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ABSTRACT
We introduce an approximation to the short-range correlation energy functional with multideterminantal reference involved in a
variant of range-separated density-functional theory. This approximation is a local functional of the density, the density gradient,
and the on-top pair density, which locally interpolates between the standard Perdew-Burke-Ernzerhof correlation functional
at a vanishing range-separation parameter and the known exact asymptotic expansion at a large range-separation parameter.
When combined with (selected) configuration-interaction calculations for the long-range wave function, this approximation gives
accurate dissociation energy curves of the H2, Li2, and Be2 molecules and thus appears as a promising way to accurately account
for static correlation in range-separated density-functional theory.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5082638

I. INTRODUCTION

Range-separated density-functional theory (RS-DFT)
(see, e.g., Refs. 1 and 2) is an alternative to Kohn-Sham
density-functional theory (KS-DFT)3 for electronic-structure
calculations of atoms, molecules, and solids. It consists in
rigorously combining a wave-function-type calculation for
the long-range (lr) part of the Coulomb electron-electron
interaction with a density functional for the complemen-
tary short-range (sr) part of the interaction. This permits
to describe long-range electron correlation accurately and
short-range electron correlation compactly with a fast basis-
set convergence.4 In particular, it has been shown that
explicit static correlation effects can be effectively taken
into account in the long-range part of the calculation by
using methods such as configuration interaction (CI),5–7 mul-
ticonfiguration self-consistent field,8–10 multireference per-
turbation theory,11 density-matrix functional theory,12–14
density-matrix renormalization group,15 or pair coupled-
cluster doubles.16

A major limitation to the accuracy of RS-DFT is the
semilocal density-functional approximations used for the
short-range exchange-correlation energy,2,17–21 which still
suffer from self-interaction (or fractional-charge) errors and
static-correlation (or fractional-spin) errors.22 An attractive
remedy to this problem is to calculate exactly a large portion of
the short-range exchange-correlation energy using the multi-
determinant (md) wave function naturally available in RS-DFT,
leaving only a residual short-range correlation energy func-
tional to be approximated.23,24 In particular, this permits to
drastically reduce self-interaction errors since the exchange
energy is now calculated with a wave function and not with
an approximate exchange density functional. This strategy has
been pursued in various RS-DFT approaches.25–32 However,
only a local-density approximation (LDA) for this short-range
correlation energy functional with multideterminantal refer-
ence was available so far,20,24 which tends to substantially
overcorrelate.

In the present work, we develop an approximation
for this short-range multideterminant correlation energy
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functional which uses the density, the density gradient, and
the on-top pair density. The development of correlation func-
tionals depending on the on-top pair density extracted from
a multideterminant wave function has started long ago33,34
and is still an active area of research (see, e.g., Ref. 35).
An important motivation for using the on-top pair density
of a multideterminant wave function is that it clearly con-
tains information about bond dissociation (see, e.g., Ref. 36),
without having to artificially break spin symmetry. In prac-
tice, most of the studies in this domain introduce the
on-top pair density via effective spin densities which are fed
into standard spin-dependent exchange and/or correlation
density functionals.16,37–47 This is justified by the alterna-
tive interpretation of spin-density-functional theory,48,49 in
which the spin densities are viewed as mere intermediate
quantities for reproducing the total density and the on-top
pair density. Here, instead of using effective spin densities,
we introduce the dependence on the on-top pair density by
exploiting the known exact asymptotic behavior of the short-
range multideterminant correlation energy functional in the
limit where the electron-electron interaction is very short
ranged.20,24

The paper is organized as follows: In Sec. II, we briefly
review RS-DFT, including the approach involving the short-
range correlation functional with multideterminant reference,
and develop a new approximation for this functional. After
giving computational details in Sec. III, in particular, on the
selected CI method that we use for the long-range wave func-
tion, we discuss in Sec. IV the results concerning the conver-
gence with respect to the number of determinants on the Ne
atom and the Be2 molecule, the dependence on the range-
separation parameter on the He and C atoms and the H2
molecule near dissociation, and the dissociation energy curves
of the H2, Li2, and Be2 molecules. Finally, Sec. V summarizes
our conclusions.

II. THEORY
A. Range-separated density-functional theory

The exact ground-state energy of an N-electron system
with nuclei-electron potential vne(r) can be expressed by the
following minimization over N-representable densities n:50,51

E0 = min
n

{
F[n] +

∫
vne(r)n(r)dr

}
, (1)

with the standard constrained-search universal density func-
tional

F[n] = min
Ψ→n
〈Ψ |T̂ + Ŵee |Ψ〉, (2)

where T̂ and Ŵee are the kinetic-energy and Coulomb
electron-electron interaction operators, respectively. The
minimizing multideterminant wave function in Eq. (2) will be
denoted by Ψ[n].

