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The computation of high-harmonic generation spectra by

means of Gaussian basis sets in approaches propagating the

time-dependent Schr€odinger equation was explored. The effi-

ciency of Gaussian functions specifically designed for the

description of the continuum proposed by Kaufmann et al. (J

Phys B 1989, 22, 2223) was investigated. The range of applic-

ability of this approach was assessed by studying the hydro-

gen atom, that is, the simplest atom for which “exact”

calculations on a grid could be performed. The effect of

increasing the basis set cardinal number, the number of dif-

fuse basis functions, and the number of Gaussian pseudo-

continuum basis functions for various laser parameters was

notably studied. The results showed that the latter significantly

improved the description of the low-lying continuum states,

and provided a satisfactory agreement with grid calculations

for laser wavelengths k0 5 800 and 1064 nm. The Kaufmann

continuum functions, therefore, appeared as a promising way

of constructing Gaussian basis sets for studying molecular

electron dynamics in strong laser fields using time-dependent

quantum-chemistry approaches. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/qua.25146

Introduction

High-harmonic generation (HHG) is a highly nonlinear optical

phenomenon[1] of increasing interest because it can provide

coherent XUV and soft X-ray radiation with attosecond (10218 s)

durations. This property offers the opportunity to investigate

unexplored research areas in atoms and molecules with unprec-

edented time resolution.[2–7]

The HHG optical spectrum has a distinctive shape: a rapid

decrease of the intensity for the low-order harmonics consist-

ent with perturbation theory, followed by a broad plateau

region where the harmonic intensity remains almost constant,

and then an abrupt cutoff, beyond which almost no harmonics

are observed. The HHG process can be understood by means

of semi-classical pictures, such as the celebrated three-step

model:[8,9] (i) an electron escapes from the nuclei through tun-

nel ionization associated with the strong laser field, (ii) it is

accelerated away by the laser field until the sign of the field

changes, (iii) whereupon the electron is reaccelerated back to

the nuclei, where it may emit a photon as it recombines to

the ground state. A key quantity emerging from the model

is the maximum energy the field can provide to the electron,

Ecutoff5Ip13:17 Up, where Ip is the ionization potential and Up

is the ponderomotive energy.[8,9]

HHG has been studied for many years with theoretical

methods solving the time-dependent Schr€odinger equation

using a real-space representation of the wave function.[10–18]

These grid-based methods are taken as the numerical refer-

ence for this kind of calculations. Indeed, these approaches

have proven to be accurate enough to explain key features of

atomic and molecular HHG spectra. However, grid calculations

imply memory and CPU requirements that rapidly become

prohibitive with increasing numbers of electrons. Because of

this limitation, multielectron systems are handled in practice

via the use of effective potentials keeping a single-active

electron.

By contrast, quantum-chemistry methods such as time-

dependent configuration interaction (TDCI),[19–22] multiconfigu-

ration time-dependent Hartree–Fock,[23] or time-dependent

density-functional theory[24] using local basis functions can

more easily handle multielectron systems such as molecules,

including the treatment of electron correlation. The main

problem of these methods lies in the difficulty to accurately

represent the continuum part of the system eigenstate spec-

trum. Addressing this issue can be done on one-electron sys-

tems, such as the H atom, since only one electron is promoted

into the continuum during the HHG process.

In this context, the TDCI method with a Gaussian-type

orbital (GTO) basis set and a heuristic lifetime model[25] was

recently applied to the calculation of the dipole form of the

HHG spectrum for the H atom.[22] The role of the Rydberg and

the continuum states was discussed in detail, and reasonable

HHG spectra (plateau/cutoff ) have been obtained, when
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compared with the prediction from the three-step model[8,9]

and grid-based calculations.[15] However, the background

region, beyond the harmonic cutoff, was higher than expected

and spurious harmonics were present.

A possible reason of this behavior is that the basis sets

adopted in Ref. [22] describe Rydberg states better than the

continuum ones. Indeed, while GTO basis sets have been suc-

cessfully applied for calculations of bound-state electronic

properties (even for non-linear optical properties such as

second-order hyperpolarizabilities, see for example Ref. [26]),

the inherent local nature of GTO functions makes it difficult to

properly describe continuum states extending over large dis-

tances (see, e.g., Ref. [27]). In Refs. [22] and [28], standard GTO

basis sets have been augmented with a large number of dif-

fuse basis functions and/or basis functions centered away

from the nucleus in order to cover the large spatial extension

of the time-dependent wave function. However, this strategy

has the serious drawback of only increasing the number of

Rydberg states while the number of continuum states is not

substantially changed. This results in an unbalanced descrip-

tion of the Rydberg and continuum states.

