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ABSTRACT
We consider a one-dimensional effective quantum electrodynamics (QED) model of the relativistic hydrogen-like atom using delta-potential
interactions. We discuss the general exact theory and the Hartree–Fock approximation. The present one-dimensional effective QED
model shares the essential physical feature of the three-dimensional theory: the nuclear charge polarizes the vacuum state (creation of
electron–positron pairs), which results in a QED Lamb-type shift of the bound-state energy. Yet, this 1D effective QED model eliminates
some of the most serious technical difficulties of the three-dimensional theory coming from renormalization. We show how to calculate the
vacuum-polarization density at zeroth order in the two-particle interaction and the QED Lamb-type shift of the bound-state energy at first
order in the two-particle interaction. The present work may be considered a step toward the development of a quantum-chemistry effective
QED theory of atoms and molecules.
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I. INTRODUCTION
It is important to take into account the effects of special

relativity in the quantum description of chemical systems with heavy
elements.1 Relativistic electronic-structure computational methods
based on the no-pair Dirac–Coulomb or Dirac–Coulomb–Breit
Hamiltonian have thus been developed and are now routinely
applied to molecular systems (see, e.g., Refs. 2–4). The next chal-
lenge for relativistic quantum chemistry is to go beyond the no-
pair approximation,5,6 i.e., including the quantum-electrodynamics
(QED) effect of virtual electron–positron pairs. This is desirable not
only for an increased accuracy but also in order to put relativistic
quantum chemistry on deeper theoretical grounds.

Bound-state QED perturbative techniques have been developed
to perform highly accurate calculations on few-electron atomic sys-
tems (see, e.g., Refs. 7–10). For many-electron atoms, it has been
proposed to estimate QED corrections with model one-electron
operators (see, e.g., Refs. 11–16). This approach has also been
extended to many-electron molecular systems (see, e.g., Refs. 17 and
18). Another strategy to include QED effects in electronic-structure
calculations of atoms and molecules would be to use relativistic

density-functional theory based on QED,19–25 but it has yet to be
applied beyond the no-pair approximation.

An attractive approach to performing ab initio calculations
beyond the no-pair approximation is to use a fermionic Fock-space
effective QED Hamiltonian with the Coulomb or Coulomb–Breit
two-particle interaction (see, e.g., Refs. 2 and 26–33). This effective
QED theory properly includes the effects of vacuum polarization
through the creation of electron–positron pairs but does not
explicitly include the photon degrees of freedom. It is, thus, a more
tractable alternative to full QED for atomic and molecular calcu-
lations. This so-called no-photon QED has been the subject of a
number of detailed mathematical studies,34–41 which, in particu-
lar, established the soundness of this approach at the Hartree–Fock
level. Based on this effective QED theory, it has been proposed to
formulate a relativistic density-functional theory32 and a relativis-
tic reduced density-matrix functional theory.42 However, as in full
QED, this effective QED theory still contains ultraviolet divergences
that need to be dealt with by regularization and renormalization (see,
e.g., Refs. 37 and 41). Consequently, no practical implementation of
this effective QED theory has been done so far.
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In this work, as a first step toward the implementation of the
above-mentioned effective QED theory for atomic and molecular
calculations, we apply it to a one-dimensional (1D) model of the
relativistic hydrogen-like atom using delta-potential interactions. In
the non-relativistic version of this model,43–46 the use of the delta
potential is motivated by the fact that it leads to the same ground-
state energy and wave function as the ground-state energy and radial
wave function of the three-dimensional (3D) hydrogen-like atom
with the Coulomb potential. The relativistic version of this model
has also been studied without QED effects,47–50 and some QED
aspects were considered by Nogami and Beachey.51 The present 1D
effective QED model can also be thought of as the massive Thirring
quantum-field theory model (see, e.g., Refs. 52–56) with an addi-
tional external potential. Note that the massive Thirring model can
itself be essentially thought of as a sort of “infinite-mass photon”
limit57–59 of the massive Thirring–Wess model60 (i.e., the massive
Schwinger model of QED61 with a massive photon), the infinite-
mass photon field generating the delta-potential interaction. As we
will show, the present 1D effective QED model shares the essential
physical feature of the 3D effective QED theory that we are inter-
ested in: the nuclear charge polarizes the vacuum state (creation of
electron–positron pairs), which results in a Lamb-type shift of the
bound-state energy. Yet, this 1D effective QED model eliminates
a lot of the difficulties of the 3D effective QED theory; it removes
some of the most serious ultraviolet divergences that appear in the
standard 3D case.

