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ABSTRACT
We extend to strongly correlated molecular systems the recently introduced basis-set incompleteness correction based on density-functional
theory (DFT) [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)]. This basis-set correction relies on a mapping between wave-function
calculations in a finite basis set and range-separated DFT (RSDFT) through the definition of an effective non-divergent interaction corre-
sponding to the electron–electron Coulomb interaction projected in the finite basis set. This enables the use of RSDFT-type complementary
density functionals to recover the dominant part of the short-range correlation effects missing in this finite basis set. To study both weak and
strong correlation regimes, we consider the potential energy curves of the H10, N2, O2, and F2 molecules up to the dissociation limit, and we
explore various approximations of complementary functionals fulfilling two key properties: spin-multiplet degeneracy (i.e., independence of
the energy with respect to the spin projection Sz) and size consistency. Specifically, we investigate the dependence of the functional on differ-
ent types of on-top pair densities and spin polarizations. The key result of this study is that the explicit dependence on the on-top pair density
allows one to completely remove the dependence on any form of spin polarization without any significant loss of accuracy. Quantitatively, we
show that the basis-set correction reaches chemical accuracy on atomization energies with triple-ζ quality basis sets for most of the systems
studied here. In addition, the present basis-set incompleteness correction provides smooth potential energy curves along the whole range of
internuclear distances.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0002892., s

I. INTRODUCTION

The general goal of quantum chemistry is to provide reli-
able theoretical tools to explore the rich area of chemistry. More
specifically, developments in quantum chemistry primarily aim at
accurately computing the electronic structure of molecular sys-
tems. Despite intense developments, no definitive solution to
this problem has been found. The theoretical challenge to tackle
belongs to the quantum many-body problem due to the intrin-
sic quantum nature of the electrons and the Coulomb repul-
sion between them. This so-called electronic correlation problem
corresponds to finding a solution to the Schrödinger equation

for an N-electron system, and two main roads have emerged
to approximate this solution: wave-function theory (WFT)1 and
density-functional theory (DFT).2 Although both WFT and DFT
spring from the same Schrödinger equation, they rely on very dif-
ferent formalisms as the former deals with the complicated N-
electron wave function, whereas the latter focuses on the much
simpler one-electron density. In its Kohn–Sham (KS) formula-
tion,3 the computational cost of DFT is very appealing since
it is a simple mean-field procedure. Therefore, although contin-
ued efforts have been made to reduce the computational cost of
WFT, DFT still remains the workhorse of quantum computational
chemistry.
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The difficulty in obtaining a reliable theoretical description of a
given chemical system can be roughly categorized by the strength
of the electronic correlation. The so-called weakly correlated sys-
tems, such as closed-shell organic molecules near their equilibrium
geometry, are typically dominated by correlation effects that do
not affect the qualitative mean-field picture of the system. These
weak-correlation effects can be either short range (near the electron–
electron coalescence points)4 or long range (London dispersion
interactions).5 The theoretical description of weakly correlated sys-
tems is one of the most concrete achievements of quantum chem-
istry, and the main remaining challenge for these systems is to push
the limit of the chemical system size that can be treated. The case
of the so-called strongly correlated systems, which are ubiquitous in
chemistry, is more problematic as they exhibit a much more complex
electronic structure. For example, transition metal complexes, low-
spin open-shell systems, and covalent bond breaking situations have
all in common that they cannot be even qualitatively described by a
single electronic configuration. It is now clear that the usual semilo-
cal density-functional approximations of KS DFT fail to accurately
describe these situations,6,7 and WFT is king for the treatment of
strongly correlated systems.

In practice, WFT uses a finite one-electron basis set. The exact
solution of the Schrödinger equation within this basis set is then
provided by full configuration interaction (FCI) that consists in a
linear-algebra eigenvalue problem with a dimension scaling expo-
nentially with the system size. Due to this exponential growth of
the FCI computational cost, introducing approximations is neces-
sary, with at least two difficulties for strongly correlated systems:
(i) the qualitative description of the wave function is determined
by a primary set of electronic configurations (whose size can scale
exponentially in many cases) among which near degeneracies and/or
strong interactions appear in the Hamiltonian matrix and (ii) the
quantitative description of the system requires also to account for
weak correlation effects, which involve many other electronic con-
figurations with typically much smaller weights in the wave function.
Simultaneously addressing these two issues is a rather complicated
task for a given approximate WFT method, especially, if one adds the
requirement of satisfying formal properties, such as spin-multiplet
degeneracy (i.e., independence of the energy with respect to the spin
projection Sz) and size consistency.

Beside the difficulties in accurately describing the molecular
electronic structure within a given basis set, a crucial limitation of
WFT methods is the slow convergence of the energy (and related
properties) with respect to the size of the one-electron basis set.
As initially shown by the seminal work of Hylleraas8 and further
developed by Kutzelnigg and co-workers,9–11 the main convergence
problem originates from the divergence of the electron–electron
Coulomb interaction at the coalescence point, which induces a dis-
continuity in the first derivative of the exact wave function (the
so-called electron–electron cusp). Describing such a discontinu-
ity with an incomplete one-electron basis set is impossible, and
as a consequence, the convergence of the computed energies and
properties is strongly affected. To alleviate this problem, extrapo-
lation techniques have been developed either based on a partial-
wave expansion analysis12,13 or more recently based on perturbative
arguments.14,15 A more rigorous approach to tackle the basis-
set convergence problem is provided by the so-called explicitly
correlated F12 (or R12) methods4,16–20 that introduce a geminal

function depending explicitly on the interelectronic distance. This
ensures a correct representation of the Coulomb correlation hole
around the electron–electron coalescence point and leads to a much
faster convergence of the energy than usual WFT methods. For
instance, using the explicitly correlated version of the coupled clus-
ter with singles, doubles, and perturbative triples [CCSD(T)] in
a triple-ζ basis set is equivalent to using a quintuple-ζ basis set
with the usual CCSD(T) method,21 although a computational over-
head is introduced by the auxiliary basis set needed to compute
the three-electron integrals involved in F12 theory.22 In addition
to the computational cost, a possible drawback of F12 theory is
its rather complex formalism, which requires non-trivial devel-
opments for adapting it to a new method. For strongly corre-
lated systems, several multi-reference methods have been extended
to explicit correlation (see, for example, Refs. 23–27), including
approaches based on the so-called universal F12 theory, which
are potentially applicable to any electronic-structure computational
methods.28–31

An alternative way to improve the convergence toward the
complete-basis-set (CBS) limit is to treat the short-range correlation
effects within DFT and to use WFT methods to deal only with the
long-range and/or strong correlation effects. A rigorous approach
achieving this mixing of DFT and WFT is range-separated DFT
(RSDFT) (see Ref. 32 and the references therein), which relies on
a decomposition of the electron–electron Coulomb interaction in
terms of the interelectronic distance, thanks to a range-separation
parameter μ. The advantage of this approach is at least twofold:
(i) the DFT part deals primarily with the short-range part of the
Coulomb interaction, and consequently, the usual semilocal density-
functional approximations are more accurate than for standard
KS DFT and (ii) the WFT part deals only with a smooth non-
divergent interaction, and consequently, the wave function has no
electron–electron cusp33 and the basis-set convergence is much
faster.34 A number of approximate RSDFT schemes have been
developed involving single-reference35–42 and multi-reference43–48

WFT methods. Nevertheless, there are still some open issues in
RSDFT, such as remaining fractional-charge and fractional-spin
errors in the short-range density functionals49 or the dependence
of the quality of the results on the value of the range-separation
parameter μ.

Building on the development of RSDFT, a possible solution
to the basis-set convergence problem has been recently proposed
by some of the present authors,50 in which RSDFT functionals are
used to recover only the correlation effects outside a given basis set.
The key point here is to realize that a wave function developed in
an incomplete basis set is cuspless and could also originate from
a Hamiltonian with a non-divergent long-range electron–electron
interaction. Therefore, a mapping with RSDFT can be performed
through the introduction of an effective non-divergent interaction
representing the usual electron–electron Coulomb interaction pro-
jected in an incomplete basis set. First, applications to weakly corre-
lated molecular systems have been successfully carried out51 together
with extensions of this approach to the calculations of excitation
energies52 and ionization potentials.53 The goal of the present work
is to further develop this approach for the description of strongly
correlated systems.