In RS-DFT, the universal density functional is decom-
posed as1,2

F[n] = Flr,µ[n] + Ēsr,µ
Hxc[n], (3)

where Flr,µ[n] is a long-range (lr) universal density functional

Flr,µ[n] = min
Ψ→n
〈Ψ |T̂ + Ŵlr,µ

ee |Ψ〉, (4)

and Ē sr,µ
Hxc [n] is the complementary short-range (sr) Hartree-

exchange-correlation (Hxc) density functional. In Eq. (4), Ŵlr
ee

is the long-range electron-electron interaction defined as

Ŵlr,µ
ee =

1
2

∫∫
wlr,µ

ee (r12)n̂2(r1, r2)dr1dr2, (5)

with the error-function potential wlr,µ
ee (r12) = erf(µ r12)/r12

(expressed with the interelectronic distance r12 = ||r1 − r2||) and
the pair-density operator n̂2(r1, r2) = n̂(r1)n̂(r2) − δ(r1 − r2)n̂(r1),
where n̂(r) is the density operator. The range-separation
parameter µ corresponds to an inverse distance controlling
the range of the separation. For a given density, we will denote
by Ψµ[n] the minimizing multideterminant wave function in
Eq. (4). Inserting the decomposition of Eq. (3) into Eq. (1),
and recomposing the two-step minimization into a single one,
leads to the following expression for the exact ground-state
electronic energy:

E0 = min
Ψ

{
〈Ψ |T̂ + Ŵlr,µ

ee + V̂ne |Ψ〉 + Ēsr,µ
Hxc[nΨ]

}
, (6)

where the minimization is done over normalized N-electron
multideterminant wave functions, V̂ne = ∫ vne(r)n̂(r)dr, and nΨ
refers to the density of Ψ, i.e., nΨ(r) = 〈Ψ |n̂(r) |Ψ〉. The mini-
mizing multideterminant wave function Ψµ in Eq. (6) can be
determined by the self-consistent eigenvalue equation

Ĥµ[nΨµ ]��Ψµ
〉
= Eµ ��Ψµ

〉
, (7)

with the long-range interacting Hamiltonian

Ĥµ[nΨµ ] = T̂ + Ŵlr,µ
ee + V̂ne + ˆ̄Vsr,µ

Hxc [nΨµ ], (8)

where ˆ̄Vsr,µ
Hxc [n] = ∫ δĒ

sr,µ
Hxc[n]/δn(r) n̂(r)dr is the complementary

short-range Hartree-exchange-correlation potential opera-
tor. Note that Ψµ is not the exact physical ground-state wave
function but only an effective wave function. However, its
density nΨµ is the exact physical ground-state density. Once
Ψµ has been calculated, the exact electronic ground-state
energy is obtained by

E0 = 〈Ψ
µ |T̂ + Ŵlr,µ

ee + V̂ne |Ψ
µ〉 + Ēsr,µ

Hxc[nΨµ ]. (9)

Note that, for µ = 0, the long-range interaction vanishes,
wlr,µ=0

ee (r12) = 0, and thus RS-DFT reduces to standard KS-DFT.
For µ → ∞, the long-range interaction becomes the standard
Coulomb interaction, wlr,µ→∞

ee (r12) = 1/r12, and thus, RS-DFT
reduces to standard wave-function theory (WFT).

In principle, Eq. (7) should be solved at the full-
configuration-interaction (FCI) level in a complete one-
electron basis set. In practice, however, for typical
values of the range-separation parameter used (around
µ = 0.5 bohr−1),8,52 Ĥµ[nΨµ ] contains only a non-diverging soft
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long-range electron-electron interaction, implying that the
wave function Ψµ does not have an electron-electron cusp53
and has a fast convergence with respect to the num-
ber of determinants or with respect to the size of the
one-electron basis.4 One can then accurately solve Eq. (7)
using efficient truncated or selected CI approaches, such
as the configuration interaction perturbatively selected iter-
atively (CIPSI) method54–66 (see Sec. III), with relatively
small basis sets. The resulting compact wave function Ψµ

will accurately include the long-range electron correlation
effects.

With regard to the short-range density functional, it is
usually decomposed into three contributions

Ēsr,µ
Hxc[n] = Esr,µ

H [n] + Esr,µ
x [n] + Ēsr,µ

c [n], (10)

where Esr,µ
H [n] is the short-range Hartree energy functional

Esr,µ
H [n] =

1
2

∫∫
wsr,µ

ee (r12)n(r1)n(r2)dr1dr2, (11)

with the short-range electron-electron interaction wsr,µ
ee (r12)

= 1/r12 −w
lr,µ
ee (r12), and Esr,µ

x [n] and Ēsr,µ
c [n] are the short-range

exchange and correlation energy functionals

Esr,µ
x [n] = 〈ΦKS[n] |Ŵsr,µ

ee |Φ
KS[n]〉 − Esr,µ

H [n], (12)

Ēsr,µ
c [n] = Ēsr,µ

Hxc[n] − 〈ΦKS[n] |Ŵsr,µ
ee |Φ

KS[n]〉, (13)

defined with the Kohn-Sham (KS) single-determinant wave
function ΦKS[n] = Ψµ=0[n] and the short-range electron-
electron interaction operator

Ŵsr,µ
ee =

1
2

∫∫
wsr,µ

ee (r12)n̂2(r1, r2)dr1dr2. (14)

Whereas Esr,µ
H [n] is calculated exactly, approximations need

to be used for Esr,µ
x [n] and Ēsr,µ

c [n]. In this work, we use the
short-range version of the Perdew-Burke-Ernzerhof (PBE)67
exchange and correlation functionals of Ref. 21 (see also
Refs. 18 and 19) which takes the form

Ēsr,µ,PBE
x/c [n] =

∫
ēsr,µ,PBE

x/c (n(r),∇n(r)) dr. (15)