Few attempts have been reported in the literature to further

improve GTO basis sets for a better description of the contin-

uum states. Kaufmann et al.[29] proposed to fit GTO basis func-

tions to Slater-type orbital basis functions having a single fixed

exponent f 5 1, supposed to be adequate for scattering calcu-

lations. Nestmann and Peyerimhoff[30] proposed to fit a linear

combination of GTO basis functions to a set of spherical Bessel

functions, which are the spherically-adapted continuum eigen-

functions for zero potential. Faure et al.[31] extended the work

of Nestmann and Peyerimhoff to the possibility of fitting a lin-

ear combination of GTO basis functions to a set of Coulomb

continuum functions (i.e., the continuum eigenfunctions

obtained in presence of the Coulomb potential 2Z=jrj, with Z

the nuclear charge). Finally, some hybrid methods have also

been proposed, combining Gaussian functions with finite-

element/discrete-variable representation techniques[32] or with

B-spline basis sets.[33] Note that an alternative approach to

Gaussian basis sets is given by the use of Sturmian

functions.[34,35]

In this article, we study the merits of the Gaussian contin-

uum basis functions proposed by Kaufmann et al.[29] for calcu-

lating the HHG spectra in atomic hydrogen within the TDCI

framework. While the present results are focused on HHG, our

work is relevant for the calculation of any property involving

electronic transitions toward the continuum such as, for exam-

ple, photoionization cross sections[36] or above-threshold ioni-

zation rates.[25]

The article is organized as follows. We first describe the

theory and give computational details. We then present and

discuss our results. In particular, we show velocity HHG spectra

extracted from the dipole, velocity, and acceleration power

spectra calculated for different laser intensities, and basis sets.

We study in detail the effect of increasing the basis set cardi-

nal number, the number of diffuse basis functions, and the

number of Gaussian continuum basis functions. We directly

compare our results with data from grid calculations, for three

values of the laser intensity and two values of the laser wave-

length, and adjust the heuristic lifetime model. Finally, we con-

clude with final comments and perspectives. Unless otherwise

noted, Hartree atomic units, that is, �h5me5e2=ð4p�0Þ51, are

used throughout the article.

Theoretical Method

The time-dependent Schr€odinger equation for the H atom in

an external time-dependent uniform electric field E(t) in the

length gauge is

i
@jWðtÞi
@t

5 Ĥ01V̂ ðtÞ
� �

jWðtÞi; (1)

where H0ðrÞ52r2=221=jrj is the time-independent field-free

Hamiltonian and Vðr; tÞ5r � EðtÞ is the interaction potential

between the atom and the field in the semiclassical dipole

approximation. We consider the case of an electric field E(t)

linearly polarized along the z-axis, representing a laser pulse,

EðtÞ5E0nzsin ðx0t1/Þf ðtÞ; (2)

where E0 is the maximum field strength, nz is the unit vector

along the z axis, x0 is the carrier frequency, / is the carrier-

envelope phase, and f(t) is the envelope function chosen as

f ðtÞ5
cos 2

�
p

2r
ðt2rÞ

�
if 0 � t � 2r;

0 otherwise;

8><
>: (3)

where r is the full width at half maximum of the field

envelope.

The target quantity to be computed is the power spectrum

Pn(x) defined as

PnðxÞ5j
1

tf2ti

ðtf

ti

hWðtÞjn̂jWðtÞie2ixtdtj2; (4)

where ti and tf are the initial and final propagation times. In

Eq. (4), the operator n̂ can be either equal to the position

operator ẑ, or to the velocity operator v̂ z52i½ẑ ; ĤðtÞ�, or to

the acceleration operator âz52i½v̂ z; ĤðtÞ� (where ĤðtÞ5Ĥ01V̂ ð
tÞ is the total time-dependent Hamiltonian), defining three dif-

ferent forms of the power spectrum: the dipole Pz(x), the

velocity Pvz
ðxÞ, and the acceleration Paz

ðxÞ forms. According

to recent works,[37,38] the velocity form Pvz
ðxÞ best represents

the HHG spectrum of a single atom or molecule. The three

forms are related to each other by (see Appendix):

x2PzðxÞ � Pvz
ðxÞ � 1

x2
Paz
ðxÞ: (5)

In this work, we always show the same quantity, that is, the

velocity HHG spectrum, either extracted directly from

the velocity power spectrum, or indirectly from the dipole or

the acceleration power spectrum with the appropriate

frequency factors following Eq. (5).
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Time-propagation scheme

The time-dependent Schr€odinger equation is solved using the

TDCI method (see, e.g., Refs. [19–22]) applied to the special

case of the H atom. The wave function jWðtÞi is expanded in

the discrete basis of the eigenstates fjwkig of the field-free

Hamiltonian Ĥ0 (projected in the same basis), composed of

the ground state (k 5 0) and all the excited states (k> 0)

jWðtÞi5
X
k�0

ckðtÞjwki; (6)

where ck(t) are time-dependent coefficients. Inserting Eq. (6)

into Eq. (1), and projecting on the eigenstates hwlj, gives the

evolution equation

i
dcðtÞ

dt
5 H01VðtÞð ÞcðtÞ; (7)

where c(t) is the column matrix of the coefficients ck(t), H0 is

the diagonal matrix of elements H0;lk5hwljĤ0jwki5Ekdlk (where

Ek is the energy of the eigenstate k), and V(t) is the non-

diagonal matrix of elements VlkðtÞ5hwljV̂ ðtÞjwki. The initial

wave function at t 5 ti 5 0 is chosen to be the field-free

ground state, that is, ck(ti) 5 dk0. To solve Eq. (7), time is discre-

tized and the simple split-propagator approximation is used to

separate the contributions of the field-free Hamiltonian H0 and

the atom-field interaction V(t)

cðt1DtÞ � e2iVðtÞDt e2iH0DtcðtÞ; (8)

where Dt is a small time step. Since the matrix H0 is diagonal,

e2iH0Dt is a diagonal matrix of elements e2iEkDtdlk . The expo-

nential of the non-diagonal matrix V(t) is calculated as

e2iVðtÞDt5U
†

e2iVdðtÞDt U; (9)

where U is the unitary matrix describing the change of basis

between the original eigenstates of Ĥ0 and a basis in which

the atom–field interaction V̂ ðtÞ is diagonal, that is, VðtÞ5U
†

Vd

ðtÞU5EðtÞ � U
†

rdU where VdðtÞ5EðtÞ � rd is the diagonal atom–

field interaction matrix and rd is the diagonal representation

matrix of the position operator. Since the time dependence is

simply factorized in a multiplicative function independent of r,

the unitary matrix U is time-independent and can be calcu-

lated once and for all before the propagation.