This paper is organized as follows: In Sec. II, we recall the math-
ematical framework of the basis-set correction and we present its
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extension for strongly correlated systems. In particular, our focus is
primarily set on imposing two key formal properties that are highly
desirable in the context of strong correlation: spin-multiplet degen-
eracy and size consistency. To do this, we introduce (i) new func-
tionals using different flavors of spin polarizations and on-top pair
densities and (ii) an effective electron–electron interaction based on
a multiconfigurational wave function. This generalizes the method
used in previous works on weakly correlated systems50,51 for which
it was sufficient to use an effective interaction based on a single-
determinant wave function and a functional depending only on the
usual density, reduced density gradient, and spin polarization. Then,
in Sec. III, we apply the method to the calculation of the poten-
tial energy curves of the H10, N2, O2, and F2 molecules up to the
dissociation limit. Finally, we conclude in Sec. IV.

II. THEORY
As the theory behind the present basis-set correction has been

exposed in detail in Ref. 50, we only briefly recall the main equa-
tions and concepts needed for this study in Secs. II A–II C. More
specifically, in Sec. II A, we recall the basic mathematical framework
of the present theory by introducing the complementary functional
to a basis set. Section II B introduces the effective non-divergent
interaction in the basis set, which leads us to the definition of the
effective local range-separation function in Sec. II C. Then, Sec. II D
exposes the new approximate RSDFT-based complementary corre-
lation functionals. The generic form of such functionals is exposed in
Sec. II D 1, their properties in the context of the basis-set correction
are discussed in Sec. II D 2, and the specific requirements for strong
correlation are discussed in Sec. II E. Finally, the actual functionals
used in this work are introduced in Sec. II F.

A. Basic theory
The exact ground-state energy E0 of an N-electron system

can, in principle, be obtained in DFT by a minimization over
N-representable one-electron densities n(r),

E0 = min
n
{F[n] + ∫ drvne(r)n(r)}, (1)

where vne(r) is the nuclei–electron potential and F[n] is the univer-
sal Levy–Lieb density functional written with the constrained search
formalism as54,55

F[n] = min
Ψ→n
⟨Ψ∣T̂ + Ŵee∣Ψ⟩, (2)

where T̂ and Ŵee are the kinetic and electron–electron Coulomb
operators, and the notation Ψ → n means that the wave function
Ψ yields the density n. The minimizing density n0 in Eq. (1) is the
exact ground-state density. Nevertheless, in practical calculations,
the accessible densities are necessarily restricted to the set of densi-
ties “representable in a basis set B,” i.e., densities coming from wave
functions expandable in the N-electron Hilbert space generated by
the one-electron basis set B. In the following, we always consider
only such representable-in-B densities. With this restriction, Eq. (1)
then gives an upper bound EB

0 of the exact ground-state energy. Since
the density has a faster convergence with the size of the basis set

than the wave function, this restriction is a rather weak one, and
we can consider that EB

0 is an acceptable approximation to the exact
ground-state energy, i.e., EB

0 ≈ E0.
In the present context, it is important to note that the wave

functions Ψ defined in Eq. (2) are not restricted to a finite basis set,
i.e., they should be expanded in a complete basis set. In Ref. 50, it
was then proposed to decompose F[n] as, for a representable-in-B
density n,

F[n] = min
ΨB→n

⟨ΨB
∣T̂ + Ŵee∣ΨB

⟩ + ĒB
[n], (3)

where ΨB are wave functions expandable in the N-electron Hilbert
space generated by B and

ĒB
[n] = min

Ψ→n
⟨Ψ∣T̂ + Ŵee∣Ψ⟩ − min

ΨB→n
⟨ΨB
∣T̂ + Ŵee∣ΨB

⟩ (4)

is the complementary density functional to the basis set B. Introduc-
ing the decomposition in Eq. (3) back into Eq. (1) yields

EB
0 = min

ΨB
{⟨ΨB

∣T̂ + Ŵee∣ΨB
⟩ + ĒB

[nΨB] + ∫ drvne(r)nΨB(r)}, (5)

where the minimization is only over wave functions ΨB restricted
to the basis set B and nΨB(r) refers to the density generated from
ΨB. Therefore, thanks to Eq. (5), one can properly combine a WFT
calculation in a finite basis set with a density functional (here-
after referred to as complementary functional) accounting for the
correlation effects that are not included in the basis set.

As a simple non-self-consistent version of this approach, we
can approximate the minimizing wave function ΨB

0 in Eq. (5) by the
ground-state FCI wave function ΨB

FCI within B, and we then obtain
the following approximation for the exact ground-state energy [see
Eqs. (12)–(15) of Ref. 50]:

E0 ≈ EB
0 ≈ E

B
FCI + ĒB

[nBFCI], (6)

where EB
FCI and nBFCI are the ground-state FCI energy and density,

respectively. As was originally shown in Ref. 50 and further empha-
sized in Refs. 51 and 52, the main role of ĒB

[nBFCI] is to correct
for the basis-set incompleteness error, a large part of which orig-
inating from the lack of electron–electron cusp in the wave func-
tion expanded in an incomplete basis set. The whole purpose of
this work is to determine approximations for ĒB

[nBFCI], which are
suitable for strongly correlated molecular systems. Two key require-
ments for this purpose are (i) spin-multiplet degeneracy and (ii) size
consistency.

B. Effective interaction in a finite basis
As originally shown by Kato,56 the electron–electron cusp of the

exact wave function originates from the divergence of the Coulomb
interaction at the coalescence point. Therefore, a cuspless wave func-
tion ΨB could also be obtained from a Hamiltonian with a non-
divergent electron–electron interaction. In other words, the impact
of the basis set incompleteness can be understood as the removal of
the divergence of the usual electron–electron Coulomb interaction.

As originally derived in Ref. 50 (see Sec. II D and Appendixes
A and B), one can obtain an effective non-divergent electron–
electron interaction, here referred to as WΨB(r1, r2), which repro-
duces the expectation value of the electron–electron Coulomb inter-
action operator over a given wave function ΨB. As we are interested
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in the behavior at the coalescence point, we focus on the opposite-
spin part of the electron–electron interaction. More specifically, the
effective electron–electron interaction associated with a given wave
function ΨB is defined as

WΨB(r1, r2) =

⎧
⎪⎪
⎨
⎪⎪
⎩

fΨB(r1, r2)/n2,ΨB(r1, r2) if n2,ΨB(r1, r2) ≠ 0

∞, otherwise,
(7)

where

n2,ΨB(r1, r2) = ∑
pqrs∈B

ϕp(r1)ϕq(r2)Γrspqϕr(r1)ϕs(r2) (8)

is the opposite-spin pair density associated with ΨB, and
Γrspq = 2⟨ΨB

∣â†
r↓ â

†
s↑ âq↑ âp↓ ∣Ψ

B
⟩ is its associated tensor in a basis of

spatial orthonormal orbitals {ϕp(r)},

fΨB(r1, r2) = ∑

pqrstu∈B
ϕp(r1)ϕq(r2)Vrs

pqΓ
tu
rsϕt(r1)ϕu(r2) (9)

and Vrs
pq = ⟨pq∣rs⟩ are the usual two-electron Coulomb integrals.

With such a definition, one can show that WΨB(r1, r2) satisfies

1
2∬

dr1dr2WΨB(r1, r2)n2,ΨB(r1, r2) =
1
2∬

dr1dr2
n2,ΨB(r1, r2)

∣r1 − r2∣
.