It has been shown that such semi-local density-functional
approximations become more accurate as the range of the
electron-electron interaction is reduced.2 Nevertheless, for
the values of the range-separation parameter commonly used,
the short-range PBE exchange and correlation density func-
tionals still contain substantial self-interaction and static-
correlation errors.22

B. Short-range correlation energy functional
with multideterminant reference

The definition of the short-range correlation energy
functional in Eq. (13) is based on the KS single-determinant
wave function ΦKS[n]. In RS-DFT, it is in fact more
natural to define another short-range correlation energy

functional based on the multideterminant (md) wave function
Ψµ[n]23,24

Ēsr,µ
c,md[n] = Ēsr,µ

Hxc[n] − 〈Ψµ[n] |Ŵsr,µ
ee |Ψ

µ[n]〉. (16)

In lieu of the standard expression of the ground-state energy
in the context of RS-DFT using only the long-range electron-
electron interaction in the expectation value over the wave
function Ψµ as described by Eq. (9), we can now easily include
the full-range interaction in the expectation value by writing
the exact ground-state electronic energy as

E0 = 〈Ψ
µ |Ĥ |Ψµ〉 + Ēsr,µ

c,md[nΨµ ], (17)

where Ĥ = T̂ + Ŵee + V̂ne is the complete electronic Hamil-
tonian. This allows one to extract as much information as
possible from the wave function Ψµ by calculating exactly
the short-range Hartree and “exchange” energies related to
it, i.e., the term 〈Ψµ |Ŵsr,µ

ee |Ψ
µ〉. Since the wave function Ψµ

is obtained without considering the short-range component
of the electron-electron interaction, some short-range cor-
relation is still missing in 〈Ψµ |Ĥ|Ψµ〉 and must be recov-
ered by the complementary multideterminant short-range
correlation energy functional Ēsr,µ

c,md[n]. Obviously, in prac-
tice, this functional must be approximated, but calculat-
ing the energy via Eq. (17) instead of Eq. (9) reduces the
demand put on density-functional approximations. In partic-
ular, since in Eq. (17) the whole exchange energy is calculated
with a wave function and not with an approximate exchange
density functional, we expect to eliminate most of the self-
interaction errors. We note that, contrary to the expres-
sion in Eq. (9), the energy expression in Eq. (17) is not vari-
ational with respect to Ψµ . Even though it is possible to
formulate a self-consistent version of Eq. (17) via a multi-
determinant extension of the optimized-effective-potential
(OEP) approach,24,25 we do not consider this possibility in this
work.

In order to construct an approximation for Ēsr,µ
c,md[n], we

now study two exact conditions on this functional. For this, it
is convenient to express the functional Ēsr,µ

c,md[n] in terms of the

original functional Ēsr,µ
c [n], using Eqs. (13) and (16),

Ēsr,µ
c,md[n] = Ēsr,µ

c [n] + ∆lr−sr,µ[n], (18)

where ∆lr-sr,µ[n] is a mixed long-range/short-range quantity

∆
lr−sr,µ[n] = 〈ΦKS[n] |Ŵsr,µ

ee |Φ
KS[n]〉 − 〈Ψµ[n] |Ŵsr,µ

ee |Ψ
µ[n]〉. (19)

We expect for most systems that ∆lr-sr,µ ≥ 0, i.e., |Ēsr,µ
c,md |

≤ |Ēsr,µ
c |.
The first condition is for µ = 0. In this case, since the RS-

DFT wave function reduces to the KS wave function, Ψµ=0[n]
= ΦKS[n], the short-range multideterminant correlation func-
tional reduces to the usual KS correlation functional

Ē sr,µ=0
c,md [n] = Ē sr,µ=0

c [n] = EKS
c [n]. (20)

The second condition is for µ→∞. In this limit, the asymptotic
expansion of Ēsr,µ

c [n] is known to be2,53
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Ēsr,µ
c [n] =

π

2µ2

∫
n2,c(r, r)dr +

2
√

2π
3µ3

∫
n2(r, r)dr + O

(
1
µ4

)
, (21)

where n2(r, r) = 〈Ψ[n] |n̂2(r, r) |Ψ[n]〉 is the Coulombic on-top
pair density (i.e., the on-top pair density associated with the
full-range wave function Ψ[n]) and n2,c(r, r) = n2(r, r) − n2,KS(r,
r) is its correlation contribution defined with respect to the
KS on-top pair density n2,KS(r, r) = 〈ΦKS[n] |n̂2(r, r) |ΦKS[n]〉.
The asymptotic expansion of ∆lr-sr,µ[n] for µ → ∞ can be
obtained by generalizing the expansion given in the case of
the homogeneous electron gas in Ref. 20, leading to

∆
lr−sr,µ[n] = −

π

2µ2

∫
n2,c(r, r)dr

−
2
√
π(2
√

2 − 1)
3µ3

∫
n2(r, r)dr + O

(
1
µ4

)
. (22)

The terms in 1/µ2 in Eqs. (21) and (22) cancel each other, and
we get the asymptotic expansion of Ēsr,µ

c,md[n] for µ →∞

Ēsr,µ
c,md[n] =

2
√
π(1 −

√
2)

3µ3

∫
n2(r, r)dr + O

(
1
µ4

)
. (23)

The short-range multideterminant correlation functional
Ēsr,µ

c,md[n] goes to zero as 1/µ3 when µ → ∞, i.e., faster than

the original short-range correlation functional Ēsr,µ
c [n] of RS-

DFT. This is not a surprise since Ēsr,µ
c,md[n] accounts for a smaller

part of the correlation energy than Ēsr,µ
c [n]. We thus see that,

because of the local nature of the short-range interaction for
a large value of µ, the on-top pair density n2(r, r) appears nat-
urally as a key ingredient in the short-range multideterminant
correlation functional Ēsr,µ

c,md[n].