Once the time-dependent coefficients are known, it is possible

to calculate the time-dependent dipole, velocity, or acceleration as

nðtÞ5hWðtÞjn̂jWðtÞi5
X

l;k

c�l ðtÞckðtÞhwljn̂jwki; (10)

which, after taking the square of its Fourier transform, leads to

the corresponding power spectrum of Eq. (4).

Gaussian basis sets

The field-free states (simply corresponding to the atomic orbi-

tals for the H atom) are expanded on a Gaussian basis set,

jwki5
X

l

dl;kjvli; (11)

where {vl} are real-valued GTO basis functions centered on the

nucleus. In spherical coordinates r5ðr; h;/Þ,

hrjvli5Nal ;‘l r‘l e2alr2

S‘l ;mlðh;/Þ; (12)

where Nal;‘l is a normalization constant, al are exponents, S‘;m
ðh;/Þ are real spherical harmonics.

We built the Gaussian basis set starting from the Dunning

basis sets,[39] adding first diffuse GTO functions to describe the

Rydberg states, and a special set of GTO functions adjusted to

represent low-lying continuum states. For the latter, we follow

Kaufmann et al.[29] who proposed to fit GTO basis functions to

Slater-type orbital basis functions having a single fixed expo-

nent f 5 1. For each angular momentum ‘, Kaufmann et al.

found a sequence of optimized GTO exponents which are well

represented by the simple formula[29]

a‘;n5
1

4ða‘ n1b‘Þ2
; (13)

where n 5 1, 2, 3,. . . is not associated to the quantum princi-

pal number but is just an index identifying a given value in

the list of all exponents for a fixed ‘, and the parameters a‘
and b‘ are given in Table 2 of Ref. [29]. The GTO basis func-

tions obtained with these exponents (collected in Table 1) will

be in the following referred to as “Gaussian continuum

functions” or “Kaufmann (K) functions.”

Finite lifetime model

The GTO basis set incompleteness is responsible for an incor-

rect description of the continuum eigenfunctions. They decay

too fast for large r, which prevents the description of the

above-threshold ionization and leads to unphysical reflections

of the wave function in the laser-driven dynamics. To compen-

sate for this, we use the heuristic lifetime model of Klinkusch

et al.[25] which consists in interpreting the approximate field-

free eigenstates wk above the ionization threshold (taken as

the zero energy reference) as non-stationary states and thus

replacing, in the time propagation, the energies Ek by complex

energies Ek – iCk/2, where Ck is the inverse lifetime of state k.

For the special case of the H atom the Ck are chosen as[25]

Table 1. Exponents a‘,n [see Eq. (13)] of the Gaussian functions for

describing the continuum proposed by Kaufmann et al.[29] and used in

the present work for n 5 1,. . ., 8 and ‘5 0, 1, 2.

n ‘5 0 ‘5 1 ‘5 2

1 0.245645 0.430082 0.622557

2 0.098496 0.169341 0.242160

3 0.052725 0.089894 0.127840

4 0.032775 0.055611 0.078835

5 0.022327 0.037766 0.053428

6 0.016182 0.027312 0.038583

7 0.012264 0.020666 0.029163

8 0.009615 0.016181 0.022815
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Ck5
0 if Ek < 0;ffiffiffiffiffiffiffi

2Ek

p
=d if Ek > 0;

(
(14)

where d is an empirical parameter representing the character-

istic escape length that the electron in the state k is allowed

to travel during the lifetime 1/Ck. These complex energies are

used in the propagation described by Eq. (8), in the field-free

Hamiltonian matrix H0. The heuristic lifetime model is a simple

alternative to using complex scaling,[40,41] a complex-absorbing

potential,[42,43] or a wave-function absorber.[10]

In this work, we also introduce and test a modified version

of the original heuristic lifetime model. In this version, two dif-

ferent values of the escape length, d0 and d1, are used to

increase the flexibility in the definition of the finite lifetimes,

adapted to the present context of HHG. A large value of d0

(small value of Ck) is used for all the above-ionization-

threshold states with positive energy below the energy cutoff

of the three-step model Ecutoff, while a smaller d1 (larger Ck) is

used for the continuum states with energies above Ecutoff,

which are not expected to contribute to HHG. This allows us

to better retain the contribution of low-energy continuum

states for the recombination step of the HHG process.

Computational Details

The field-free calculations are performed using a development

version of the MOLPRO software package[44] from which all the

electronic energies, as well as the dipole, velocity, and acceler-

ation matrix elements over the electronic states have been

obtained. The external code LIGHT
[22] is used to perform the

time-propagation using a time step Dt 5 2.42 as (0.1 a.u.) and

the Fourier transformations with a Hann window function. An

escape length d 5 1.41 bohr is used for the original heuristic

lifetime model, while d0 5 50 bohr and d1 5 0.1 bohr are cho-

sen for the modified version of the heuristic lifetime model as

explained in the section “Results and Discussion.”

