval

∑
pqrs

Γpqrsϕp(r)ϕq(r)ϕr(r)ϕs(r). (48)

In Eqs. (47) and (48), the indication “Bval” on top of the sum symbols
means that the sums are only over valence (i.e., non-core) orbitals. It
is noteworthy that μBval(r) still fulfills Eq. (27), and thus, the frozen-
core versions of the basis-set correction functionals still correctly
vanish in the CBS limit.

Correspondingly, the frozen-core versions of the effective
Hamiltonians in Eqs. (7) and (14) are simply obtained by setting to
zero all the one-electron effective integrals v̄B

pq and the two-electron
effective integrals w̄B

pqrs if at least one orbital involved in the integral
is a core orbital.

C. Selected configuration interaction to solve
the self-consistent eigenvalue equations

To solve the self-consistent basis-set correction eigenvalue
equations [Eqs. (6) and (13)], we use an adaptation of the
configuration-interaction perturbatively selected iteratively (CIPSI)
algorithm,27–29 similar to the computational strategy already used in
the context of RSDFT.24

To solve Eq. (6) for a given basis set B, we start at the first iter-
ation, denoted as k − 1, from a guess wave function ΨB,(k−1)

0 (usually
a CIPSI ground-state wave function for the standard Hamiltonian),

∣ΨB,(k−1)
0 ⟩ = ∑

I ∈ R(k−1)
c(k−1)

I ∣I⟩, (49)

where R(k−1) denotes a set of Slater determinants. We then use
the density of this wave function to form the following effective
Hamiltonian at the next iteration k:

ĤB,(k)
eff = ĤB

eff[nΨB,(k−1)
0

], (50)

and we want to find the associated ground-state wave function
ΨB,(k),

ĤB,(k)
eff ∣Ψ

B,(k)
⟩ = EB,(k)

∣ΨB,(k)
⟩. (51)

This wave function is obtained by the CIPSI algorithm as

∣ΨB,(k)
⟩ = ∑

I ∈ R(k)
cI ∣I⟩, (52)
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where R(k) is the new set of Slater determinants at iteration k.
According the CIPSI algorithm, the set R(k) is obtained by repeat-
edly adding to a reference wave function ΨB,(k)

ref the determinants K
having the largest second-order perturbation theory (PT2) contribu-
tions ∣E(k)K,PT2∣ with

E(k)K,PT2 = −
∣ ⟨ΨB,(k)

ref ∣ Ĥ
B,(k)
eff ∣K ⟩∣

2

⟨K∣ ĤB,(k)
eff ∣K ⟩ − ⟨Ψ

B,(k)
ref ∣ Ĥ

B,(k)
eff ∣Ψ

B,(k)
ref ⟩

, (53)

iteratively doubling the number of determinants in ΨB,(k)
ref until the

absolute value of the total PT2 energy correction due to the missing
determinants,

∣E(k)PT2∣ =

RRRRRRRRRRRR

∑
K ∉ R(k)

E(k)K,PT2

RRRRRRRRRRRR

, (54)

is smaller than a given threshold. To reduce the cost of the evalu-
ation of the PT2 contribution, the semi-stochastic multi-reference
approach of Garniron et al.30 is used, adopting the technical specifi-
cations recommended in that work.

This determines the set of determinants R(k), which is then
fixed for the rest of the iteration k. The energy EB,(k)

0 for this iter-
ation is then determined according to the minimization in Eq. (5),

EB,(k)
0 = min

ΨB,(k)
{⟨ΨB,(k)

∣ T̂ + Ŵee + V̂ne∣ΨB,(k)
⟩ + ĒB

[nΨB,(k)]}, (55)

which amounts to solving the iterative equation,

ĤB
eff[nΨB,(k)

0
]∣ΨB,(k)

0 ⟩ = EB,(k)
0 ∣ΨB,(k)

0 ⟩, (56)

for the optimal coefficients of the determinants {c(k)I } leading to the
minimizing wave function at iteration k,

∣ΨB,(k)
0 ⟩ = ∑

I ∈ R(k)
c(k)I ∣I⟩. (57)

The iterations over k are repeated until the variation of EB,(k)
0 is

smaller than a given threshold. The evaluation of the dipole moment
is obtained as the expectation value of the dipole operator over the
converged wave function ΨB

0 .
The same approach is used for solving Eq. (13), which involves

the on-top pair density in addition to the density.