C. Approximations for the short-range
multideterminant correlation functional Ēsr,µ

c,md
[n]

Until now, the only approximation available for the func-
tional Ēsr,µ

c,md[n] was the short-range LDA (srLDA) approxima-
tion20,24

Ēsr,µ,LDA
c,md [n] =

∫
ēsr,µ,LDA

c,md (n(r)) dr, (24)

where ēsr,µ,LDA
c,md (n) is the energy density extracted from the

homogeneous electron gas for which a parametrization is
given in Ref. 20. Unfortunately, this srLDA approximation
tends to give substantially too negative correlation ener-
gies for small values of µ (and in particular, for the values
commonly used, i.e., around µ = 0.5 bohr−1).24,25

Here, we construct a new approximation for the func-
tional Ēsr,µ

c,md[n] based on the two exact conditions in Eqs. (20)
and (23). We propose a local interpolation between the stan-
dard PBE correlation functional at µ = 0 (of course, any
other generalized-gradient approximation to the KS correla-
tion functional could be used) and the leading term of the
asymptotic expansion of Ēsr,µ

c,md[n] for µ → ∞. The result-
ing approximation, referred to as “srPBEontop,” is a local

functional of the density, the density gradient, and the on-top
pair density

Ēsr,µ,PBEontop
c,md [n] =

∫
ēsr,µ,PBEontop

c,md (n(r),∇n(r),n2(r, r)) dr, (25)

where the energy density is taken as

ēsr,µ,PBEontop
c,md (n,∇n,n2) =

ePBE
c (n,∇n)

1 + β(n,∇n,n2)µ3
, (26)

which reduces to the standard PBE correlation energy density
ePBE

c (n,∇n) for µ = 0. In order to recover the correct large-µ
behavior in Eq. (23), β(n, ∇n, n2) is taken as

β(n,∇n,n2) =
3 ePBE

c (n,∇n)

2
√
π(1 −

√
2)n2

. (27)

However, there is one difficulty with using the approximation
in Eq. (25): the Coulombic on-top pair density n2(r, r) is not
available in RS-DFT. Instead, what is available is the on-top
pair density of the wave function Ψµ obtained with a long-
range electron-electron interaction: nµ2 (r, r) = 〈Ψµ |n̂2(r, r) |Ψµ〉.
Fortunately, the Coulombic on-top pair density n2(r, r) can be
extrapolated from the long-range on-top pair density nµ2 (r, r),
as shown in Ref. 53. The extrapolation is based on the asymp-
totic expansion of nµ2 (r, r) for µ →∞53

nµ2 (r, r) = n2(r, r)
(
1 +

2
√
πµ

)
+ O

(
1
µ2

)
, (28)

which, after inversion, gives the following estimation of the
Coulombic on-top pair density:

n2(r, r) ≈ nµ2 (r, r)
(
1 +

2
√
πµ

)−1

. (29)

Obviously, the Coulombic on-top pair density n2(r, r) is smaller
than the long-range one nµ2 (r, r). Since the latter is obtained
with a reduced electron-electron repulsion, the probability of
finding two electrons at the same point of space is larger. Note
that, in the limit µ = 0, the extrapolation formula in Eq. (29) just
unphysically gives n2(r, r) = 0 for all systems. However, this is
not a problem since in the srPBEontop functional of Eq. (25)
the on-top pair density n2(r, r) has an effect only for not too
small values of µ. In Ref. 53, another extrapolation method
based on the pair-distribution function of the homogeneous
electron gas was also proposed. We do not consider this lat-
ter extrapolation in the present work since we have found that
the simple one in Eq. (29) gives satisfying results.

For one-electron systems, the on-top pair density n2(r, r)
or nµ2 (r, r) vanishes, and consequently, from Eqs. (26) and (27),
the srPBEontop correlation energy correctly vanishes as well.
In other words, the srPBEontop correlation functional is self-
interaction free for one-electron systems. In many-electron
systems, we expect the same behavior in spatial regions of
one-electron character.

III. COMPUTATIONAL DETAILS
We have implemented the RS-DFT approach, including

the short-range multideterminant correlation functionals, in
the software QUANTUM PACKAGE.68
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In practice, we first perform calculations with the self-
consistent RS-DFT approach of Eq. (6) using the srPBE
approximation of Ref. 21 for the short-range exchange-
correlation functional Ēsr,µ

xc [n]. We calculate the multide-
terminant wave function Ψµ by solving Eq. (7) at the
FCI or CIPSI level (see below) using Hartree-Fock orbitals.
After a FCI or CIPSI calculation, the density nΨµ enter-
ing the short-range Hartree-exchange-correlation potential
ˆ̄Vsr,µ

Hxc [nΨµ ] in Eq. (8) is updated and the procedure is iter-
ated to achieve convergence with respect to the density
(with an energy threshold of 10−4 hartree). Depending on the
type of long-range CI calculation used, we will refer to this
method as “lrFCI+srPBE” or “lrCIPSI+srPBE,” or generically as
“lrCI+srPBE.”