The paper is organized as follows: In Sec. II, we consider the
first-quantized theory of a 1D relativistic electron in free space and in
a hydrogen-like atom with a delta potential. In Sec. III, we formulate
the second-quantized effective QED theory for the 1D hydrogen-like
atom. After writing the general Hartree–Fock equations, we study
the vacuum-polarization density and the Lamb-type shift of the
bound-state energy in a first-order perturbation theory with respect
to the Coulomb–Breit-type two-particle interaction. Section IV con-
tains our conclusions. Finally, some technical details are given in
Appendices A–E. Hartree atomic units (a.u.) are used throughout
this work.

II. FIRST-QUANTIZED ONE-ELECTRON THEORY
In this section, we consider a 1D relativistic electron in a first-

quantized theory. As shown in Appendix A, in 1D, we can work with
two-component states in the Hilbert space h = L2

(R,C)⊗C2.

A. Free-electron Dirac equation
Let us start with the 1D free-electron Dirac equation (see, e.g.,

Refs. 50 and 62),

D0(x)ψ(x) = εψ(x), (1)

where ψ(x) is a two-component vector with large (L) and small (S)
components,

ψ(x) =
⎛
⎜
⎝

ψL
(x)

ψS
(x)

⎞
⎟
⎠

, (2)

ε is the associated energy, and D0 is the 1D free-electron 2 × 2 Dirac
Hamiltonian (see Appendix A),

D0(x) = cσ1 px + σ3 mc2, (3)

where px = −id/dx is the momentum operator, c is the speed of light,
m = 1 a.u. is the electron mass (which will be kept in the equations
for clarity), and σ1 and σ3 are the 2 × 2 Pauli matrices,

σ1 =
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

and σ3 =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

. (4)

The domain of this Hamiltonian (i.e., the set of functions on
which it can act) is Dom(D0) = H1

(R,C)⊗C2, where H1
(R,C)

= {ψ ∈ L2
(R,C) ∣ dψ/ dx ∈ L2

(R,C)} is the first-order Sobolev
space.

The Hamiltonian D0 has parity symmetry, i.e., it commutes
with the relativistic 2 × 2 parity operator

P = σ3Px→−x, (5)

where Px→−x is the spatial parity operator that flips the sign of the
coordinate x. We can thus look for gerade (g) and ungerade (u)
symmetry-adapted eigenfunctions of D0 such that Pψg

(x) = ψg
(x)

and Pψu
(x) = −ψu

(x).
As well known, the Hamiltonian D0 has only a contin-

uous energy spectrum (−∞,−mc2
] ∪ [mc2,+∞). The general-

ized eigenfunctions (i.e., “continuum eigenfunctions” not belong-
ing to the Hilbert space h) associated with the positive energy
εk =
√

k2c2
+m2c4 are

ψg
+,k(x) = Ak

⎛
⎜
⎝

cos (kx)

isk sin (kx)

⎞
⎟
⎠

, k ∈ [0,+∞), (6a)

ψu
+,k(x) = Ak

⎛
⎜
⎝

sin (kx)

− isk cos (kx)

⎞
⎟
⎠

, k ∈ (0,+∞), (6b)

and the generalized eigenfunctions associated with the negative
energy −εk are

ψg
−,k(x) = Ak

⎛
⎜
⎝

isk cos (kx)

sin (kx)

⎞
⎟
⎠

, k ∈ (0,+∞), (7a)

ψu
−,k(x) = Ak

⎛
⎜
⎝

− isk sin (kx)

cos (kx)