III. COMPUTATION OF TOTAL ENERGIES AND DIPOLE
MOMENTS
A. Computational details

We study the total ground-state energies of the Be atom and
BH molecule together with the dipole moments of the BH, FH, and
H2O molecules in their ground states and of the CH2 molecule in
its lowest spin-singlet state. We report the standard CIPSI (i.e., near
FCI) results without the basis-set correction (referred to as “CIPSI”)

as well as CIPSI results including the basis-set correction using the
PBE-UEG and PBE-OT functionals with or without self-consistency.
The non-self-consistent calculations are referred to as “CISPI+PBE-
UEG” and “CISPI+PBE-OT,” whereas the self-consistent calcula-
tions are referred to as “SC CISPI+PBE-UEG” and “SC CISPI+PBE-
OT” where SC stands for self-consistent. The orbitals used for all
converged CIPSI calculations are the natural orbitals obtained from
a standard CISPI calculation stopped at a total PT2 energy correc-
tion smaller in absolute value than 0.001 hartree. For the localizing
wave function ΨB

loc involved in the definition of the local range-
separation parameter μB(r) (see Sec. II B 1), we choose either a
single Slater determinant (SD) built from the natural orbitals of the
largest CIPSI wave function (which we refer to as μSD) or the largest
CIPSI wave function (which we refer to as μCIPSI). We use the Dun-
ning correlation-consistent basis-set family.31–35 We perform both
non-frozen-core calculations using the core-valence aug-cc-pCVXZ
basis sets and frozen-core calculations (with the 1s orbitals of non-
hydrogen atoms frozen) using the valence aug-cc-pVXZ basis sets
and the corresponding frozen-core version of the basis-set correc-
tion (see Sec. II B 3). All the CIPSI calculations have been performed
with QUANTUM PACKAGE.36

We also report the dipole moment at the coupled cluster sin-
gles doubles perturbative triples [CCSD(T)] level, which was taken
from Ref. 37 for the BH and FH molecules and obtained using linear-
response calculations from the DALTON software38,39 for the CH2 and
H2O molecules. The molecular geometries are taken from Ref. 37 for
BH and FH and from Ref. 40 for H2O and CH2.

B. Total energies of the Be atom
and the BH molecule

Tables I and II report the total energies of the Be atom and
the BH molecule, respectively, calculated using the aug-cc-pCVXZ
basis sets with CIPSI without any basis-set correction and with dif-
ferent basis-set corrections. It can be observed that the total energies
obtained with the basis-set corrections converge much faster toward
the estimated exact total energies than the total energies obtained
without any basis-set correction. For the Be atom, all the basis-
set corrected total energies from the aug-cc-pCVDZ to the aug-cc-
pCVQZ basis sets have errors below 1.6 mhartree ≈ 1 kcal/mol com-
pared to the estimated exact total energy, whereas without basis-set
correction such an accuracy is not even reached with the aug-cc-
pCVQZ basis set. Similar trends are observed for the BH molecule:
All the basis-set corrected total energies have errors below 1 kcal/mol
already from the aug-cc-pCVTZ basis set, whereas without basis-set
correction such an accuracy is reached only with the aug-cc-pCV5Z
basis set.

Focusing now on the differences between the various basis-set
corrections, we can notice that (i) using the local range-separation
parameter μSD gives larger basis-set corrections than using μCIPSI and
(ii) the PBE-UEG functional gives larger basis-set corrections than
the PBE-OT functional. As regards the effect of the self-consistency,
it is remarkable to notice that self-consistency lowers the total
energy by a very small fraction of the total basis-set correction
(typically less than 1%), whatever the choice of functional or local
range-separation parameter. These results thus validate the previ-
ously introduced non-self-consistent approximation to the basis-set
correction (see Sec. II A 3) for energy calculations.
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TABLE I. Total ground-state energies (in hartree) of the Be atom calculated using the aug-cc-pCVXZ (ACVXZ) basis sets (with X = D, T, Q) with CIPSI without the frozen-
core approximation and including different basis-set corrections with or without self-consistency. The energy lowering ΔESC (in μhartree) from the non-self-consistent to the
self-consistent version of the basis-set correction is reported in square brackets.