We then perform calculations according to Eq. (17)
with the previously calculated wave function Ψµ and
using either the srLDA approximation of Eq. (24) or
the srPBEontop approximation of Eq. (25) for the short-
range multideterminant correlation functional Ēsr,µ

c,md[n]. We
will refer to these calculations as “CI+Ec,md(srLDA)” and
“CI+Ec,md(srPBEontop),” where again CI can stand for either
FCI or CIPSI.

We now briefly describe the CIPSI method as used here.
The CIPSI method54–66 is a selected CI which allows one to
perform wave-function calculations at the near FCI level by
keeping only the most important Slater determinants in a
given FCI space. Starting from an initial guess for the wave
function, ���Ψ

µ,(0)
〉
=

∑
I∈R cµI |I〉, where |I〉 are Slater determinants

in the reference variational space R, the importance of a given
Slater determinant |K〉 outside R is estimated using Epstein-
Nesbet multireference perturbation theory. The second-order
correction on the eigenvalue associated with the reference
wave function Eµ,(0) arising from the Slater determinant |K〉
is given by

Eµ,(2)
K =

|〈Ψµ,(0) |Ĥµ |K〉|2

Eµ,(0) − 〈K |Ĥµ |K〉
. (30)

The variational space R is then enlarged by including the
determinants associated with the largest perturbative correc-
tions, and the procedure is iterated. In practice, the size of

the variational space is doubled at each iteration until the
magnitude of the total second-order Epstein-Nesbet correc-
tion on the eigenvalue, Eµ,(2) =

∑
K Eµ,(2)

K , is smaller than a
given threshold (10−5 hartree or smaller). At a given iteration
of the loop over the density nΨµ (entering the short-range

potential ˆ̄Vsr,µ
Hxc [nΨµ ]), we use the wave function obtained at the

previous iteration as the starting guess for the CIPSI calcu-
lation. Thus, the variational space considered at the ith iter-
ation is included in the variational space considered at the
(i + 1)th iteration, R(i) ⊂ R(i+1). Note that in order to fully
couple the RS-DFT calculation with the CIPSI method, we
should then add a perturbative correction to the total energy
in Eq. (9) or (17). However, in the present study, since all
CIPSI calculations were iterated until we obtained a very small
Eµ,(2), we can neglect this perturbative correction to the total
energy in comparison to the threshold used for converging the
density.

All calculations were performed using correlation-
consistent Dunning basis sets69–71 specified later.

IV. RESULTS AND DISCUSSION
A. Convergence with respect to the number
of determinants

We first report in Fig. 1 a comparison of the conver-
gence of the standard CIPSI and lrCIPSI+srPBE total vari-
ational energies as a function of the number of selected
determinants for the Ne atom and for the Be2 molecule using
the aug-cc-pCVQZ and aug-cc-pCVTZ basis sets, respec-
tively, and correlating all the electrons in the CI calculations.
For lrCIPSI+srPBE we use a range-separation parameter of
µ = 0.5 bohr−1. This figure clearly illustrates that the cuspless
long-range wave function Ψµ of RS-DFT is much more com-
pact than its Coulombic counterpart of standard WFT. Indeed,
one sees that with a mere hundreds or thousands of deter-
minants the lrCIPSI+srPBE total energy is already converged
as much as the standard CIPSI total energy is with hundreds
of thousands of determinants. This shows that the coupling
of RS-DFT with a selected CI procedure such as the CIPSI

FIG. 1. Convergence of the standard CIPSI and lrCIPSI+srPBE total variational energies (measured with respect to their respective FCI limits) as a function of the number
of selected determinants for (a) the Ne atom with the aug-cc-pCVQZ basis set and (b) the Be2 molecule (internuclear distance of 3 bohrs) with aug-cc-pCVTZ basis set. All
electrons are correlated. The range-separation parameter used is µ = 0.5 bohr−1.
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method allows one to reduce by several orders of magnitude
the dimension of the variational space of the wave function
required to obtain a given accuracy.

B. Total energies as a function
of the range-separation parameter

We now discuss the accuracy of the total energy obtained
with the different approximate RS-DFT schemes as a func-
tion of the range-separation parameter µ. Figure 2 reports the
results for the He and C atoms, and for the H2 molecule near

FIG. 2. Total energy of the (a) He atom, (b) C atom, and (c) H2 molecule
near dissociation (internuclear distance of 5 bohrs) calculated by lrCI+srPBE,
CI+Ec,md(srLDA), and CI+Ec,md(srPBEontop) as a function of the range-separation
parameter µ. For He and H2, the basis set used is cc-pVTZ. For C, the basis set
used is cc-pCVTZ and the core excitations are allowed. For comparison, the esti-
mated exact non-relativistic energy72–74 and the FCI or well-converged CIPSI
energy obtained with the same basis set are also reported.

dissociation as an example of a strongly correlated system. For
He and H2, the calculations were performed at the FCI level
using the cc-pVTZ basis set. For C, the calculations were per-
formed at the CIPSI level using the cc-pCVTZ basis set and
allowing core excitations.