Correlation-consistent N-aug-cc-pVXZ[22] basis sets are used,

where X is the cardinal number (X 5 T, Q, 5) connected to the

maximum angular momentum (Lmax 5 X – 1 for the H atom),

and N is the number of shells of diffuse functions for each

angular momentum. We only employ N 5 6 or N 5 9 because

N 5 6 can be considered as the minimum augmentation

needed to reasonably describe HHG spectra for the H atom.[22]

In particular, the 6-aug-cc-pVTZ basis set describes up to

(n 5 3)-shell Rydberg states, 6-aug-cc-pVQZ up to (n 5 4)-shell

Rydberg states, and 6-aug-cc-pV5Z up to (n 5 5)-shell Rydberg

states. Furthermore, we investigate the effect of adding to the

6-aug-cc-pVTZ basis set 3, 5, and 8 Gaussian continuum func-

tions (or K functions) for each angular momentum. The extra

diffuse and continuum Gaussian functions are uncontracted.

For comparison, we also perform accurate grid calculations

in the length gauge. The wave function is expanded on a set

of spherical harmonics Y‘;mðh;/Þ up to ‘5 128, and the result-

ing coupled equations are discretized on a radial grid with a

step size of Dr 5 0.25 bohr (see Ref. [10]). A box size of 256

bohr is used with a mask function[10,17] at 200 bohr to absorb

the part of the wave function accounting for ionized electrons

that will not rescatter toward the nucleus. The mask function

multiplying the wave function at each time step has been cho-

sen to be cos(r)1=8, which is effective in modeling the ioniza-

tion.[10] The time step used is Dt 5 0.65 as (0.027 a.u.). The

grid-based calculations, being converged with respect to the

parameters mentioned above, represent the numerical refer-

ence for the current GTO results. We note that performing the

grid-based calculations takes hours on a standard workstation,

while the field-free and time-propagation calculations in the

GTO basis sets take only a few minutes.

Unless otherwise noted, the calculations are done with the

carrier laser frequency x0 5 1.550 eV (k0 5 800 nm), corre-

sponding to a Ti:sapphire laser. For the comparison with the

grid calculations, we also use the laser frequency x0 5 1.165

eV (k0 5 1064 nm) for which higher-energy regions are probed.

The pulse duration is 2r 5 20 oc where 1 optical cycle (oc) is

2p/x0 (110.23 a.u.). We use three peak laser intensities

I5ðe0c=2ÞE2
0 : I5531013 W=cm2, I 5 1014 W/cm2, and I 5 2 3

1014 W/cm2. We have, thus, chosen a range of intensities

encompassing the over-barrier ionization threshold (i.e., the

critical intensity above which the electron can classically over-

step the barrier) of hydrogen, Ib 5 1.4 3 1014 W/cm2. We can,

therefore, study the performance of our method in realistic

conditions for which HHG progressively becomes less pro-

nounced with increasing laser intensity. The physical parame-

ters relevant to HHG are reported in Table 2.

Results and Discussion

We start by studying the performance of several Gaussian

basis sets for the calculation of HHG spectra of the H atom,

continuing the previous work of Luppi and Head-Gordon.[22]

The optimal basis set including Gaussian continuum functions

is then used for a direct comparison with reference HHG spec-

tra from grid calculations.

Table 2. Physical parameters relevant to HHG for the H atom with two

laser wavelengths k0 5 800 and 1064 nm and three laser intensities

I 5 5 3 1013, 1014, and 2 3 1014 W/cm2: Keldysh parameter

c5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ip=ð2UpÞ

p
,[47] ponderomotive energy Up5E2

0=ð4x2
0Þ (in hartree),

energy cutoff in the three-step model Ecutoff 5 Ip 1 3.17Up (in hartree)

where Ip 5 0.5 hartree is the ionization potential, harmonic cutoff in

the three-step model Ncutoff 5 Ecutoff/x0, and maximum electron excur-

sion distance in the continuum Rmax52E0=x2
0 (in bohr) in the three-

step model.

I 5 3 1013 W/cm2 1014 W/cm2 2 3 1014 W/cm2

k0 5 800 nm

c 1.51 1.06 0.76

Up 0.11 0.22 0.44

Ecutoff 0.85 1.20 1.89

Ncutoff 15 21 33

Rmax 23 33 46

k0 5 1064 nm

c 1.13 0.79 0.57

Up 0.19 0.40 0.78

Ecutoff 1.10 1.77 2.97

Ncutoff 26 41 69

Rmax 41 59 82
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Time-dependent dipole, velocity, and acceleration

We have reported on Figure 1 the time evolution of the dipole

z(t), the velocity vz(t), and the acceleration az(t) with the 6-aug-

cc-pVTZ basis set for the three laser intensities. The evolution

of z(t), vz(t), and az(t) follows the shape of the laser field given

in Eq. (3), with the shape of their envelopes changing with the

intensity of the pulse. Note that vz(t) is one order of magni-

tude smaller than z(t) and its oscillations have a finer structure.

Similarly, az(t) is one order of magnitude smaller than vz(t) and

has even more structured oscillations. Even though some fast

oscillations are still present after the laser is switched off due

to the population of electronic excited states, the conditions

z(tf ) 5 0 and vz(tf ) 5 0 (see Appendix) are approximately ful-

filled, which will allow us to use Eq. (5). Our results are in rea-

sonable agreement with the results of Bandrauk et al.[15] and

those of Han and Madsen[14] who used grid-based methods.