ACVDZ ACVTZ ACVQZ

CIPSI −14.651 922 5 −14.662 397 1 −14.665 576 7
CIPSI + PBE −UEGμSD −14.668 361 7 −14.668 631 4 −14.668 102 0
SC CIPSI + PBE −UEGμSD [ΔESC] −14.668 387 8 [−26.1] −14.668 635 4 [−4.0] −14.668 102 6 [−0.6]
CIPSI + PBE −UEGμCIPSI −14.667 703 5 −14.668 376 2 −14.667 964 3
SC CIPSI + PBE −UEGμCIPSI [ΔESC] −14.667 739 5 [−36.0] −14.668 387 4 [−11.2] −14.667 968 1 [−3.8]
CIPSI + PBE −OTμSD −14.666 337 6 −14.667 884 6 −14.667 798 2
SC CIPSI + PBE −OTμSD [ΔESC] −14.666 374 1 [−36.5] −14.667 895 6 [−11.0] −14.667 802 0 [−3.8]
CIPSI + PBE −OTμCIPSI −14.665 946 3 −14.667 712 8 −14.667 714 0
SC CIPSI + PBE −OTμCIPSI [ΔESC] −14.665 974 8 [−28.5] −14.667 722 3 [−9.5] −14.667 717 1 [−3.1]

Exact non-relativistic total energya
−14.667 356 5

aFrom Ref. 41.

TABLE II. Total ground-state energies (in hartree) of the BH molecule calculated using the aug-cc-pCVXZ (ACVXZ) basis sets (with X = D, T, Q, 5) with CIPSI without the
frozen-core approximation and including different basis-set corrections with or without self-consistency. The energy lowering ΔESC (in μhartree) from the non-self-consistent to
the self-consistent version of the basis-set correction is reported in square brackets.

ACVDZ ACVTZ ACVQZ ACV5Z

CIPSI −25.255 015 0 −25.278 617 9 −25.285 758 3 −25.287 377 9
CIPSI + PBE −UEGμSD −25.283 817 9 −25.289 630 3 −25.290 677 2 −25.290 007 9
SC CIPSI + PBE −UEGμSD [ΔESC] −25.283 927 0 [−109.1] −25.289 647 1 [−16.8] −25.290 680 4 [−3.2] ⋅ ⋅ ⋅

CIPSI + PBE −UEGμCIPSI −25.282 507 9 −25.289 024 5 −25.290 397 5 ⋅ ⋅ ⋅

SC CIPSI + PBE −UEGμCIPSI [ΔESC] −25.282 609 0 [−101.1] −25.289 040 0 [−15.5] ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

CIPSI + PBE −OTμSD −25.279 829 7 −25.288 048 6 −25.289 977 4 ⋅ ⋅ ⋅

SC CIPSI + PBE −OTμSD [ΔESC] −25.280 039 1 [−209.4] −25.288 100 8 [−52.2] −25.289 993 7 [−16.3] ⋅ ⋅ ⋅

CIPSI + PBE −OTμCIPSI −25.278 973 8 −25.287 636 3 −25.289 788 3 ⋅ ⋅ ⋅

SC CIPSI + PBE −OTμCIPSI [ΔESC] −25.279 160 0 [−186.2] −25.287 680 9 [−44.6] ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

CIPSI total energy extrapolated to the CBS limit −25.289 032

C. Dipole moments of the BH, FH, H2O, and CH2
molecules

As seen from Sec. III B, the self-consistency of the basis-set
correction does not lead to significant changes in the total ener-
gies. Nevertheless, one can wonder if the effective wave functions
obtained with the self-consistent basis-set correction provide better
properties.

We choose to investigate this aspect through the computation
of the dipole moments of the BH, FH, H2O, and CH2 molecules
for several reasons: (i) The basis-set convergence of dipole moments
with correlated wave function methods is known to be slow (see, e.g.,
Refs. 37, 40, and 42), (ii) these molecules are sufficiently small to
have near-CBS reference values, and (iii) the BH and CH2 molecules
exhibit a non-trivial mixture of both strong and weak correla-
tion due to the 2s–2p near degeneracy in the boron and carbon
atoms, whereas the FH and H2O molecules are dominated by weak
correlation effects.