1. lrCI+srPBE total energy
As previously noted, RS-DFT reduces to KS-DFT for µ = 0

and to standard WFT for µ→∞. The behavior of the lrCI+srPBE
total energy as a function of µ is in agreement with these
limits. Indeed, for µ → 0, the lrCI+srPBE energy is substan-
tially above the CI energy and goes toward the KS-DFT energy
obtained with the PBE exchange-correlation functional (KS-
PBE, not shown). For µ →∞, the lrCI+srPBE energy converges
asymptotically to the standard CI energy.

For an optimal intermediate value of µ, which is depen-
dent on the system, the lrCI+srPBE total energy is comparable
to the full-range CI total energy, or even more accurate in
the case of He at the energy minimum. We must stress, how-
ever, that since the lrCI+srPBE total energy is not necessarily
an upper bound of the exact energy, the value of µ minimiz-
ing the total energy cannot generally be considered as the
optimal value of µ. For the cases of C and H2, the lrCI+srPBE
total energy is not more accurate (or only marginally) than
the CI total energy, but the use of lrCI+srPBE allows one to
obtain near FCI quality results with not too large a value of
µ leading to a more compact wave function, as discussed in
Sec. IV A.

We note that the optimal value of µ required to obtain
an accurate total energy is substantially larger for C than for
He and H2. This is due to the contribution of the core spatial
region of C which is associated with high densities and thus
to small interelectronic distances. In order to have a part of
the exchange-correlation energy of the core electrons of C
treated via the long-range CI wave function, the long-range
electron-electron interaction wlr,µ

ee (r12) must include the inter-
action between electrons at sufficiently small distances, i.e., µ
must be sufficiently large.

2. CI+Ec,md(srLDA) total energy
For µ →∞, the CI+Ec,md(srLDA) total energy converges to

the standard CI total energy, as was the case for lrCI+srPBE.
However, the µ = 0 limit is different. Since the whole exchange
energy is extracted from the wave function in the approach
using the short-range multideterminantal correlation func-
tional [Eq. (17)], the µ = 0 limit corresponds to a KS-DFT cal-
culation with exact exchange. More precisely, at µ = 0, the
CI+Ec,md(srLDA) energy reduces to 〈ΦPBE |Ĥ |ΦPBE〉 + ELDA

c [nΦPBE ]
where ΦPBE is the KS single determinant obtained by solving
the KS equation with the PBE exchange-correlation functional,
and ELDA

c [n] is the standard LDA correlation functional. This
explains why, for small values of µ, CI+Ec,md(srLDA) is inac-
curate. For He and C, it gives far too negative total energies
because the well-known overestimation (in absolute value)
of the correlation energy by the LDA functional by about a
factor of 2 is not compensated by an approximate exchange
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functional as in standard KS-DFT. For H2 near dissociation, the
missing static correlation effects makes the CI+Ec,md(srLDA)
total energy too high for small values of µ.

Due to its very inaccurate µ = 0 limit, the CI+Ec,md(srLDA)
total energies tend to have large variations with respect
to µ and become reasonably accurate only for values
of µ similar to those required for lrCI+srPBE. Therefore,
CI+Ec,md(srLDA) cannot be considered as an improvement
over lrCI+srPBE. A better approximation must be used for
the short-range multideterminantal correlation functional
Ēsr,µ

c,md[n].

3. CI+Ec,md(srPBEontop) total energy
As was the case for CI+Ec,md(srLDA), the CI+Ec,md

(srPBEontop) total energy goes to the standard CI total energy
for µ → ∞. For µ = 0, the CI+Ec,md(srPBEontop) energy
reduces to the KS-PBE energy with exact exchange, i.e.,
〈ΦPBE |Ĥ |ΦPBE〉 + EPBE

c [nΦPBE ] where EPBE
c is the standard PBE

correlation functional. By contrast, we remind that lrCI+srPBE
reduces to standard KS-PBE at µ = 0. One must have this in
mind when comparing CI+Ec,md(srPBEontop) and lrCI+srPBE at
small µ.

For He and C, it turns out that KS-PBE with exact
exchange is more accurate than standard KS-PBE, which
makes CI+Ec,md(srPBEontop) more accurate than lrCI+srPBE at
small and intermediate µ. Also, the fact that the PBE approxi-
mation to the KS correlation functional is a better approxima-
tion than the LDA approximation makes CI+Ec,md(srPBEontop)
give much more accurate total energies at small and inter-
mediate µ in comparison to CI+Ec,md(srLDA). For these weakly
correlated systems, CI+Ec,md(srPBEontop) gives quite accurate
total energies over the whole range of µ.

For H2 near dissociation, because of the presence
of static correlation effects, the total energy given by
CI+Ec,md(srPBEontop) is much too high for small values of µ.
In particular, at µ = 0, we recover the known fact that KS-
PBE with exact exchange gives a larger error than KS-PBE
for strongly correlated systems. However, the error rapidly
decreases with µ, and the CI+Ec,md(srPBEontop) total energy
converges to the accurate CI total energy significantly faster
than both lrCI+srPBE and CI+Ec,md(srLDA). This must be due to
the use of the on-top pair density which imposes the correct
asymptotic behavior for µ →∞.

We thus conclude that the srPBEontop approximation
to the short-range multideterminant correlation functional
Ēsr,µ

c,md[n] constitutes overall a large improvement over the
srLDA approximation.