(10)

As shown in Ref. 50, the effective interactionWΨB(r1, r2) is necessar-
ily finite at coalescence for an incomplete basis set and tends to the
usual Coulomb interaction in the CBS limit for any choice of wave
function ΨB, i.e.,

lim
B→CBS

WΨB(r1, r2) =
1

∣r1 − r2∣
, ∀ΨB. (11)

The condition in Eq. (11) is fundamental as it guarantees the correct
behavior of the theory in the CBS limit.

C. Local range-separation function
1. General definition

The effective interaction within a finite basis, WΨB(r1, r2), is
bounded and resembles the long-range interaction used in RSDFT,

wlr
ee(μ; r12) =

erf(μ r12)

r12
, (12)

where μ is the range-separation parameter. As originally proposed in
Ref. 50, we make the correspondence between these two interactions
by using the local range-separation function

μΨB(r) =
√

π
2

WΨB(r, r) (13)

such that the two interactions coincide at the electron–electron
coalescence point for each r,

wlr
ee(μΨB(r); 0) =WΨB(r, r), ∀ r. (14)

Because of the very definition of WΨB(r1, r2), one has the following
property in the CBS limit [see Eq. (11)]:

lim
B→CBS

μΨB(r) =∞, ∀ΨB, (15)

which is again fundamental to guarantee the correct behavior of the
theory in the CBS limit.

2. Frozen-core approximation
As all WFT calculations in this work are performed within

the frozen-core approximation, we use a “valence-only” (or no-
core) version of the various quantities needed for the complemen-
tary functional introduced in Ref. 51. We partition the basis set as
B = C⋃V, where C and V are the sets of core and “valence” (i.e.,
non-core) orbitals, respectively, and define the valence-only local
range-separation function as

μval
ΨB(r) =

√

π
2

Wval
ΨB(r, r), (16)

where

Wval
ΨB(r1, r2) =

⎧
⎪⎪
⎨
⎪⎪
⎩

f val
ΨB (r1, r2)/nval

2,ΨB(r1, r2) if nval
2,ΨB(r1, r2) ≠ 0

∞ otherwise
(17)

is the valence-only effective interaction and

f val
ΨB (r1, r2) = ∑

pq∈B
∑

rstu∈V
ϕp(r1)ϕq(r2)Vrs

pqΓ
tu
rsϕt(r1)ϕu(r2), (18)

nval
2,ΨB(r1, r2) = ∑

pqrs∈V
ϕp(r1)ϕq(r2)Γrspqϕr(r1)ϕs(r2). (19)

One would note the restrictions of the sums to the set V in Eqs. (18)
and (19). It is also noteworthy that, with the present definition,
Wval

ΨB(r1, r2) still tends to the usual Coulomb interaction asB→ CBS.
For simplicity, we will drop the indication “val” in the notation for
the rest of the paper.

D. General form of the complementary functional
1. Generic approximate form

As originally proposed and motivated in Ref. 50, we approx-
imate the complementary functional ĒB

[n] by using the so-
called correlation energy functional with multideterminant refer-
ence (ECMD) introduced by Toulouse et al.57,58 Following the recent
work in Ref. 51, we propose to consider a Perdew–Burke–Ernzerhof
(PBE)-like functional that uses the one-electron density n(r), the
spin polarization ζ(r) = [n↑(r)−n↓(r)]/n(r) [where n↑(r) and n↓(r)
are the spin-up and spin-down densities], the reduced density gradi-
ent s(r) = ∇n(r)/n(r)4/3, and the on-top pair density n2(r) ≡ n2(r,
r). In the present work, all these quantities are computed with the
same wave function ΨB used to define μ(r) ≡ μΨB(r). Therefore,
ĒB
[n] has the following generic form:

ĒB
[n, ζ,n2,μ] = ∫ drn(r)ε̄sr,PBE

c,md (n(r), ζ(r), s(r),n2(r),μ(r)),

(20)

where

ε̄sr,PBE
c,md (n, ζ, s,n2,μ) =

εPBE
c (n, ζ, s)

1 + β(n, ζ, s,n2) μ3 (21)

is the correlation energy per particle with

β(n, ζ, s,n2) =
3

2
√

π(1 −
√

2)
εPBE

c (n, ζ, s)
n2/n

, (22)
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where εPBE
c (n, ζ, s) is the usual PBE correlation energy per particle.59

Before introducing the different flavors of approximate functionals
that we will use here (see Sec. II F), we would like to give some
motivations for this choice of functional form.

The form of ε̄sr,PBE
c,md (n, ζ, s,n2,μ) in Eq. (21) has been originally

proposed in Ref. 48 in the context of RSDFT. In the μ → 0 limit, it
reduces to the usual PBE correlation functional, i.e.,

lim
μ→0

ε̄sr,PBE
c,md (n, ζ, s,n2,μ) = εPBE

c (n, ζ, s), (23)

which is relevant in the weak-correlation (or high-density) limit. In
the large-μ limit, it behaves as

ε̄sr,PBE
c,md (n, ζ, s,n2,μ) ∼

μ→∞

2
√

π(1 −
√

2)
3 μ3

n2

n
, (24)

which is the exact large-μ behavior of the exact ECMD correlation
energy.48,60 Of course, for a specific system, the large-μ behavior
will be exact only if one uses for n2 the exact on-top pair den-
sity of this system. This large-μ limit in Eq. (24) is relevant in the
strong-correlation (or low-density) limit. In the context of RSDFT,
some of the present authors have illustrated in Ref. 48 that the on-
top pair density involved in Eq. (21) plays, indeed, a crucial role
when reaching the strong-correlation regime. The importance of the
on-top pair density in the strong-correlation regime has been also
recently acknowledged by Gagliardi and co-workers61 and Pernal
and co-workers.62

Note also that ε̄sr,PBE
c,md (n, ζ, s,n2,μ) vanishes when n2 vanishes,

i.e.,

lim
n2→0

ε̄sr,PBE
c,md (n, ζ, s,n2,μ) = 0, (25)

which is expected for systems with a vanishing on-top pair density.
Finally, the function ε̄sr,PBE

c,md (n, ζ, s,n2,μ) vanishes when μ →∞ like
all RSDFT short-range functionals, i.e.,

lim
μ→∞

ε̄sr,PBE
c,md (n, ζ, s,n2,μ) = 0. (26)

2. Two limits where the complementary
functional vanishes

Within the definitions of Eqs. (13) and (20), any approximate
complementary functional ĒB

[n, ζ,n2,μ] satisfies two important
properties.

First, thanks to the properties in Eqs. (15) and (26),
ĒB
[n, ζ,n2,μ] vanishes in the CBS limit, independently of the type of

wave function ΨB used to define the local range-separation function
μ(r) in a given basis set B,

lim
B→CBS

ĒB
[n, ζ,n2,μ] = 0, ∀ΨB. (27)

Second, ĒB
[n, ζ,n2,μ] correctly vanishes for systems with uni-

formly vanishing on-top pair density, such as one-electron systems,
and for the stretched H2 molecule,

lim
n2→0

ĒB
[n, ζ,n2,μ] = 0. (28)

This property is doubly guaranteed by (i) the choice of setting
WΨB(r1, r2) = ∞ for a vanishing pair density [see Eq. (7)], which
leads to μ(r) → ∞ and thus a vanishing ε̄sr,PBE

c,md (n, ζ, s,n2,μ) [see

Eq. (26)], and (ii) the fact that ε̄sr,PBE
c,md (n, ζ, s,n2,μ) vanishes anyway

when the on-top pair density vanishes [see Eq. (25)].

E. Requirements on the complementary functional
for strong correlation

An important requirement for any electronic-structure method
is size consistency, i.e., the additivity of the energies of non-
interacting fragments, which is mandatory to avoid any ambiguity
in computing interaction energies. When two subsystems A and B
dissociate in closed-shell systems, as in the case of weak intermolec-
ular interactions, for instance, spin-restricted Hartree–Fock (RHF)
is size-consistent. When the two subsystems dissociate in open-shell
systems, such as in covalent bond breaking, it is well known that the
RHF approach fails and an alternative is to use a complete-active-
space self-consistent-field (CASSCF) wave function that, provided
that the active space has been properly chosen, leads to additive
energies.