1. Dipole moment of the BH molecule
We start by a detailed analysis on the BH molecule. The slow

convergence of the dipole moment of the BH molecule with respect
to the size of the basis set has been illustrated at various correla-
tion levels including CCSD(T) by Halkier et al.,37 and we report in
Table III their CCSD(T) results at the non-frozen-core level. In order
to have a reasonable estimate of the dipole moment in the CBS limit,
we use the two-point X−3 extrapolation proposed in Ref. 37 using the
aug-cc-pCVQZ and aug-cc-pCV5Z basis sets. At the CCSD(T) level,
an error of about 0.001 a.u. with respect to the CBS limit is not even
reached with the aug-cc-pCV5Z basis set, while the error is about
0.006 and 0.003 a.u. with the aug-cc-pCVTZ and aug-cc-pCVQZ
basis set, respectively, showing indeed the quite slow convergence
of the dipole moment of BH.

We also report in Table III the dipole moment at the CIPSI level
together with the value of the PT2 energy correction ∣EPT2∣ associated
with the variational wave function for which the dipole moment has
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TABLE III. Dipole moment (in a.u.) of the ground state of the BH molecule calculated using the aug-cc-pCVXZ (ACVXZ) basis sets (with X = D, T, Q, 5) by Hartree–Fock (HF),
CCSD(T), and CIPSI without the frozen-core approximation and including different self-consistent basis-set corrections. For the CIPSI calculations, the PT2 energy correction
∣EPT2∣ (in hartree) is reported in square brackets. Extrapolations to the CBS limit are given in the last column.

ACVDZ ACVTZ ACVQZ ACV5Z CBS

HF 0.687 96 0.685 70 0.684 89 0.685 30
CCSD(T)a 0.529 68 0.546 49 0.549 84 0.551 25 0.552 71
CIPSI [∣EPT2∣] 0.527 58 [2 × 10−6

] 0.543 88 [4 × 10−6
] 0.547 89 [4 × 10−6

] 0.549 75 [2 × 10−5
] 0.551 42

CIPSI extrapolated to EPT2 → 0 0.527 57 0.543 86 0.547 90 0.549 67 0.551 26
SC CIPSI + PBE −UEGμSD [∣EPT2∣] 0.536 58 [2 × 10−6

] 0.548 35 [4 × 10−6
] 0.550 40 [4 × 10−5

]

SC CIPSI + PBE −UEGμCIPSI [∣EPT2∣] 0.537 58 [2 × 10−6
] 0.548 12 [4 × 10−6

]

SC CIPSI + PBE −OTμSD [∣EPT2∣] 0.543 40 [2 × 10−6
] 0.550 92 [4 × 10−6

] 0.550 93 [1 × 10−5
]

SC CIPSI + PBE −OTμCIPSI [∣EPT2∣] 0.543 33 [2 × 10−6
] 0.549 73 [8 × 10−6

]

aFrom Ref. 37.

been calculated. The values of ∣EPT2∣ are all below 2 × 10−5 hartree,
which was found to be mandatory to converge the CIPSI dipole
moments to a precision of about 0.0001 a.u. for the BH molecule.
These represent therefore rather large calculations involving about
108 Slater determinants for the largest aug-cc-pCV5Z basis set. In
order to obtain an estimation of the error of the dipole moment at
the CIPSI level in a given basis set with respect to FCI, we extrapolate
the CIPSI dipole moment to ∣EPT2∣→ 0 using a linear extrapolation
as a function of ∣EPT2∣ (similar to the proposal of Holmes et al.43

for the total energy) using different values of ∣EPT2∣. As one can see
from Table III, for any basis set, the difference between the dipole
moment calculated by CIPSI with the smallest ∣EPT2∣ available and
the dipole moment extrapolated with respect to ∣EPT2∣ is negligi-
ble. Thus, with the values of ∣EPT2∣ used, the CIPSI dipole moments
provide reliable estimates of the FCI dipole moments. As regards
basis-set errors, similar to the CCSD(T) results, an error of about
0.001 a.u. on the CIPSI dipole moment with respect to the CBS limit
is not even reached using the aug-cc-pCV5Z basis set, illustrating
once more the slow convergence of the dipole moment with respect
to the size of the basis set.