Similar findings have been reported for the He atom in a low-

field regime using time-dependent Hartree–Fock and time-

dependent Kohn–Sham with Gaussian basis sets.[24]

Dipole, velocity, and acceleration forms of the HHG

spectrum

In Figure 2 the velocity HHG spectrum, extracted from the

dipole, velocity, and acceleration power spectra according to

Eq. (5), calculated with the 6-aug-cc-pVTZ basis set and the

three laser intensities are shown. The typical form of the HHG

spectrum (plateau/cutoff/background) is obtained. We note

that the harmonic peaks that we obtained are sharper than

those calculated by Bandrauk et al.[15] based on a direct propa-

gation of the time-dependent Schr€odinger equation on a grid.

The dipole, velocity, and acceleration formulations of the

velocity HHG spectrum give similar spectra in the plateau

region, but different backgrounds beyond the harmonic cutoff.

In particular, the HHG spectrum calculated from the dipole

power spectrum presents a higher background than the HHG

spectra calculated from the velocity and acceleration power

spectra, in agreement with the calculations of Bandrauk

et al.[15] These differences reflect the sensitivity to the basis

set. Indeed, the expectation value of the dipole operator

probes the time-dependent wave function in spatial regions

further away from the nucleus than the expectation values of

the velocity and acceleration operators do. In the following,

since the dipole is the most difficult to converge with our

basis set we will focus on the basis set convergence of the

(velocity) HHG spectrum computed from the dipole power

spectrum.

Effect of the cardinal number of the basis set and the

number of diffuse basis functions

We first analyze the effect of the basis-set cardinal number X,

before examining the effect of adding Gaussian continuum

basis functions in next subsection. We use the following series

of basis sets: 6-aug-cc-pVTZ (s, p, and d shells), 6-aug-cc-pVQZ

(s, p, d, and f shells), and 6-aug-cc-pV5Z (s, p, d, f, and g

shells). The number of total, bound (i.e., energy below 0), and

continuum (i.e., energy above 0) states, and the maximum

energy obtained with these basis sets are reported in the

upper half of Table 3. Going from 6-aug-cc-pVTZ to 6-aug-cc-

pV5Z the total number of states increases considerably, from

68 to 205. The percentage of continuum states also tends to

increase with the cardinal number. However, these added con-

tinuum states are not necessarily in the energy range relevant

to the HHG spectrum. Indeed, the maximum energies obtained

are 3.45 hartree for 6-aug-cc-pVTZ, 7.74 hartree for 6-aug-cc-

pVQZ, and 15.94 hartree for 6-aug-cc-pV5Z, while the maximal

Figure 1. Time-dependent dipole z(t) (left), velocity vz(t) (middle), and accel-

eration az(t) (right) calculated with the 6-aug-cc-pVTZ basis set for laser

intensities I 5 5 3 1013 W/cm2 (top), I 5 1014 W/cm2 (middle), and 2 3 1014

W/cm2 (bottom).
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kinetic energy that can be transmitted to the electron (Ecutoff –

Ip) in the three-step model are between 0.35 and 2.47 hartree

for the parameters considered (see Table 2).

In Figure 3, we compare the velocity HHG spectrum

extracted from the dipole power spectrum for the 6-aug-cc-

pVTZ, 6-aug-cc-pVQZ, and 6-aug-cc-pV5Z basis sets for the

laser intensity I 5 1014 W/cm2. The three basis sets give very

similar results, in the plateau as well as beyond the harmonic

cutoff. We, thus, conclude that the HHG spectrum is not

strongly affected by the cardinal number X of the basis set

and therefore, in the following, we will use a triple-zeta (X 5 T)

basis set. In Figure 3, we also compare the spectra calculated

using the N-aug-cc-pVXZ basis sets with N 5 6 and N 5 9. The

results show that the convergence in terms of diffuse basis

functions is achieved with six diffuse shells.

Effect of the Gaussian continuum basis functions

The sensitivity of the HHG spectrum to the cardinal number

and to the number of diffuse functions led us to select the 6-

aug-cc-pVTZ basis set as the reference basis set to include the

Gaussian continuum functions of Kaufmann et al.[29] We have

added 3, 5, and 8 Gaussian continuum functions (denoted by

K) for each angular momentum in the 6-aug-cc-pVTZ basis set.

In the lower half of Table 3, the number of total, bound, and

continuum states and the maximum energy obtained with

these 6-aug-cc-pVTZ 1 3K, 6-aug-cc-pVTZ 1 5K, and 6-aug-cc-

pVTZ 1 8K basis sets is reported. It is noteworthy that increas-

ing the number of K functions hardly affects the number of

bound states, in favor of positive energy states, thus focusing

the improvement on the description of the continuum. More

precisely, as the maximum energy obtained with these three

basis sets is nearly unchanged (6.313, 6.681, and 6.927 hartree,

respectively), the K functions increase the density of states in

the energetically important region of the continuum.