⎞
⎟
⎠

, k ∈ [0,+∞), (7b)

where sk = kc/(εk +mc2
) and Ak =

√

(εk +mc2
)/(2πεk) is a nor-

malization constant chosen to impose the generalized orthogonality
relation,

∫

∞

−∞

ψ†
±,k1
(x)ψ

±,k2
(x) dx = δ(k1 − k2). (8)

Note that, in the non-relativistic limit (c→∞), we have sk → 0
and Ak → 1/

√
π, and the generalized eigenfunctions properly

reduce to the non-relativistic continuum states (1/
√
π) cos (kx) and

(1/
√
π) sin (kx) (see, e.g., Ref. 63).
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B. Hydrogen-like Dirac equation
We now consider the 1D hydrogen-like Dirac equation,48

D(x)ψ̃(x) = ε̃ψ̃(x) (9)

with the 1D hydrogen-like Dirac Hamiltonian composed of the
free-electron Dirac Hamiltonian and an electrostatic-type nuclear-
electron Dirac-delta potential term

D(x) = D0(x) − Zδ(x)I2, (10)

where Z is the nuclear charge [with 0 ≤ Z ≤ 2c so as to have a positive
bound-state energy in Eq. (13)] and I2 is the 2 × 2 identity matrix.

The delta potential in Eq. (10) is, in fact, ambiguous. Indeed,
due to the delta potential, any eigenfunction ψ̃ of D is expected to
have a discontinuity at x = 0, but the action of a delta distribution
on a discontinuous function is not a priori defined. Mathemati-
cally, D can be precisely defined as a self-adjoint extension of the
free-electron Dirac operator D0 restricted to an initial domain of
functions vanishing at x = 0. This leads to defining D as having the
same action as D0 but on a smaller domain of the form64–67

Dom(D) = {ψ̃ ∈ H1
(R/{0},C)⊗C2

∣ ψ̃(0+) =Mψ̃(0−)}, (11)

where H1
(R/{0},C) ≡ H1

(R−,C)⊕H1
(R+,C) is a broken

Sobolev space (i.e., the direct sum of Sobolev spaces on adjacent
spatial domains without regularity conditions across the frontiers,
here allowing for a discontinuity at x = 0) and M is a unitary 2 × 2
matrix enforcing a boundary condition at 065 (note that the fact that
M is unitary implies that the density ψ̃ †ψ̃ of any state ψ̃ ∈ Dom(D)
is continuous at x = 0). Different choices for M are possible. As in
Refs. 47–49, we choose

M =
⎛
⎜
⎝

cos θ i sin θ

i sin θ cos θ

⎞
⎟
⎠

(12)

with tan(θ/2) = λ = Z/(2c). This boundary condition can also be
obtained by integrating Eq. (9) around x = 0 and formally defining

∫
0+

0− δ(x)ψ̃(x) dx = (1/2)[ψ̃(0+) + ψ̃(0−)],47,48 or, more rigorously,
using Colombeau’s generalized theory of distributions, allowing
one to give a meaning to the distribution product δ(x)ψ̃(x).49 Let
us mention that another boundary condition that has also been
used50,68–70 has the same form as Eq. (12), but with θ replaced by
θ′ = 2λ. The latter boundary condition can be obtained by consider-
ing the zero-width limit of a square-well potential.68,70

Note that the 3D hydrogen-like Dirac Hamiltonian with
Coulomb potential has a unique self-adjoint extension for
Z ≤
√

3c/2 and many self-adjoint extensions for Z >
√

3c/2 (see,
e.g., Refs. 71 and 72). The situation for the present 1D model is,
thus, worse in the sense that the 1D hydrogen-like Dirac Hamilto-
nian with delta potential has many self-adjoint extensions as soon
as Z > 0. A strong motivation for using the particular self-adjoint
extension determined by Eq. (12) is that it is the self-adjoint exten-
sion that seems to be numerically obtained when working on a basis
of smooth functions such as Hermite functions or plane waves. This
point will be further discussed in a forthcoming study.