Another important requirement is spin-multiplet degeneracy,
i.e., the independence of the energy with respect to the Sz compo-
nent of a given spin state, which is also a property of any exact wave
function. Such a property is also important in the context of covalent
bond breaking, where the ground state of the supersystem A + B is
generally of lower spin than the corresponding ground states of the
fragments (A and B) that can have multiple Sz components.

1. Spin-multiplet degeneracy
A sufficient condition to achieve spin-multiplet degeneracy is

to eliminate all dependencies on Sz . In the case of the function
ε̄sr,PBE

c,md (n, ζ, s,n2,μ), this means removing the dependence on the spin
polarization ζ(r) originating from the PBE correlation functional
εPBE

c (n, ζ, s) [see Eq. (21)].
To do so, it has been proposed to replace the dependence

on the spin polarization by the dependence on the on-top pair
density. Most often, it is done by introducing an effective spin
polarization7,63–75 (see, also, Refs. 76 and 77)

ζ̃(n,n2) =
√

1 − 2 n2/n2 (29)

expressed as a function of the density n and the on-top pair den-
sity n2 calculated from a given wave function. The advantage of
this approach is that this effective spin polarization ζ̃ is indepen-
dent from Sz since the on-top pair density is Sz-independent. Nev-
ertheless, the use of ζ̃ in Eq. (29) presents some disadvantages
since this expression was derived for a single-determinant wave
function. Hence, it does not appear justified to use it for a mul-
tideterminant wave function. More particularly, it may happen in
the multideterminant case that 1–2 n2/n2

< 0, which results in a
complex-valued effective spin polarization.64 Therefore, following
other authors,67,72,73 we use the following definition:

ζ̃(n,n2) =

⎧
⎪⎪
⎨
⎪⎪
⎩

√

1 − 2 n2/n2 if n2
≥ 2n2

0 otherwise.
(30)

An alternative way to eliminate the Sz dependence is to simply
set ζ = 0, i.e., to resort to the spin-unpolarized functional. This low-
ers the accuracy for open-shell systems at μ = 0, i.e., for the usual
PBE correlation functional εPBE

c (n, ζ, s). Nevertheless, we argue that

J. Chem. Phys. 152, 174104 (2020); doi: 10.1063/5.0002892 152, 174104-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

for sufficiently large μ, it is a viable option. Indeed, the purpose
of introducing the spin polarization in semilocal density-functional
approximations is to mimic the exact on-top pair density,76 but our
functional ε̄sr,PBE

c,md (n, ζ, s,n2,μ) already explicitly depends on the on-
top pair density [see Eqs. (21) and (22)]. The dependencies on ζ
and n2 can thus be expected to be largely redundant. Consequently,
we propose here to test the use of ε̄sr,PBE

c,md with a zero spin polariza-
tion. This ensures its Sz independence and, as will be numerically
demonstrated, very weakly affects the complementary functional
accuracy.

2. Size consistency
Since ĒB

[n, ζ,n2,μ] is computed via a single integral over R3

[see Eq. (20)] that involves only local quantities [n(r), ζ(r), s(r), n2(r),
and μ(r)], in the case of non-overlapping fragments A + B, it can
be written as the sum of two local contributions: one coming from
the integration over the region of subsystem A and the other from
the region of subsystem B. Therefore, a sufficient condition for size
consistency is that these quantities locally coincide in the isolated
fragments and in the supersystem A + B. Since these local quanti-
ties are calculated from the wave function ΨB, a sufficient condition
is that the wave function is multiplicatively separable in the limit
of non-interacting fragments, i.e., ∣ΨB

A+B⟩ = ∣ΨB
A⟩ ⊗ ∣ΨB

B⟩. We refer
the interested reader to Appendix A for a detailed proof and discus-
sion of the latter statement. In the case where the two subsystems A
and B dissociate in closed-shell systems, a simple RHF wave func-
tion ensures this property, but when one or several covalent bonds
are broken, a properly chosen CASSCF wave function can be used to
recover this property. The underlying active space must however be
chosen in such a way that it leads to size-consistent energies in the
limit of dissociated fragments.

F. Actual approximations used
for the complementary functional

As the present work focuses on the strong-correlation regime,
we propose here to investigate only approximate functionals that
are Sz independent and size-consistent in the case of covalent bond
breaking. Therefore, the wave functions ΨB used throughout this
paper are CASSCF wave functions in order to ensure size consis-
tency of all local quantities. The difference between the different
flavors of functionals is only due to the types of spin polarization
and on-top pair density used.

Regarding the spin polarization that enters into the function
εPBE

c (n, ζ, s), two different types of Sz-independent formulations are
considered: (i) the effective spin polarization ζ̃ defined in Eq. (30)
and calculated from the CASSCF wave function and (ii) a zero spin
polarization. In the latter case, the functional is referred to as “SU,”
which stands for “spin unpolarized.”

Regarding the on-top pair density entering in Eq. (22), we use
two different approximations. The first one is based on the uniform
electron gas (UEG) and reads

nUEG
2 (n, ζ) ≈ n2

(1 − ζ2
)g0(n), (31)

where the pair-distribution function g0(n) is taken from Eq. (46)
of Ref. 33. As the spin polarization appears in Eq. (31), we use the

effective spin polarization ζ̃ of Eq. (30) in order to ensure Sz inde-
pendence. Thus, nUEG

2 will depend indirectly on the on-top pair den-
sity of the CASSCF wave function through ζ̃. When using nUEG

2 (r)
≡ nUEG

2 (n(r), ζ̃(r)) in a functional, we will refer to it as “UEG.”
The second approach to approximate the exact on-top pair

density consists in using directly the on-top pair density of the
CASSCF wave function. Following the work of some of the present
authors,48,52 we introduce the extrapolated on-top pair density

n̊2(n2,μ) = (1 +
2
√

πμ
)

−1

n2, (32)

which directly follows from the large-μ extrapolation of the exact
on-top pair density derived by Gori-Giorgi and Savin33 in the
context of RSDFT. Thus, the extrapolated on-top pair density n̊2
depends on the local range-separation function μ. When using
n̊2(r) ≡ n̊2(n2(r),μ(r)) in a functional, we will simply refer it to
as “OT,” which stands for “on-top.”

We then define three complementary functionals:

(i) PBE-UEG that combines the effective spin polarization of
Eq. (30) and the UEG on-top pair density defined in Eq. (31),

ĒB
PBE-UEG = ∫ drn(r)ε̄sr,PBE

c,md (n(r), ζ̃(r), s(r),n
UEG
2 (r),μ(r)),

(33)

(ii) PBE-OT that combines the effective spin polarization of
Eq. (30) and the on-top pair density of Eq. (32),

ĒB
PBE-OT = ∫ drn(r)ε̄sr,PBE

c,md (n(r), ζ̃(r), s(r), n̊2(r),μ(r)),

(34)

(iii) SU-PBE-OT that combines a zero spin polarization and the
on-top pair density of Eq. (32),

ĒB
SU-PBE-OT = ∫ drn(r)ε̄sr,PBE

c,md (n(r), 0, s(r), n̊2(r),μ(r)).

(35)

The performance of each of these functionals is tested in the fol-
lowing. Note that we did not define a spin-unpolarized version of the
PBE-UEG functional because it would have been significantly infe-
rior (in terms of performance) compared to the three other function-
als. Indeed, because of the lack of knowledge on the spin polarization
or on the accurate on-top pair density, such a functional would be
inaccurate, in particular, for open-shell systems. This assumption
has been numerically confirmed by calculations.

III. RESULTS
A. Computational details

We present potential energy curves of small molecules up to
the dissociation limit to investigate the performance of the basis-set
correction in regimes of both weak and strong correlations. The con-
sidered systems are the H10 linear chain with equally spaced atoms
and the N2, O2, and F2 diatomics.