We show in Figure 4 the distribution of the state energies for

the different basis sets. Increasing the number of K functions

essentially does not change the energy spectrum below the ioniza-

tion threshold, while an almost continuum distribution builds up

in the low-energy region above the ionization threshold. When

compared with the 6-aug-cc-pVTZ basis set, the distribution of the

Figure 2. Velocity HHG spectra of the H atom extracted from the dipole power spectrum x2Pz(x) (i.e., c 5 x2), the velocity power spectrum Pvz
ðxÞ (i.e.,

c 5 1), and the acceleration power spectrum Paz
ðxÞ=x2 (i.e., c 5 1/x2) calculated with the 6-aug-cc-pVTZ basis set and laser intensities I 5 5 3 1013 W/cm2,

I 5 1014 W/cm2, and I 5 2 3 1014 W/cm2. The ionization threshold (Ip/x0, vertical dashed line) and the harmonic cutoff in the three-step model Ncutoff

(vertical dot-dashed line) are also shown.

Table 3. Number of total, bound, and continuum states and the maxi-

mum energy Emax (in hartree) obtained with the 6-aug-cc-pVTZ, 6-aug-cc-

pVQZ, and 6-aug-cc-pV5Z basis sets, as well as with the 6-aug-cc-

pVTZ 1 3K, 6-aug-cc-pVTZ 1 5K, and 6-aug-cc-pVTZ 1 8K basis sets.

Total Bound Continuum Emax

6-aug-cc-pVTZ 68 42 (62%) 26 (38%) 3.45

6-aug-cc-pVQZ 126 63 (50%) 63 (50%) 7.74

6-aug-cc-pV5Z 205 90 (44%) 115 (56%) 15.94

6-aug-cc-pVTZ13K 95 42 (44%) 53 (56%) 6.31

6-aug-cc-pVTZ15K 113 46 (41%) 67 (59%) 6.68

6-aug-cc-pVTZ18K 140 51 (36%) 89 (64%) 6.93

The percentages of bound and continuum states are indicated in

parenthesis.
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continuum states becomes more dense (closer to a “real” contin-

uum) and the gaps between (near-) degenerate sets of states

become smaller. In particular, the density of states is improved in

the region from the ionization threshold to around 1 hartree,

which is also the most relevant energy region for HHG for the laser

intensity range studied here, according to the three-step model.

By contrast, Luppi and Head-Gordon[22] showed that adding dif-

fuse functions increases the density of Rydberg states, leaving the

density of continuum states mostly unchanged.

The upper panel of Figure 5 compares the radial wave func-

tion R(r) of a s continuum state at the energy E 5 0.1162 hartree

obtained with the 6-aug-cc-pVTZ 1 8K basis set with the analyti-

cal solution of the time-independent Schr€odinger equation.[45]

For completeness, the radial wave function from the grid calcula-

tion is also shown and is perfectly superimposed with the ana-

lytical solution. The radial wave function obtained with the 6-

aug-cc-pVTZ 1 8K basis set is a reasonable approximation to the

exact solution, the continuum Gaussian functions correctly

reproducing the oscillations of the function up to a radial dis-

tance as large as 30 bohr. This radial distance is consistent with

the maximum distance Rmax (see Table 2) traveled by the elec-

tron predicted by the three-step model with the laser parame-

ters used here. For comparison, the lower panel of Figure 5

shows the radial wave function R(r) obtained with the 6-aug-cc-

pVTZ basis set for a similar s continuum state at the closest

energy obtained with this basis set, E 5 0.1729 hartree. Clearly,

the basis set without the continuum Gaussian functions is only

able to describe the short-range part of function R(r) but not

the long-range oscillating part.

In Figure 6 the velocity HHG spectrum extracted from the

dipole power spectrum is shown for the 6-aug-cc-pVTZ 1 3K,

6-aug-cc-pVTZ 1 5K, and 6-aug-cc-pVTZ 1 8K basis sets and for

the three laser intensities. We focus our attention to the post-

cutoff background region of the spectrum since diminishing

the background in this region is an important goal of the pres-

ent work. Considering the laser intensity I 5 5 3 1013 W/cm2

and analyzing the spectra between the 20th and 40th harmon-

ics, we observe that the HHG spectrum with the 6-aug-cc-

pVTZ 1 3K basis set resembles the one obtained with the orig-

inal 6-aug-cc-pVTZ basis set, with no obvious improvement.

Figure 3. Velocity HHG spectrum of the H atom extracted from the dipole power spectrum x2Pz(x) calculated with the 6-aug-cc-pVXZ and 9-aug-cc-pVXZ

basis sets with X 5 T (left), Q (middle) and 5 (right). The laser intensity is I 5 1014 W/cm2. The ionization threshold (Ip/x0, vertical dashed line) and the har-

monic cutoff in the three-step model Ncutoff (vertical dot-dashed line) are also shown.

Figure 4. Distribution of the state energies obtained with the 6-aug-cc-

pVTZ basis set and increasing numbers of Gaussian continuum functions

(K).
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When adding 5 or 8 K functions the background is strongly

diminished, while the harmonics before the cutoff are not sub-

stantially changed. The same trend is also observed for laser

intensities I 5 1014 W/cm2 and I 5 2 3 1014 W/cm2, even if the

lowering of the background is not as strong.

As demonstrated in Ref. [22], the Rydberg bound states

strongly contribute to the background of the HHG spectrum.

The addition of Gaussian continuum functions to the basis

set allows one to appropriately describe the low-lying contin-

uum states, leading to a more balanced basis set yielding a

lower background and therefore a much clearer identification

of the cutoff region. Of course, such an improvement depends

on the intensity of the laser pulse, since larger intensities

require to describe continuum states of higher energy and,

therefore, require more Gaussian continuum functions.