The Hamiltonian D has a single bound state with positive
energy,48,51,69

ε̃1 = mc2 1 − λ2

1 + λ2 , (13)

and eigenfunction

ψ̃1(x) = A
⎛
⎜
⎝

1

iλ sgn (x)

⎞
⎟
⎠

e−κ∣x∣, (14)

where sgn is the sign function, κ = 2mcλ/(1 + λ2
), and

A =
√

κ/(1 + λ2
). In the non-relativistic limit (c→∞), we

have λ→ 0 and κ→ mZ, so we properly recover the bound-state
eigenfunction

√
mZe−κ∣x∣ of the non-relativistic 1D hydrogen-like

atom.43,46 In this limit, the bound-state energy has the expansion

ε̃1 = mc2
−

mZ2

2
+

mZ4

8c2 +O(
1
c4 ), (15)

where −mZ2
/2 is the non-relativistic bound-state energy, and we

notice that the leading relativistic correction mZ4
/8c2 has an oppo-

site sign compared to the case of the ground-state energy of the
standard 3D Dirac hydrogen-like atom with Coulomb potential (see,
e.g., Ref. 4).

Besides the bound state, the Hamiltonian D has also
a continuous energy spectrum (−∞,−mc2

] ∪ [mc2,+∞). The
generalized eigenfunctions associated with the positive energy
εk =
√

k2c2
+m2c4 are51

ψ̃g
+,k(x) = Ak

⎛
⎜
⎝

cos (k∣x∣ + δ+k )

isk sgn (x) sin (k∣x∣ + δ+k )

⎞
⎟
⎠

, k ∈ (0,+∞), (16a)

ψ̃u
+,k(x) = Ak

⎛
⎜
⎝

sgn (x) sin (k∣x∣ + δ−k )

− isk cos (k∣x∣ + δ−k )

⎞
⎟
⎠

, k ∈ (0,+∞), (16b)

and the generalized eigenfunctions associated with the negative
energy −εk are

ψ̃g
−,k(x) = Ak

⎛
⎜
⎝

isk cos (k∣x∣ − δ−k )

sgn (x) sin (k∣x∣ − δ−k )

⎞
⎟
⎠

, k ∈ (0,+∞), (17a)

ψ̃u
−,k(x) = Ak

⎛
⎜
⎝

− isk sgn (x) sin (k∣x∣ − δ+k )

cos (k∣x∣ − δ+k )

⎞
⎟
⎠

, k ∈ (0,+∞), (17b)

where tan δ±k = λ(εk ±mc2
)/(kc). In the non-relativistic limit, we

have δ+k → mZ/k and δ−k → 0, and we properly recover the contin-
uum eigenstates of the non-relativistic 1D hydrogen-like atom.73
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III. SECOND-QUANTIZED EFFECTIVE
QUANTUM ELECTRODYNAMICS

In this section, we start by considering a finite-dimensional
approximation to the Hilbert space of the first-quantized one-
electron theory, e.g., hL,Λ

= hL,Λ
s ⊗C2, where the spatial part can be

chosen as37

hL,Λ
s = span(x ∈ ΩL ↦ eikx

∣ k ∈
2πZ

L
, ∣k∣ ≤ Λ), (18)

corresponding to an electron on the interval ΩL = (−L/2, L/2) with
maximal momentum Λ. The infrared (IR) cutoff L is convenient to
discretize the generalized continuum eigenfunctions and, thus, write
sums over these eigenfunctions instead of integrals. The ultraviolet
(UV) cutoff Λ is necessary to avoid divergences of some quanti-
ties, such as total energies. We stress that we introduce these cutoffs
only for formally writing the second-quantized theory, but we do
not actually solve the Dirac equation with these cutoffs. Ultimately,
we will take the limits L→∞ and Λ→∞ of non-diverging physical
quantities, and we will thus use the solutions of the Dirac equation
in the infinite-dimensional Hilbert space h obtained in Sec. II.