The computation of the ground-state energy in Eq. (6) in a
given basis set requires approximations to the FCI energy EB

FCI and
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to the basis-set correction ĒB
[nBFCI]. For diatomics with the aug-cc-

pVDZ and aug-cc-pVTZ basis sets,78 energies are obtained using
frozen-core selected-CI calculations (using the CIPSI algorithm),
followed by the extrapolation scheme proposed by Holmes et al.
(see Refs. 79–84 for more details). All these calculations are per-
formed with the latest version of QUANTUM PACKAGE

84 and will be
labeled exFCI in the following. In the case of F2, we also use the
correlation energy extrapolated by intrinsic scaling (CEEIS)85 as an
estimate of the FCI correlation energy with the cc-pVXZ (X = D,
T, and Q) basis sets.86 The estimated exact potential energy curves
are obtained from experimental data87 for the N2 and O2 molecules
and from CEEIS calculations in the case of F2. For all geometries
and basis sets, the error with respect to the exact FCI energies is esti-
mated to be of the order of 0.5 mHa. For the three diatomics, we
performed an additional exFCI calculation with the aug-cc-pVQZ
basis set at the equilibrium geometry to obtain reliable estimates
of the FCI/CBS dissociation energy. In the case of the H10 chain,
the approximation to the FCI energies together with the estimated
exact potential energy curves is obtained from the data of Ref. 88,
where the authors performed MRCI+Q calculations with a minimal
valence active space as reference (see below for the description of the
active space).

We note that even though we use near-FCI energies in this
work, the DFT-based basis-set correction could also be applied
to any approximation to FCI such as multireference perturba-
tion theory, similar to what was done for weakly correlated sys-
tems for which the basis-set correction was applied to CCSD(T)
calculations.51

Regarding the complementary functional, we first perform full-
valence CASSCF calculations with the GAMESS-US software89 to
obtain the wave function ΨB. Then, all density-related quantities
involved in the functional [density n(r), effective spin polarization
ζ̃(r), reduced density gradient s(r), and on-top pair density n2(r)]
together with the local range-separation function μ(r) are calculated
with this full-valence CASSCF wave function. The CASSCF calcula-
tions are performed with the following active spaces: (10e, 10o) for
H10, (10e, 8o) for N2, (12e, 8o) for O2, and (14e, 8o) for F2. We note
that instead of using CASSCF wave functions for ΨB, one could of
course use the same selected-CI wave functions used for calculating
the energy, but the calculations of n2(r) and μ(r) would then be more
costly.

In addition, as the frozen-core approximation is used in all
our selected-CI calculations, we use the corresponding valence-only
complementary functionals (see Subsection II C 2). Therefore, all
density-related quantities exclude any contribution from the 1s core
orbitals, and the range-separation function follows the definition
given in Eq. (16).

It should be stressed that the computational cost of the basis-set
correction (see Appendix B) is negligible compared to the cost of the
selected-CI calculations.

B. H10 chain
The H10 chain with equally spaced atoms is a prototype of

strongly correlated systems as it consists in the simultaneous break-
ing of 10 interacting covalent σ bonds. As it is a relatively small
system, benchmark calculations at near-CBS values are available (see
Ref. 88 for a detailed study of this system).

We report in Fig. 1 the potential energy curves computed
using the cc-pVXZ (X = D, T, and Q) basis sets for different lev-
els of approximation, and the corresponding atomization energies
are reported in Table I. As a general trend, the addition of the
basis-set correction globally improves the quality of the potential
energy curves, independently of the approximation level of ĒB

[n].
In addition, no erratic behavior is found when stretching the bonds,
which shows that the present procedure (i.e., the determination of
the range-separation function and the definition of the function-
als) is robust when reaching the strong-correlation regime. In other
words, smooth potential energy curves are obtained with the present
basis-set correction. More quantitatively, the values of the atom-
ization energies are within chemical accuracy (i.e., an error below
1.4 mHa) with the cc-pVTZ basis set when using the PBE-OT
and SU-PBE-OT functionals, whereas such an accuracy is not yet
reached at the standard MRCI+Q/cc-pVQZ level of theory.

Analyzing more carefully the performance of the different types
of approximate functionals, the results show that PBE-OT and SU-
PBE-OT are very similar (the maximal difference on the atomization
energy being 0.3 mHa) and that they give slightly more accurate
results than PBE-UEG. These findings provide two important clues
on the role of the different physical ingredients included in these
functionals: (i) the explicit use of the on-top pair density originating
from the CASSCF wave function [see Eq. (32)] is preferable over the
use of the UEG on-top pair density [see Eq. (31)], which is somewhat
understandable, and (ii) removing the dependence on any kind of
spin polarization does not lead to a significant loss of accuracy, pro-
viding that one employs a qualitatively correct on-top pair density.
The latter point is crucial as it confirms that the spin polarization
in density-functional approximations essentially plays the same role
as the on-top pair density. This could have significant implications
for the construction of more robust families of density-functional
approximations within DFT.

C. Dissociation of diatomics
The N2, O2, and F2 molecules are complementary to the H10

system for the present study. The level of strong correlation in these
diatomics also increases while stretching the bonds, similar to the
case of H10, but in addition, these molecules exhibit more important
and versatile types of weak correlations due to the larger number
of electrons. Indeed, the short-range correlation effects are known
to play a strong differential effect on the computation of the atom-
ization energy at equilibrium, while the shape of the curve far from
the equilibrium geometry is governed by dispersion interactions that
are medium to long-range weak-correlation effects.5 The dispersion
interactions in H10 play a minor role on the potential energy curve
due to the much smaller number of near-neighbor electron pairs
compared to N2, O2, or F2. In addition, O2 has a triplet ground state
and is therefore a good candidate for checking the spin-polarization
dependence of the various functionals proposed here.

We report in Figs. 2–4 the potential energy curves of N2, O2,
and F2 computed at various approximation levels using the aug-
cc-pVDZ and aug-cc-pVTZ basis sets. The atomization energies for
each level of theory with different basis sets are reported in Table I.

Just as in H10, the accuracy of the atomization energies is glob-
ally improved by adding the basis-set correction, and it is remarkable
that PBE-OT and SU-PBE-OT provide again very similar results.
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FIG. 1. Potential energy curves of the H10 chain with equally spaced atoms calculated with MRCI+Q and basis-set corrected MRCI+Q using the cc-pVDZ (top), cc-pVTZ
(middle), and cc-pVQZ (bottom) basis sets. The MRCI+Q energies and the estimated exact energies have been extracted from Ref. 88.

The latter observation confirms that the dependence on the on-top
pair density allows one to remove the dependence of any kind of
spin polarization for a quite wide range of covalent bonds and also
for an open-shell system such as O2. More quantitatively, an error

below 1.0 mHa compared to the estimated exact valence-only atom-
ization energy is found for N2, O2, and F2 with the aug-cc-pVTZ
basis set using the SU-PBE-OT functional, whereas such a feat is far
from being reached within the same basis set at the near-FCI level.
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TABLE I. Atomization energies (in mHa) and associated errors (in square brackets) with respect to the estimated exact values computed at different levels of theory with various
basis sets.