C. Dissociation energy curves of the H2, Li2,
and Be2 molecules

The dissociation energy curves of the homonuclear
diatomic molecules H2, Li2, and Be2 are reported in Figs. 3–5,
respectively. These molecules cover different types of bonding
and correlation effects. The RS-DFT calculations were per-
formed at the frozen-core FCI level using the cc-pVTZ basis
set for H2 and Li2 and at the frozen-core CIPSI level using
the aug-cc-pVTZ basis set for Be2. We did not attempt to find

FIG. 3. Total energy curve of H2 as a function of the internuclear distance cal-
culated by lrFCI+srPBE, FCI+Ec,md(srLDA), and FCI+Ec,md(srPBEontop) with a
range-separation parameter of µ = 0.5 bohr−1 and the cc-pVTZ basis set. For
comparison, the KS-PBE energy curve calculated with the same basis set and the
estimated exact non-relativistic energy curve74 are also reported.

an optimal value for the range-separation parameter and we
simply used the common value of µ = 0.5 bohr−1.52 We did not
try to remove the basis-set superposition error (BSSE) in the
dissociation energy curve of the weakly bound Be2 molecule
since the BSSE is known to be small for this system for frozen-
core calculations with triple-zeta basis sets, and even more so
with range separation.75,76

1. H2 molecule
The electronic ground-state of the H2 molecule is one

of the standard toy models of quantum chemistry owing to
the range of correlation effects that it presents, from dynamic
correlation at the equilibrium internuclear distance to static
correlation at dissociation.

The KS-PBE total energy curve showed in Fig. 3 is a good
example of the success and failure of standard KS-DFT with
semilocal density approximations. KS-PBE gives an accurate
energy near the equilibrium which illustrates the fact that
the PBE approximation correctly describes dynamic corre-
lation effects. By contrast, the KS-PBE results are far from
being satisfying near the dissociation, which shows the inca-
pacity of the PBE approximation to deal with static correlation
effects.

The lrCI+srPBE method provides a way to partly cor-
rect the description of static correlation. Indeed, the long-
range wave function accounts for part of the static correlation,
while the srPBE functional accounts for the dynamic correla-
tion. Thus, near the equilibrium, the lrCI+srPBE energy curve
is essentially as accurate as the KS-PBE one (in fact slightly
more accurate), and in the dissociation limit, lrCI+srPBE
greatly improves upon KS-PBE by giving an energy which
correctly saturates. However, for the value of the range-
separation parameter used (µ = 0.5 bohr−1), a substantial
part of the electron-electron interaction is still taken into
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FIG. 4. Left panel: Total energy curves of Li2 as a function of the internuclear distance R calculated by lrFCI+srPBE, FCI+Ec,md(srLDA), and FCI+Ec,md(srPBEontop) with
a range-separation parameter of µ = 0.5 bohr−1 using the cc-pVTZ (VTZ) basis set without core excitations. For comparison, the estimated exact non-relativistic energy
curve77 as well as the energy curves calculated by frozen-core FCI with the cc-pVTZ basis set and by a well-converged variational CIPSI with the cc-pCVTZ (CVTZ) basis
set and allowing core excitations are also reported. Right panel: Dissociation energy curves, E(R) − E(R→∞), where all the curves have been shifted so that the energy at
dissociation is set to 0.

account via the short-range Hartree-exchange-correlation
functional which leads to the important remaining error at
dissociation.

The CI+Ec,md(srLDA) total energy curve is below the exact
energy curve. This is of course due to the overestimation
(in absolute value) of the short-range multideterminant cor-
relation energy Ēsr,µ

c,md by the srLDA correlation functional.
Still, the CI+Ec,md(srLDA) approach constitutes for this sys-
tem a substantial improvement over KS-PBE and lrCI+srPBE,
especially in terms of the relative shape of the dissociation
curve.

We see that CI+Ec,md(srPBEontop) provides by far the
most accurate total energy curve, either in terms of
absolute energy or relative shape. The H2 molecule is

simple enough to easily understand why our new srPBEon-
top functional gives accurate results. At dissociation, the two
electrons are so far away from each other that the electron-
electron interaction becomes negligible. Therefore, the exact
long-range interacting Hamiltonian of RS-DFT Ĥµ [Eq. (8)]
becomes equivalent to the physical Hamiltonian Ĥ, and conse-
quently, the exact long-range wave function Ψµ reduces to the
exact ground-state wave function Ψ of the system. Hence, at
dissociation, the term 〈Ψµ |Ĥ|Ψµ〉 in Eq. (17) should be equal
to the exact energy, and the short-range multideterminant
correlation energy Ēsr,µ

c,md[n] should vanish. This exact behav-
ior is correctly recovered, thanks to the on-top pair density.
Indeed, at dissociation, the on-top pair density, n2(r, r) or
nµ2 (r, r), goes to zero since the two electrons are far away

FIG. 5. Left panel: Total energy curves of Be2 as a function of the internuclear distance R calculated by lrCIPSI+srPBE, CIPSI+Ec,md(srLDA), and CIPSI+Ec,md(srPBEontop)
with a range-separation parameter of µ = 0.5 bohr−1 using the aug-cc-pVTZ basis set without core excitations. For comparison, the estimated exact non-relativistic energy
curve78 as well as the energy curve calculated by a well-converged variational frozen-core CIPSI with the aug-cc-pVTZ are also reported. Right panel: Dissociation energy
curves, E(R) − E(R→∞), where all the curves have been shifted so that the energy at dissociation is set to 0.
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from each other, and it is easy to check from Eqs. (26) and
(27) that this makes the srPBEontop correlation energy vanish.
We thus see that the dependence on the on-top pair density
is the key to obtain the correct dissociation limit. The rea-
son why in practice CI+Ec,md(srPBEontop) still gives a small

error at dissociation is that the short-range potential ˆ̄Vsr,µ
Hxc [n]

in Eq. (8) does not exactly vanish at dissociation due to the use
of the PBE approximation. Consequently, the long-range wave
function Ψµ does not exactly reduce to the exact wave func-
tion in the dissociation limit but is a good approximation to
it.