A. Electron–positron Hamiltonian in Fock space
On a finite-dimensional space, the solutions of the free-electron

Dirac equation in Eq. (1) form a discrete finite set of M =MPS +MNS
orbitals, which can be partitioned into a set of MPS positive-energy
states (PS) {ψp}p∈PS and a set of MNS negative-energy states (NS)
{ψp}p∈NS.

We can now introduce the relativistic fermionic Fock space F ,
which is just a 2M-dimensional complex Hilbert space, i.e., F ≅ C2M

,
where ≅ means “isomorphic to.” More operationally, it is written as
a direct sum,

F =
(MPS ,MNS)

⊕
(n,m)=(0,0)

H(n,m), (19)

where H(n,m) represents the Hilbert space of n free electrons and
m free positrons, which is defined in a second-quantization for-
malism as follows: We introduce electron annihilation operators
{b̂p}p∈PS and positron annihilation operators {d̂p}p∈NS acting in
the Fock space, and their adjoint creation operators {b̂†

p}p∈PS and
{d̂†

p}p∈NS, respectively, such that the anticommutator of any two of
these operators is zero except for

∀p, q ∈ PS,{b̂p, b̂†
q} = δp,q and ∀p, q ∈ NS,{d̂p, d̂†

q} = δp,q. (20)

We also introduce the free vacuum state ∣0⟩ ∈ F such that

∀p ∈ PS, b̂p∣0⟩ = 0 and ∀p ∈ NS, d̂p∣0⟩ = 0. (21)

The space H(n,m) is spanned by the action of n electron creation
operators and m positron creation operators on the vacuum state
∣0⟩, in an arbitrary order,

H(n,m)
= span(b̂†

p1 b̂†
p2 ⋅ ⋅ ⋅ b̂

†
pn d̂†

q1 d̂†
q2 ⋅ ⋅ ⋅ d̂

†
qm ∣0⟩,

p1 < p2 < ⋅ ⋅ ⋅ < pn ∈ PS, q1 < q2 < ⋅ ⋅ ⋅ < qm ∈ NS). (22)

In this way, the finite-dimensional Hilbert space hL,Λ of the first-
quantized one-electron theory is reinterpreted as composed of an
electronic component H(1,0) and positronic component H(0,1), i.e.,
hL,Λ
≅ H(1,0)

⊕H(0,1) with the mapping ψp → b†
p ∣0⟩ for p ∈ PS and

ψp → d†
p ∣0⟩ for p ∈ NS. In this sense, hL,Λ can be considered a

subspace of the Fock space. Note that, even though we do not
include spin degrees of freedom in our model, we nevertheless use
a fermionic Fock space, similar to what is done in spinless fermion
models (see, e.g., Ref. 74).

Acting in the Fock space, we now define the Dirac field operator
ψ̂(x) at a fixed point x ∈ ΩL,

ψ̂(x) = ∑
p∈PS

ψp(x) b̂p + ∑
p∈NS

ψp(x) d̂†
p , (23)

where {ψp}p∈PS∪NS are the eigenfunctions of the free-electron Dirac
equation. The Dirac field operator is an operator-valued two-
component row vector, i.e., ψ̂(x) ∈ L(F , F )2×1, where L(F, F) is
the space of linear operators from F to F . We also define the one-
particle density-matrix operator n̂1(x, x′) ∈ L(F , F )2×2 at points x
and x′,

n̂1(x, x′) = N [ψ̂†
(x′)⊗ ψ̂(x)], (24)

and the pair density-matrix operator n̂2(x1, x2) ∈ L(F , F )4×4 at
points x1 and x2,

n̂2(x1, x2) = −N [ψ̂†
(x1)⊗ ψ̂†

(x2)⊗ ψ̂(x1)⊗ ψ̂(x2)], (25)

where ⊗ designates here the tensor product (also called the Kro-
necker product or matrix direct product; see Appendix B) and
N [. . .] designates the normal ordering of the elementary creation
and annihilation operators b̂†