System Basis set MRCI+Qa (MRCI+Q)+PBE-UEG (MRCI+Q)+PBE-OT (MRCI+Q)+SU-PBE-OT

H10 cc-pVDZ 622.1 [43.3] 642.6 [22.8] 649.2 [16.2] 649.5 [15.9]
cc-pVTZ 655.2 [10.2] 661.9 [3.5] 666.0 [−0.6] 666.0 [−0.6]
cc-pVQZ 661.2 [4.2] 664.1 [1.3] 666.4 [−1.0] 666.5 [−1.1]

Estimated exact:a 665.4

exFCI exFCI+PBE-UEG exFCI+PBE-OT exFCI+SU-PBE-OT

N2 aug-cc-pVDZ 321.9 [40.8] 356.2 [6.5] 355.5 [7.2] 354.6 [8.1]
aug-cc-pVTZ 348.5 [14.2] 361.5 [1.2] 363.5 [−0.5] 363.2 [−0.3]
aug-cc-pVQZ 356.6 [6.1] 362.8 [−0.1] 364.2 [−1.5] 364.3 [−1.6]

Estimated exact:b 362.7

exFCI exFCI+PBE-UEG exFCI+PBE-OT exFCI+SU-PBE-OT

O2 aug-cc-pVDZ 171.4 [20.5] 187.6 [4.3] 187.6 [4.3] 187.1 [4.8]
aug-cc-pVTZ 184.5 [7.4] 190.3 [1.6] 191.2 [0.7] 191.0 [0.9]
aug-cc-pVQZ 188.3 [3.6] 190.3 [1.6] 191.0 [0.9] 190.9 [1.0]

Estimated exact:b 191.9

exFCI exFCI+PBE-UEG exFCI+PBE-OT exFCI+SU-PBE-OT

F2 aug-cc-pVDZ 49.6 [12.6] 54.8 [7.4] 54.9 [7.3] 54.8 [7.4]
aug-cc-pVTZ 59.3 [2.9] 61.2 [1.0] 61.5 [0.7] 61.5 [0.7]
aug-cc-pVQZ 60.1 [2.1] 61.0 [1.2] 61.3 [0.9] 61.3 [0.9]

CEEISc CEEISc+PBE-UEG CEEISc+PBE-OT CEEISc+SU-PBE-OT

cc-pVDZ 43.7 [18.5] 51.0 [11.2] 51.0 [11.2] 50.7 [11.5]
cc-pVTZ 56.3 [5.9] 59.2 [3.0] 59.6 [2.6] 59.5 [2.7]
cc-pVQZ 59.9 [2.3] 61.3 [0.9] 61.6 [0.6] 61.6 [0.6]

Estimated exact:b 62.2

aFrom Ref. 88.
bFrom the CEEIS valence-only non-relativistic calculations of Ref. 90.
cFrom the CEEIS valence-only non-relativistic calculations of Ref. 85.

In the case of F2, it is clear that the addition of diffuse functions in
the double- and triple-ζ basis sets strongly improves the accuracy
of the results, which could have been anticipated due to the strong
breathing-orbital effect induced by the ionic valence-bond forms in
this molecule.91 It should also be noticed that when reaching the aug-
cc-pVQZ basis set for N2, the accuracy of the atomization energy
slightly deteriorates for the PBE-OT and SU-PBE-OT functionals,
but it remains, nevertheless, more accurate than the estimated FCI
atomization energy and very close to chemical accuracy.

The overestimation of the basis-set-corrected atomization
energy observed for N2 in large basis sets reveals an unbalanced
treatment between the molecule and the atom in favor of the molec-
ular system. Since the integral over r of the on-top pair density n2(r)
is proportional to the short-range correlation energy in the large-μ
limit48,60 [see Eq. (24)], the accuracy of a given approximation of the
exact on-top pair density will have a direct influence on the accuracy
of the related basis-set correction energy ĒB. To quantify the quality

of different flavors of on-top pair densities for a given system and
a given basis set B, we define the system-averaged CASSCF on-top
pair density and extrapolated on-top pair density as

⟨n2,CASSCF⟩ = ∫ drn2,CASSCF(r), (36a)

⟨n̊2,CASSCF⟩ = ∫ dr n̊2,CASSCF(r), (36b)

where n̊2,CASSCF(r) = n̊2(n2,CASSCF(r),μCASSCF(r)) [see Eq. (32)]
and μCASSCF(r) is the local range-separation function calculated with
the CASSCF wave function, and similarly, we define the system-
averaged CIPSI on-top pair density and extrapolated on-top pair
density as

⟨n2,CIPSI⟩ = ∫ drn2,CIPSI(r), (37a)

⟨n̊2,CIPSI⟩ = ∫ dr n̊2,CIPSI(r), (37b)
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FIG. 2. Potential energy curves of the N2 molecule calculated with exFCI and basis-set corrected exFCI using the aug-cc-pVDZ (top) and aug-cc-pVTZ (bottom) basis sets.
The estimated exact energies are based on a fit of experimental data and obtained from Ref. 87.

where n̊2,CISPI(r) = n̊2(n2,CIPSI(r),μCIPSI(r)) and μCIPSI(r) is the local
range-separation function calculated with the CIPSI wave function.
We also define the system-averaged range-separation parameters as

⟨μCASSCF⟩ =
1
N ∫

drnCASSCF(r) μCASSCF(r), (38a)

⟨μCIPSI⟩ =
1
N ∫

drnCIPSI(r) μCIPSI(r), (38b)

where nCASSCF(r) and nCIPSI(r) are the CASSCF and CIPSI densities,
respectively. All the CIPSI quantities have been calculated with the
largest variational wave function computed in the CIPSI calculation
with a given basis, which contains here at least 107 Slater determi-
nants. In particular, μCIPSI(r) has been calculated from Eqs. (16)–(19)
with the opposite-spin two-body density matrix Γrspq of the largest
variational CIPSI wave function for a given basis. All quantities in
Eqs. (36a)–(38a) were computed excluding all contributions from
the 1s orbitals, i.e., they are “valence-only” quantities.

We report in Table II these quantities for N2 and N for various
basis sets. One notes that the system-averaged on-top pair density

at the CIPSI level ⟨n2,CIPSI⟩ is systematically lower than its CASSCF
analog ⟨n2,CASSCF⟩, which is expected since short-range correlation,
i.e., digging the correlation hole in a given basis set at the near FCI
level, is missing from the valence CASSCF wave function. In addi-
tion, ⟨n2,CIPSI⟩ decreases in a monotonous way as the size of the basis
set increases, leading to roughly a 20% decrease from the aug-cc-
pVDZ to the aug-cc-pVQZ basis sets, whereas ⟨n2,CASSCF⟩ is almost
constant with respect to the basis set. Regarding the extrapolated
on-top pair densities, ⟨n̊2,CASSCF⟩ and ⟨n̊2,CIPSI⟩, it is interesting to
note that they are substantially lower than their non-extrapolated
counterparts, ⟨n2,CASSCF⟩ and ⟨n2,CIPSI⟩. Nevertheless, the behaviors
of ⟨n̊2,CASSCF⟩ and ⟨n̊2,CIPSI⟩ are qualitatively different: ⟨n̊2,CASSCF⟩

clearly increases when enlarging the basis set, whereas ⟨n̊2,CIPSI⟩

remains almost constant. More precisely, in the case of N2, the value
of ⟨n̊2,CASSCF⟩ increases by about 30% from the aug-cc-pVDZ to the
aug-cc-pVQZ basis sets, whereas the value of ⟨n̊2,CIPSI⟩ only fluctu-
ates within 5% for the same basis sets. The behavior of ⟨n̊2,CASSCF⟩

can be understood by noting that (i) the value of μCASSCF(r) globally
increases when enlarging the basis set (as evidenced by ⟨μCASSCF⟩)
and (ii) limμ→∞ n̊2(n2,μ) = n2 [see Eq. (32)]. Therefore, in the CBS
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FIG. 3. Potential energy curves of the O2 molecule calculated with exFCI and basis-set corrected exFCI using the aug-cc-pVDZ (top) and aug-cc-pVTZ (bottom) basis sets.
The estimated exact energies are based on a fit of experimental data and obtained from Ref. 87.

limit, μCASSCF(r)→∞ and one obtains

lim
B→CBS

⟨n̊2,CASSCF⟩ = lim
B→CBS

⟨n2,CASSCF⟩, (39)

i.e., ⟨n̊2,CASSCF⟩must increase with the size of the basis set B to even-
tually converge to limB→CBS⟨n2,CASSCF⟩, the latter limit being essen-
tially reached with the present basis sets. On the other hand, the
stability of ⟨n̊2,CIPSI⟩ with respect to the basis set is quite remarkable
and must come from the fact that (i) ⟨n2,CIPSI⟩ is a good approxi-
mation to the corresponding FCI value within the considered basis
sets and (ii) the extrapolation formula in Eq. (32) together with the
choice of μCIPSI(r) is quantitatively correct. Therefore, we expect the
calculated values of ⟨n̊2,CIPSI⟩ to be nearly converged with respect to
the basis set, and we will take the value of ⟨n̊2,CIPSI⟩ in the aug-cc-
pVQZ basis set as an estimate of the exact system-averaged on-top
pair density.