Comparison with grid calculations and improvement of the

lifetime model

We now investigate in more detail the performance of the 6-

aug-cc-pVTZ 1 8K basis set by comparison with grid calculations.

In Figure 7 we compare the velocity HHG spectrum

extracted from the acceleration power spectrum, obtained

with the 6-aug-cc-pVTZ 1 8K basis set with two lifetime mod-

els, and with grid calculations for the same laser intensities as

before and for k0 5 800 and 1064 nm. The acceleration power

spectrum, rather than the dipole power spectrum, was chosen

here because the grid calculation is easier to converge for

the acceleration power spectrum. For the intensity I 5 5 3 1013

W/cm2 and for the two wavelengths, the spectra obtained with

the Gaussian basis set and the original lifetime model (with

d 5 1.41 bohr) are in good agreement with the ones from the

grid calculations. In particular, the cutoff appears at almost the

Figure 5. Comparison between the exact radial wave function R(r)[45] and

the radial wave function obtained using the 6-aug-cc-pVTZ 1 8K basis set

for a s continuum state at the energy E 5 0.1162 hartree (upper panel). In

the lower panel, the same comparison is done for a similar state of close

energy E 5 0.1729 hartree but with the 6-aug-cc-pVTZ basis set, that is,

without the Kaufmann basis functions. The radial wave functions obtained

in the grid calculations are also shown. Since continuum wave functions

cannot be normalized in the standard way, the curves have been scaled in

order to approximately have the same value at the first minimum.

Figure 6. Comparison among the velocity HHG spectra of the H atom

extracted from the dipole power spectrum x2Pz(x) calculated with the 6-

aug-cc-pVTZ basis set plus 3 (left), 5 (middle), and 8 (right) Gaussian con-

tinuum (K) functions. The laser intensity is I 5 5 3 1013 W/cm2 (top),

I 5 1014 W/cm2 (middle), and 2 3 1014 W/cm2 (bottom). The ionization

threshold (Ip/x0, vertical dashed line) and the harmonic cutoff in the three-

step model Ncutoff (vertical dot-dashed line) are also shown.
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same energy. However, for the larger intensities, the intensity of

the higher harmonics in the plateau obtained with the Gaussian

basis set decrease too rapidly. This can be attributed to a limita-

tion of the original lifetime model which assigns too large life-

times to high-energy continuum states.

For this reason we introduce a modified version of the life-

time model, with two different values of the parameter d: a

large value, d0 5 50 bohr, for continuum states with positive

energies below the energy cutoff of the three-step model

Ecutoff – Ip, and a small value, d1 5 0.1 bohr, for continuum

Figure 7. Velocity HHG spectrum extracted from the acceleration power spectrum Paz
ðxÞ=x2 calculated with the 6-aug-cc-pVTZ 1 8K basis set with two

lifetime models and with grid calculations, for the two laser wavelength k0 5 800 nm (upper panel) and 1064 nm (lower panel), the laser intensities I 5 5

3 1013, 1014, and 2 3 1014 W/cm2. The ionization threshold (Ip/x0, vertical dashed line) and the harmonic cutoff in the three-step model Ncutoff (vertical

dot-dashed line) are also shown.
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states with energies above Ecutoff – Ip. The ionization rates Ck

are thus smaller than in the original model for low-lying con-

tinuum states, and larger for high-lying continuum states. This

choice allows us to get a more accurate description of the har-

monics in the plateau and close to the cutoff. The values of d0

and d1 have been chosen comparing with the corresponding

grid HHG spectra. Not surprisingly, the value of d0 is of the

order of magnitude of the electron excursion distance Rmax

(see Table 2).

We test our modified lifetime model by calculating the ioni-

zation probability (for both the grid and Gaussian-basis-set

calculations)

WðtÞ512
Xbound

k

jhwkjWðtÞij
2; (15)

where the sum runs over all the bound states. Figure 8 reports

W(t) obtained with the original and the modified lifetime mod-

els and from the grid calculations for the three laser inten-

sities. The original lifetime model leads to largely

overestimated ionization probabilities in comparison to the

results obtained from the grid calculations. Our modified life-

time model reduces the ionization probability and is in better

agreement with the grid calculations, especially for the inten-

sities I 5 1014 W/cm2 and I 5 2 3 1014 W/cm2.

Coming back to Figure 7, it is seen that the combined use

of the 6-aug-cc-pVTZ 1 8K basis set and of the modified life-

time model results in a HHG spectrum that is in good agree-

ment with the one obtained with the grid calculation at

wavelength k0 5 800 nm and the intensity I 5 1014 W/cm2. The

general shape of the spectrum and the position of the har-

monic cutoff are well reproduced with the Gaussian basis set,

the only remaining differences being larger peaks and a larger

background after the cutoff in comparison to the grid results.

For the same wavelength and the largest intensity I 5 2 3

1014 W/cm2, the agreement is also fairly good even though

the position of the harmonic cutoff predicted with the Gaus-

sian basis set is slightly too low.