From Table III, one can also notice that there is a small devia-
tion between the CCSD(T) and the CIPSI dipole moments, which is
of about 0.002 a.u. for the aug-cc-pCVXZ basis sets with X =D, T, Q
and about 0.001 a.u. for the aug-cc-pCV5Z basis set. In addition, the
deviation between the CCSD(T) and CIPSI dipole moments extrap-
olated to the CBS limit is about 0.001 a.u., showing that CCSD(T)
provides a very accurate value for the dipole moment of the BH
molecule.

Coming now to the self-consistent basis-set correction calcu-
lations, we report in Table III the dipole moments obtained using
the PBE −UEG and PBE −OT functionals using the local range-
separation parameters μSD and μCIPSI, and a graphical representation
of the data for μSD is given in Fig. 1(a). Clearly, the basis-set cor-
rection strongly accelerates the convergence to the CBS limit. More
specifically, it can be observed that (i) in a given basis set, all basis-set
corrections significantly improve the dipole moment with respect to
the CIPSI value, (ii) the PBE −OT functional gives more accurate
results than the PBE −UEG functional, and (iii) an error of about
0.001 a.u. on the dipole moment is obtained already with the aug-
cc-pCVTZ basis set when using the PBE −OT functional. The result

FIG. 1. Basis-set convergence of the dipole moment of the ground state of the BH molecule calculated using the aug-cc-pCVXZ (ACVXZ) and aug-cc-pVXZ (AVXZ) basis
sets (with X = D, T, Q, 5) by CIPSI including different self-consistent basis-set corrections without the frozen-core approximation (left) and with the frozen-core approximation
(right). The self-consistent basis-set corrections are for the local range-separation parameter μSD. The green area indicates an error of ±0.001 a.u. around the CIPSI CBS
value.
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TABLE IV. Dipole moment (in a.u.) of the ground state of the BH molecule calculated using the aug-cc-pVXZ (AVXZ) basis sets (with X = D, T, Q, 5) by Hartree–Fock (HF),
CCSD(T), and CIPSI with the frozen-core approximation and including different self-consistent basis-set corrections. For the CIPSI calculations, the PT2 energy correction ∣EPT2∣

(in hartree) is reported in square brackets. Extrapolations to the CBS limit are given in the last column.

AVDZ AVTZ AVQZ AV5Z CBS

HF 0.687 96 0.686 50 0.684 94 0.684 96
CCSD(T) 0.529 39 0.545 00 0.547 24 0.548 43 0.549 66
CIPSI [∣EPT2∣] 0.527 82 [3 × 10−8

] 0.543 34 [1 × 10−7
] 0.545 63 [4 × 10−7

] 0.546 91 [1 × 10−6
] 0.548 23

SC CIPSI + PBE −UEGμSD [∣EPT2∣] 0.537 91 [4 × 10−7
] 0.548 15 [7 × 10−7

] 0.547 90 [3 × 10−6
] 0.548 15 [3 × 10−6

]

SC CIPSI + PBE −OTμSD [∣EPT2∣] 0.545 12 [4 × 10−7
] 0.550 29 [5 × 10−7

] 0.548 80 [2 × 10−8
]

(i) shows that, although the self-consistency does not lead to signif-
icant improvement on the total energy (see Table II), it is crucial to
yield effective wave functions providing better properties, illustrat-
ing the impact and the accuracy of the effective basis-set correction
potentials employed. The result (ii) shows that the use of the on-top
pair density of the wave function rather than that estimated from
the UEG gives a better approximation of the exact on-top pair den-
sity, which can be understood as a signature of strong-correlation
effects.

Finally, we also report in Table IV the dipole moments obtained
with the frozen-core approximation using the aug-cc-pVXZ basis
sets, and the corresponding graphical representation is given in
Fig. 1(b). Again, the basis-set correction with either the PBE −UEG
or PBE −OT functional yields a faster basis-set convergence of
the dipole moment than that in the standard CIPSI calculations.
However, in this case, the convergence toward the CBS limit is
slightly better when using the PBE −UEG functional. The PBE −OT
functional slightly overestimates the dipole moment by 0.002 and
0.0006 a.u. with the aug-cc-pVTZ and aug-cc-pVQZ basis sets,
respectively, whereas the PBE −UEG functional yields a deviation
of below 0.0005 a.u. from the aug-cc-pVTZ to the aug-cc-pV5Z
basis set.