For the present work, it is important to keep in mind
that ⟨n̊2,CASSCF⟩ directly determines the basis-set correction in the
large-μ limit. More precisely, the correlation energy contribution
associated with the basis-set correction is (in absolute value)

an increasing function of ⟨n̊2,CASSCF⟩. Therefore, the error on
⟨n̊2,CASSCF⟩ with respect to the estimated exact system-averaged on-
top pair density provides an indication of the error made by the
basis-set correction for a given system and basis set. With the aug-
cc-pVQZ basis set, we have ⟨n̊2,CASSCF⟩ − ⟨n̊2,CIPSI⟩ = 0.240 for the
N2 molecule, while 2(⟨n̊2,CASSCF⟩ − ⟨n̊2,CIPSI⟩) = 0.190 for two iso-
lated N atoms. We can then conclude that the overestimation of the
system-averaged on-top pair density, and therefore of the basis-set
correction, is more important for the N2 molecule at the equilib-
rium distance than for the isolated N atoms. This probably explains
the observed overestimation of the atomization energy. To confirm
this statement, we computed the basis-set correction for both the N2
molecule at the equilibrium distance and the isolated atoms using
μCIPSI(r) and n̊2,CIPSI(r) with the aug-cc-pVTZ and aug-cc-pVQZ
basis sets. We obtained the following values for the atomization
energies: 362.12 mH with aug-cc-pVTZ and 362.15 mH with aug-cc-
pVQZ, which are indeed more accurate values than those obtained
using μCASSCF(r) and n̊2,CASSCF(r).

Finally, regarding now the performance of the basis-set correc-
tion along the whole potential energy curves reported in Figs. 2–4,
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FIG. 4. Potential energy curves of the F2 molecule calculated with exFCI and basis-set corrected exFCI using the aug-cc-pVDZ (top) and aug-cc-pVTZ (bottom) basis sets.
The estimated exact energies are based on a fit of experimental data and obtained from Ref. 87.

it is interesting to note that it fails to provide a noticeable improve-
ment far from the equilibrium geometry. Acknowledging that the
weak-correlation effects in these regions are dominated by dis-
persion interactions that are long-range effects, the failure of the
present approximations for the complementary functional can be

understood easily. Indeed, the whole scheme designed here is based
on the physics of correlation near the electron–electron coalescence
point: the local range-separation function μ(r) is based on the value
of the effective electron–electron interaction at coalescence and the
ECMD functionals are suited for short-range correlation effects.

TABLE II. System-averaged on-top pair density ⟨n2⟩, extrapolated on-top pair density ⟨n̊2⟩, and range-separation parameter
⟨μ⟩ (all in atomic units) calculated with full-valence CASSCF and CIPSI wave functions (see the text for details) for N2 and
N in the aug-cc-pVXZ basis sets (X = D, T, and Q). All quantities were computed within the frozen-core approximation, i.e.,
excluding all contributions from the 1s orbitals.

System Basis set ⟨n2,CASSCF⟩ ⟨n̊2,CASSCF⟩ ⟨n2,CIPSI⟩ ⟨n̊2,CIPSI⟩ ⟨μCASSCF⟩ ⟨μCIPSI⟩

N2 aug-cc-pVDZ 1.175 42 0.659 66 1.027 92 0.582 28 0.946 0.962
aug-cc-pVTZ 1.183 24 0.770 12 0.922 76 0.610 74 1.328 1.364
aug-cc-pVQZ 1.184 84 0.840 12 0.838 66 0.599 82 1.706 1.746

N aug-cc-pVDZ 0.344 64 0.196 22 0.254 84 0.146 86 0.910 0.922
aug-cc-pVTZ 0.346 04 0.226 30 0.223 44 0.148 28 1.263 1.299
aug-cc-pVQZ 0.346 14 0.246 66 0.212 24 0.151 64 1.601 1.653
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Therefore, the failure of the present basis-set correction to describe
dispersion interactions is theoretically expected. We hope to report
further on this in the near future.

IV. CONCLUSION
In the present paper, we have extended the recently proposed

DFT-based basis-set correction to strongly correlated systems. We
have applied the method to the H10, N2, O2, and F2 molecules up
to the dissociation limit at the near-FCI level in increasingly large
basis sets and investigated how the basis-set correction affects the
convergence toward the CBS limit of the potential energy curves of
these molecular systems.

The density-based basis-set correction relies on three aspects:
(i) the definition of an effective non-divergent electron–electron
interaction obtained from the expectation value over a wave func-
tion ΨB of the Coulomb electron–electron interaction projected
into an incomplete basis set B, (ii) the fit of this effective inter-
action with the long-range interaction used in RSDFT, and (iii)
the use of a short-range, complementary functional borrowed from
RSDFT. In the present paper, we investigated (i) and (iii) in the con-
text of strong correlation and focused on potential energy curves
and atomization energies. More precisely, we proposed a new
scheme to design functionals fulfilling spin-multiplet degeneracy
and size consistency. To fulfill such requirements, we proposed to
use CASSCF wave functions leading to size-consistent energies, and
we developed functionals using only Sz-independent density-like
quantities.

The development of new Sz-independent and size-consistent
functionals has led us to investigate the role of two related quan-
tities: the spin polarization and the on-top pair density. One
important result of the present study is that by using func-
tionals explicitly depending on the on-top pair density, one can
eschew its spin-polarization dependence without loss of accu-
racy. This avoids the commonly used effective spin polarization
originally proposed in Ref. 64, which has the disadvantage of
possibly becoming complex-valued in the multideterminant case.
From a more fundamental aspect, this confirms that, in a DFT
framework, the spin polarization mimics the role of the on-top
pair density. Consequently, we believe that one could potentially
develop new families of density-functional approximations, where
the spin polarization is abandoned and replaced by the on-top pair
density.

Regarding the results of the present approach, the basis-set cor-
rection systematically improves the near-FCI calculations in a given
basis set. More quantitatively, it is shown that with only triple-ζ qual-
ity basis sets, chemically accurate atomization energies are obtained
for all systems, whereas the uncorrected near-FCI results are far
from this accuracy within the same basis set.

In addition, it is shown that the basis-set correction gives
substantial differential contribution to potential energy curves
close to the equilibrium geometries, but at long internuclear dis-
tances, it cannot recover the dispersion interaction energy missing
because of the basis-set incompleteness. This behavior is actually
expected as dispersion interactions are of long-range nature, and the
present approach is designed to recover only short-range correlation
effects.

APPENDIX A: SIZE CONSISTENCY OF THE BASIS-SET
CORRECTION
1. Sufficient condition for size consistency

The basis-set correction is expressed as an integral in real space,

ĒB
[n, ζ,n2,μ] = ∫ drn(r)ε̄sr,PBE

c,md (n(r), ζ(r), s(r),n2(r),μ(r)),

(A1)

where all the local quantities n(r), ζ(r), s(r),n2(r),μ(r) are
obtained from the same wave function Ψ. In the limit of two non-
overlapping and non-interacting dissociated fragments A + B, this
integral can be rewritten as the sum of the integral over the region
ΩA and the integral over the region ΩB,

ĒB
A+B[n, ζ,n2,μ] = ∫

ΩA

drn(r)ε̄sr,PBE
c,md (n(r), ζ(r), s(r),n2(r),μ(r))

+ ∫
ΩB

drn(r)ε̄sr,PBE
c,md (n(r), ζ(r), s(r),n2(r),μ(r)).