The longer laser wavelength k0 5 1064 nm represents a

more stringent test for our method since higher-energy

regions are probed (see Table 2). The agreement between

the HHG spectra obtained with the Gaussian basis set and

from the grid calculations is still pretty good for the intensity

I 5 5 3 1013 W/cm2, while the position of the cutoff is

slightly underestimated for the intensity I 5 1014 W/cm2 and

significantly underestimated for the largest intensity I 5 2 3

1014 W/cm2. This likely comes from a too poor description of

the continuum states above 1 hartree with the 6-aug-cc-

pVTZ 1 8 K basis set, which can be populated for these

wavelengths and intensities. A larger number of continuum

Gaussian functions is needed in order to improve the

high-energy part of the HHG spectrum for the largest inten-

sities. We note, however, that increasing the number of con-

tinuum Gaussian functions can lead to near-linear

dependencies in the basis set (seen with the presence of

very small eigenvalues of the overlap matrix of the basis

functions) and thus numerical instability issues in self-

consistent-field calculations.

Figure 8. Ionization probability W(t) for the laser wavelength k0 5 800 and the intensities I 5 5 3 1013 W/cm2 (left), I 5 1014 W/cm2 (middle), and 2 3 1014

W/cm2 (right) obtained with the 6-aug-cc-pVTZ 1 8K basis set with the original (one parameter) and modified (two parameters) lifetime models, compared

with the results from the grid calculations.
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Conclusions

In this work, we have explored the calculation of the velocity HHG

spectrum of the H atom extracted from the dipole, velocity, and

acceleration power spectra with Gaussian basis sets for different

laser intensities and wavelengths. While all the three power spec-

tra give reasonable velocity HHG spectra with similar harmonic

peaks before the cutoff, they tend to differ in the background

region beyond the cutoff. The HHG spectrum extracted from the

dipole power spectrum is the most sensitive to the basis set. With

the 6-aug-cc-pVTZ basis set it leads to a high background which

blurs out the location of the plateau cutoff.

Increasing the cardinal number of the basis set (from X 5 T to

X 5 5) or the number of diffuse basis functions (from N 5 6 to

N 5 9) does not improve the HHG spectrum. By contrast, adding 5

or 8 Gaussian continuum functions, as proposed by Kaufmann

et al.,[29] leads to an improvement of the velocity HHG spectrum

extracted from the dipole power spectrum at least for laser inten-

sities up to 1014 W/cm2 by decreasing the background, which

thus allows one to better identify the cutoff region.

The combined use of Gaussian continuum functions and a

heuristic lifetime model with two parameters for modeling ion-

ization results is in a fairly good agreement with the reference

HHG spectra from grid calculations, in terms of the general

shape of the spectrum, the number and intensity of peaks,

and the position of the cutoff. The agreement is less satisfac-

tory for the largest intensities because the high-energy contin-

uum states are poorly reproduced by the Gaussian basis set

calculations. Improving the accuracy for the largest intensities

would require a larger number of Gaussian continuum

functions.

Gaussian continuum functions thus appear as a promising

way of constructing Gaussian basis sets for studying electron

dynamics in strong laser fields, allowing one to define a bal-

anced basis set to properly describe both bound and contin-

uum eigenstates. The present work therefore opens the way

to the systematic application of well established quantum

chemistry methods with Gaussian basis sets to the study of

highly nonlinear phenomena (such as HHG, photoionization

cross sections, above-threshold ionization rates,. . .) in atoms

and molecules.
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APPENDIX : RELATIONSHIP BETWEEN THE
DIPOLE, VELOCITY, AND ACCELERATION FORMS
OF THE POWER SPECTRUM

In this appendix, we review the relationship between

the dipole, velocity, and acceleration forms of the

power spectrum.[14,15,46] If we define

nðtÞ5hWðtÞjn̂jWðtÞi, where n stands for position z,

velocity vz, or acceleration az, and its Fourier transform

nðxÞ5
ðtf

ti

nðtÞe2ixtdt; (16)

the three forms of the power spectrum are commonly

expressed as

PnðxÞ5
1

ðtf2tiÞ2
jnðxÞj2: (17)

and the relationship between the three forms is the rela-

tionship between the three jnðxÞj2.
Applying Eq. (16) for n 5 vz, performing an integra-

tion by parts over t, and using vz(t) 5 dz(t)/dt, gives

vzðxÞ5zðtfÞe2ixtf 2zðtiÞe2ixti 1ixzðxÞ; (18)

which, if we have the condition z(ti) 5 0, can be simpli-

fied as

vzðxÞ5zðtfÞe2ixtf 1ixzðxÞ: (19)

The relation between jzðxÞj2 and jvzðxÞj2 is then

jvzðxÞj25x2jzðxÞj21ðzðtfÞ222 xzðtfÞIm½zðxÞeixtf �Þ; (20)

which, in the case where we can make the approxima-

tion z(tf) � 0, simplifies as

jvzðxÞj2 � x2jzðxÞj2: (21)

Similarly, applying now Eq. (16) for n 5 az, using

az(t) 5 dvz(t)/dt, and integrating by parts gives

azðxÞ5vzðtfÞe2ixtf 1ixvzðxÞ; (22)

where we have used the condition vz(ti) 5 0. This leads

to the relation between jvzðxÞj2 and jazðxÞj2

jazðxÞj25x2jvzðxÞj21ðvzðtfÞ222 xvzðtfÞIm½vzðxÞeixtf �Þ; (23)

which, if we can make the approximation vz(tf) � 0,

gives the final approximate relations between the three

forms of the spectrum

x2PzðxÞ � Pvz
ðxÞ � 1

x2
Paz
ðxÞ: (24)
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