D. Dipole moments of the FH, H2O, and CH2
molecules

We now pursue our analysis on the FH, H2O, and CH2
molecules using only the frozen-core approximation. The basis-set
convergence of the dipole moments of these molecules was studied
in Refs. 37 and 42 at the CCSD(T) level. In Tables V–VII, we report
the CCSD(T) and CIPSI results with the aug-cc-pVXZ basis sets.

The CBS estimates are obtained from a two-point X−3 extrapolation
using the aug-cc-pVQZ and aug-cc-pV5Z basis sets at the CCSD(T)
level and also at the CIPSI level in the case of CH2. One can notice
that, at the CCSD(T) or CIPSI level, an error of about 0.001 a.u.
with respect to the estimated CBS limit is not even reached with the
aug-cc-pV5Z basis set. In addition, in the case of CH2, there is a sig-
nificant discrepancy between the extrapolated CCSD(T) and CIPSI
dipole moments, which might be due to some strong-correlation
effects that are mistreated at the CCSD(T) level.

We also report in Tables V–VII the results using the self-
consistent basis-set correction. In contrast with the BH molecule,
the effective wave functions obtained with the PBE −UEG and
PBE −OT functionals always yield very similar dipole moments for
the FH and H2O molecules. This can be explained by the fact that
these molecules at their equilibrium geometries are weakly corre-
lated systems for which the on-top pair density based on the UEG
is a good approximation. For the FH, H2O, and CH2 molecules,
the dipole moment is overestimated with the aug-cc-pVDZ basis
set using both functionals, but the results with the aug-cc-pVTZ
basis set are already very close to the estimated CBS limit. From
a quantitative point of view, for the FH molecule with the aug-cc-
pVDZ basis set, the error with respect to the CBS dipole moment is
reduced from about 0.007 a.u. at the CIPSI level to about 0.004 a.u.
with the basis-set correction, whereas with the aug-cc-pVTZ basis
set the error is reduced from 0.005 a.u. to below 0.0005 a.u. For the
CH2 molecule, with the aug-cc-pVDZ basis set the error with respect
to the CBS extrapolated CIPSI value is about 0.008 a.u., whereas it
is about 0.003 and 0.006 a.u. using the PBE −UEG and PBE −OT
basis-set corrections, respectively. With the aug-cc-pVTZ basis set,
the error at the CIPSI level is still about 0.005 a.u., whereas it is
below 0.001 a.u. for both the PBE −UEG and PBE −OT functionals.

TABLE V. Dipole moment (in a.u.) of the ground state of the FH molecule calculated using the aug-cc-pVXZ (AVXZ) basis sets (with X = D, T, Q, 5) by Hartree–Fock (HF),
CCSD(T), and CIPSI with the frozen-core approximation and including different self-consistent basis-set corrections. For the CIPSI calculations, the PT2 energy correction ∣EPT2∣

(in hartree) is reported in square brackets. Extrapolations to the CBS limit are given in the last column.

AVDZ AVTZ AVQZ AV5Z CBS

HF 0.759 76 0.757 50 0.756 34 0.756 17
CCSD(T) 0.703 42 0.704 65 0.707 07 0.707 94 0.709 03
CIPSI [∣EPT2∣] 0.702 49 [9 × 10−6

] 0.704 06 [1 × 10−4
] 0.706 62 [1 × 10−4

]

CIPSI extrapolated with respect to EPT2 0.702 48 0.703 91 0.706 46
SC CIPSI + PBE −UEGμSD [∣EPT2∣] 0.713 26 [3 × 10−5

] 0.708 73 [1 × 10−4
]

SC CIPSI + PBE −OTμSD [∣EPT2∣] 0.713 62 [2 × 10−5
] 0.709 15 [1 × 10−4

]
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TABLE VI. Dipole moment (in a.u.) of the ground state of the H2O molecule calculated using the aug-cc-pVXZ (AVXZ) basis sets (with X = D, T, Q, 5) by Hartree–Fock (HF),
CCSD(T), and CIPSI with the frozen-core approximation and including different self-consistent basis-set corrections. For the CIPSI calculations, the PT2 energy correction ∣EPT2∣

(in hartree) is reported in square brackets. Extrapolations to the CBS limit are given in the last column.