2. Li2 and Be2 molecules
We now consider the electronic ground-state energy

curves of the Li2 and Be2 molecules. Although they are still
relatively small systems, they raise more difficulties than H2,
not only because of the increasing number of electrons but
especially because of the more subtle mix between dynamic
and static correlations that has to be described. Also, these
two molecules are characterized by two different types of
bond: Li2 is a strongly bonded molecule, while Be2 is a weakly
bonded molecule with a very shallow well of only a few
millihartrees.

Here the distinction between dynamic correlation at the
equilibrium geometry and static correlation at dissociation
that exists in H2 is no longer valid. Static correlation effects
are present at all internuclear distances for these molecules,
which limits the accuracy of lrCI+srPBE total energies. Indeed,
as shown in the left panels of Figs. 4 and 5, the lrCI+srPBE
total energy is well above the exact energy for all internuclear
distances. Using the short-range multideterminant correla-
tion approach, we obtain results following the same trends
observed for H2. For both Li2 and Be2, the CI+Ec,md(srLDA)
total energy curve is far below the exact one, while the
CI+Ec,md(srPBEontop) total energy curve is quite close to the
exact one.

We note that, in the case of Li2, the FCI+Ec,md(srPBEontop)
total energy curve, calculated with the cc-pVTZ basis set with-
out core excitations, is much more accurate than the frozen-
core FCI total energy curve calculated with the same basis
set, and even slightly closer to the exact energy curve than
the CIPSI total energy curve calculated with the cc-pCVTZ
basis set and allowing core excitations. This is so because, in
the FCI+Ec,md(srPBEontop) method, core correlation being a
short-range effect is included in the srPBEontop functional.
Thus, RS-DFT allows one to drop core excitations in the
expansion of the wave function without losing accuracy, which
is another important advantage in terms of computational
cost.

We now discuss the relative dissociation energy curves,
E(R) − E(R→∞), where R is the internuclear distance, shown in
the right panels of Figs. 4 and 5. For Li2, all the methods tested
here give almost the same relative dissociation energy curve
and is very close to the exact relative energy curve. Thus,
even though these methods give very different total energies,
they all provide an accurate estimation of both the equilibrium
distance and the dissociation energy.

For Be2, the different methods give more diverse rela-
tive dissociation energy curves. This is due to the fact that
we are looking at a much smaller energy scale in comparison
to Li2 and also due to the fact that the Be2 bond involves a
complex mix of correlation effects. The full-range frozen-core
CIPSI calculation using the aug-cc-pVTZ basis set gives a sub-
stantially underestimated dissociation energy and a slightly
overestimated equilibrium distance, i.e., it favors too much the
separated atoms over the more correlated bonded molecule.
This is due to the incompleteness of the basis set and possi-
bly also to the missing of core excitations. On the contrary,
lrCIPSI+srPBE largely overestimates the dissociation energy
and slightly underestimates the equilibrium distance, i.e., it
favors too much the bonded molecule over the dissociated
atoms. In this case, the main source of error comes from
the srPBE exchange-correlation functional (fractional-charge
and/or fractional spin errors). The short-range multidetermi-
nant correlation approach gives quite good relative dissocia-
tion energy curves. The CI+Ec,md(srLDA) relative dissociation
energy curve is a bit too high, in particular, at long distances.
The CI+Ec,md(srPBEontop) relative dissociation energy curve
is the closest to the exact one, showing that the srPBEon-
top functional properly accounts for differential correlation
effects.

V. CONCLUSION
In this work, we have developed a new approximation

to the short-range multideterminant correlation functional
Ēsr,µ

c,md[n] involved in the variant of RS-DFT given by Eq. (17).
This approximation, named srPBEontop, is a local functional of
the density, the density gradient, and the on-top pair density,
which locally interpolates between the standard PBE corre-
lation functional at vanishing range-separation parameter µ
and the known exact asymptotic expansion of the functional
at large µ. By combining this srPBEontop correlation func-
tional with (selected) CI calculations for the long-range wave
function, one expects to obtain a multideterminant RS-DFT
method which is essentially free from self-interaction errors
and appropriately accounts for both short-range dynamic cor-
relation and static correlation. This is supported by the accu-
rate dissociation energy curves of the small but diversely cor-
related molecules H2, Li2, and Be2 that we have obtained with
the multideterminant RS-DFT approach with the srPBEontop
approximation.

Besides assessing the present method on more sys-
tems, possible future developments include adding the
second-order CIPSI perturbative correction, performing self-
consistent calculations with the srPBEontop approxima-
tion, combining this approximation with the recent local-
µ approach of Ref. 79, and calculating excited states, for
example, using perturbation theory along the ground-state
range-separated adiabatic connection28,32 or using ghost-
interaction-corrected ensemble RS-DFT.29–31
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