(A2)

Therefore, a sufficient condition to obtain size consistency is that
all the local quantities n(r), ζ(r), s(r),n2(r),μ(r) are intensive, i.e.,
they locally coincide in the supersystem A + B and in each isolated
fragment X = A or B. Hence, we must have, for r ∈ΩX,

nA+B(r) = nX(r), (A3a)

ζA+B(r) = ζX(r), (A3b)

sA+B(r) = sX(r), (A3c)

n2,A+B(r) = n2,X(r), (A3d)

μA+B(r) = μX(r), (A3e)

where the left-hand-side quantities are for the supersystem and the
right-hand-side quantities are for an isolated fragment. Such condi-
tions can be difficult to fulfill in the presence of degeneracies since
system X can be in a different mixed state (i.e., ensemble) in the
supersystem A + B and in the isolated fragment.92 Here, we will con-
sider the simple case, where the wave function of the supersystem is
multiplicatively separable, i.e.,

∣ΨA+B⟩ = ∣ΨA⟩⊗ ∣ΨB⟩, (A4)

where⊗ is the antisymmetric tensor product. In this case, it is easy to
show that Eqs. (A3a)–(A3c) are valid, as well known, and it remains
to show that Eqs. (A3d) and (A3e) are also valid. Before showing
this, we note that even though we do not explicitly consider the case
of degeneracies, the lack of size consistency that could arise from
spin-multiplet degeneracies can be avoided by the same strategy
used for imposing the energy independence on Sz , i.e., by using the
effective spin polarization ζ̃(n(r),n2(r)) or a zero spin polarization
ζ(r) = 0. Moreover, for the systems treated in this work, the lack of
size consistency that could arise from spatial degeneracies (coming
from atomic p states) can also be avoided by selecting the same state
in the supersystem and in the isolated fragment. For example, for the
F2 molecule, the CASSCF wave function dissociates into the atomic
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configuration p2
xp2

yp1
z for each fragment, and we thus choose the

same configuration for the calculation of the isolated atom. The same
argument applies to the N2 and O2 molecules. For other systems, it
may not be always possible to do so.

2. Intensivity of the on-top pair density and the local
range-separation function

The on-top pair density can be written in an orthonormal
spatial orbital basis set {ϕp(r)} as

n2(r) = ∑
pqrs∈B

ϕp(r)ϕq(r)Γrspqϕr(r)ϕs(r), (A5)

with Γrspq = 2⟨Ψ∣â†
r↓ â

†
s↑ âq↑ âp↓ ∣Ψ⟩. As the summations run over all

orbitals in the basis set B, n2(r) is invariant to orbital rotations and
can thus be expressed in terms of localized orbitals. For two non-
overlapping fragments A + B, the basis set can then be partitioned
into orbitals localized on fragment A and orbitals localized on B, i.e.,
B = BA ∪ BB. Therefore, we see that the on-top pair density of the
supersystem A + B is additively separable,

n2,A+B(r) = n2,A(r) + n2,B(r), (A6)

where n2,X(r) is the on-top pair density of fragment X,

n2,X(r) = ∑
pqrs∈BX

ϕp(r)ϕq(r)Γrspqϕr(r)ϕs(r), (A7)

in which the elements Γrspq with orbital indices restricted to fragment
X are Γrspq = 2⟨ΨA+B∣â†

r↓ â
†
s↑ âq↑ âp↓ ∣ΨA+B⟩ = 2⟨ΨX∣â†

r↓ â
†
s↑ âq↑ âp↓ ∣ΨX⟩,

owing to the multiplicative structure of the wave function [see
Eq. (A4)]. This shows that the on-top pair density is a local intensive
quantity.

The local range-separation function is defined as, for n2(r) ≠ 0,

μ(r) =
√

π
2

f (r, r)
n2(r)

, (A8)

where

f (r, r) = ∑

pqrstu∈B
ϕp(r)ϕq(r)Vrs

pqΓ
tu
rsϕt(r)ϕu(r). (A9)

Again, f (r, r) is invariant to orbital rotations and can be expressed
in terms of orbitals localized on fragments A and B. In the limit
of infinitely separated fragments, the Coulomb interaction van-
ishes between A and B, and therefore, any two-electron integral Vrs

pq
involving orbitals on both A and B vanishes. We thus see that the
quantity f (r, r) of the supersystem A + B is additively separable,

fA+B(r, r) = fA(r, r) + fB(r, r), (A10)

with

fX(r, r) = ∑

pqrstu∈BX

ϕp(r)ϕq(r)Vrs
pqΓ

tu
rsϕt(r)ϕu(r). (A11)

So, f (r, r) is a local intensive quantity. As a consequence, the local
range-separation function of the supersystem A + B is

μA+B(r) =
√

π
2

fA(r, r) + fB(r, r)
n2,A(r) + n2,B(r)

, (A12)

which implies
μA+B(r) = μX(r) if r ∈ ΩX, (A13)

where μX(r) = (
√

π/2)fX(r, r)/n2,X(r). The local range-separation
function is thus a local intensive quantity.

We can therefore conclude that if the wave function of the
supersystem A + B is multiplicative separable, all local quanti-
ties used in the basis-set correction functional are intensive, and
therefore, the basis-set correction is size consistent.

APPENDIX B: COMPUTATIONAL COST
OF THE BASIS-SET CORRECTION FOR A CASSCF
WAVE FUNCTION

The computational cost of the basis-set correction is deter-
mined by the calculation of the on-top pair density n2(r) and the
local range-separation function μ(r) on the real-space grid. For a
general multideterminant wave function, the computational cost is
of order O(NgridN4

B), where Ngrid is the number of grid points and
NB is the number of basis functions.51 For a CASSCF wave function,
a significant reduction in the scaling of the computational cost can
be achieved.

1. Computation of the on-top pair density
For a CASSCF wave function Ψ, the occupied orbitals can be

partitioned into a set of active orbitals A and a set of inactive (doubly
occupied) orbitals I. The CASSCF on-top pair density can then be
written as

n2(r) = n2,A(r) + nA(r)nI(r) +
nI(r)2

2
, (B1)

where

n2,A(r) = ∑
pqrs∈A

ϕp(r)ϕq(r)Γrspqϕr(r)ϕs(r), (B2a)

nA(r) = ∑
pq∈A

ϕp(r)ϕq(r)⟨Ψ∣â†
p↑ âq↑ + â†

p↓ âq↓ ∣Ψ⟩, (B2b)

nI(r) = 2∑
p∈I

ϕp(r)2 (B2c)

are the purely active part of the on-top pair density, the active part
of the density, and the inactive part of the density, respectively. The
leading computational cost is the evaluation of n2,A(r) on the grid,
which, according to Eq. (B2a), scales as O(NgridN4

A), where NA is
the number of active orbitals that is much smaller than the number
of basis functions NB.

2. Computation of the local range-separation function
In addition to the on-top pair density, the computation of μ(r)

needs the computation of f (r, r) [see Eq. (A9)] at each grid point. It
can be factorized as

f (r, r) = ∑
rs∈B

Vrs
(r) Γrs(r), (B3)

where

Vrs
(r) = ∑

pq∈B
Vrs
pqϕp(r)ϕq(r), (B4a)

Γrs(r) = ∑
pq∈B

Γpqrs ϕp(r)ϕq(r). (B4b)
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For a general multideterminant wave function, the computational
cost of f (r, r) thus scales as O(NgridN4

B).
In the case of a CASSCF wave function, Γpqrs vanishes if one

index p, q, r, s does not belong to the set of inactive or active occu-
pied orbitals I ∪A. Therefore, at a given grid point, the number of
non-zero elements Γrs(r) is only at most (NI + NA)

2, which is usu-
ally much smaller than N2

B. As a consequence, one can also restrict
the sum in the calculation of

f (r, r) = ∑
rs∈I∪A

Vrs
(r) Γrs(r). (B5)

The overall computational cost is dominated by that of Vrs(r),
which scales as O(Ngrid(NI + NA)

2N2
B), which is much smaller than

O(NgridN4
B).
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