AVDZ AVTZ AVQZ AV5Z CBS

HF 0.786 70 0.780 38 0.779 55 0.779 56
CCSD(T) 0.727 03 0.723 64 0.726 95 0.728 15 0.729 41
CIPSI [∣EPT2∣] 0.726 10 [3 × 10−5

] 0.722 94 [2 × 10−4
]

SC CIPSI + PBE −UEGμSD [∣EPT2∣] 0.738 09 [2 × 10−5
] 0.728 18 [2 × 10−5

]

SC CIPSI + PBE −OTμSD [∣EPT2∣] 0.738 40 [2 × 10−4
] 0.728 55 [1 × 10−4

]

TABLE VII. Dipole moment (in a.u.) of the lowest spin-singlet state of the CH2 molecule calculated using the aug-cc-pVXZ (AVXZ) basis sets (with X = D, T, Q, 5) by Hartree–Fock
(HF), CCSD(T), and CIPSI with the frozen-core approximation and including different self-consistent basis-set corrections. For the CIPSI calculations, the PT2 energy correction
∣EPT2∣ (in hartree) is reported in square brackets. Extrapolations to the CBS limit are given in the last column.

AVDZ AVTZ AVQZ AV5Z CBS

HF 0.748 78 0.744 78 0.743 55 0.743 53
CCSD(T) 0.656 14 0.660 09 0.662 11 0.663 10 0.664 16
CIPSI [∣EPT2∣] 0.651 20 [2 × 10−5

] 0.654 46 [3 × 10−5
] 0.656 43 [4 × 10−5

] 0.657 80 [1 × 10−4
] 0.659 26

SC CIPSI + PBE −UEGμSD [∣EPT2∣] 0.662 49 [2 × 10−5
] 0.659 58 [3 × 10−5

] 0.658 90 [3 × 10−5
]

SC CIPSI + PBE −OTμSD [∣EPT2∣] 0.665 27 [2 × 10−5
] 0.660 55 [4 × 10−5

] 0.659 32 [5 × 10−4
]

Finally, in the case of the H2O molecule, the results using the basis-
set correction are actually worst than the CIPSI ones when using the
aug-cc-pVDZ basis set, the error increasing from about 0.003 a.u.
for CIPSI to about 0.009 a.u. with the basis-set correction. One
should nevertheless keep in mind that the convergence of the dipole
moment of H2O is non-monotonic at the CCSD(T) level, the dipole
moment obtained with the aug-cc-pVDZ basis set being closer to the
CBS limit than the ones obtained using the aug-cc-pVTZ or aug-cc-
pVQZ basis sets. Therefore, the seemingly good values obtained at
the CCSD(T) and CIPSI levels using the aug-cc-pVDZ basis set are
likely to be due to a compensation of errors. With the aug-cc-pVTZ
basis set, the expected trend is recovered, with CIPSI giving an error
of about 0.006 a.u. and the basis-set correction reducing this error to
about 0.001 a.u.

IV. CONCLUSION
In the present work, we have established the fully self-consistent

density-based basis-set correction scheme.13 Differently from previ-
ous works where a non-self-consistent approximation was used,13–18

here the energy is minimized in the presence of the basis-set cor-
rection functional, which (i) guarantees to get a lower total energy
with respect to the non-self-consistent approximation and (ii) allows
the wave function to change under the presence of the basis-set
correction. We have tested this scheme on a few atomic and molec-
ular systems (Be, BH, FH, H2O, and CH2) with CIPSI wave func-
tions and two different basis-set correction functionals PBE −UEG
and PBE −OT. While PBE −UEG is a functional of the density,
PBE −OT uses in addition the on-top pair density of the wave
function as an independent variable.

The main results are that (i) the lowering in total
energy is extremely small compared to the non-self-consistent
approximations (typically less than 1%), which thus justifies this

approximation for energy-only calculations, and (ii) the wave
functions obtained from the self-consistent basis-set correction
scheme yield dipole moments, which converge much faster with
respect to the size of the basis set than standard wave function
calculations, being already close to the CBS value with a triple-zeta
basis set. This study thus confirms that the density-based basis-set
correction scheme is not only useful for energy calculations but also
for calculations of response properties.
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