p , b̂p, d̂†
p , and d̂p associated with the

free vacuum state ∣0⟩. We recall that normal ordering of a string
of creation and annihilation operators means performing anticom-
mutations of these elementary operators to put all the annihilation
operators to the right of the creation operators. Note that, in Eq. (25),
the unusual order of the field operators is due to the use of the tensor
product, but the minus sign makes the matrix elements of n̂2(x1, x2)

consistent with the definition given in Ref. 32.
The normal-ordered electron–positron Hamiltonian in Fock

space2,26,32,75 (see also Ref. 28) can then be written as

Ĥ = ∫
ΩL

tr[D(x)n̂1(x, x′)]x′=x dx

+
1
2∫ΩL

∫
ΩL

Tr[w(x1, x2)n̂2(x1, x2)] dx1 dx2, (26)

where tr and Tr designate the trace for 2 × 2 and 4 × 4 matri-
ces, respectively. In Eq. (26), w(x1, x2) is the 4 × 4 two-particle
interaction matrix chosen as69

w(x1, x2) = δ(x1 − x2)(I2 ⊗ I2 − σ1 ⊗ σ1), (27)

where the first and second terms are the 1D analogs of the Coulomb
and Breit interactions, respectively. Note that, in 3D, the Breit inter-
action is composed of the magnetic Gaunt term and the remaining
retardation correction term (see, e.g., Ref. 32). In 1D, however, the
Breit interaction exactly reduces to the Gaunt interaction. Hence,
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what we call the Breit interaction in the present work may as well be
called the Gaunt interaction. Due to the normal ordering, the Hamil-
tonian in Eq. (26) gives zero energy to the free vacuum state, i.e.,
⟨0∣Ĥ∣0⟩ = 0. Note that, up to a constant, the Hamiltonian in Eq. (26)
can equivalently be written with commutators and anticommutators
of field operators.32

The electron–positron Hamiltonian Ĥ does not commute
separately with the electron and positron number operators,
N̂e = ∑p∈PS b̂†

p b̂p and N̂p = ∑p∈NS d̂†
p d̂p, i.e., it does not conserve elec-

tron or positron numbers. However, the Hamiltonian Ĥ commutes
with the opposite charge operator (or electron–excess number oper-
ator) N̂ = N̂e − N̂p, i.e., it conserves charge. It is, therefore, more
relevant to decompose the Fock space into charge sectors

F =
MPS

⊕
N=−MNS

FN , (28)

where FN is the Fock space sector of the opposite charge N. For N
≥ 0, we have FN = H(N,0)

⊕H(N+1,1)
⊕ ⋅ ⋅ ⋅ ⊕H(MPS ,MNS−N), and for

N ≤ 0, we have FN = H(0,∣N∣)
⊕H(1,∣N∣+1)

⊕ ⋅ ⋅ ⋅ ⊕H(MPS−∣N∣,MNS).
The lowest energy for N ≥ 0 negative charges is then obtained by
the following minimization:

EN = min
∣Ψ⟩∈WN

⟨Ψ∣Ĥ∣Ψ⟩ = ⟨ΨN ∣Ĥ∣ΨN⟩, (29)

where WN = {∣Ψ⟩ ∈ FN ∣ ⟨Ψ∣Ψ⟩ = 1} is the space of normalized
Fock states with N negative charges and ∣ΨN⟩ is a minimizing state.
The existence of the minimum in Eq. (29) is guaranteed by the
fact that we work in a finite-dimensional setting and, in particular,
by the UV cutoff, which prevents any collapse to infinitely nega-
tive energy. Of particular interest is the correlated vacuum energy
E0 = ⟨Ψ0∣Ĥ∣Ψ0⟩, which is the ground-state energy of the Hamilto-
nian Ĥ and is necessarily negative (since E0 ≤ ⟨0∣Ĥ∣0⟩ = 0). Also of
interest is the lowest energy for one negative charge E1 = ⟨Ψ1∣Ĥ∣Ψ1⟩,
corresponding to a 1D hydrogen-like atom including effective QED
electron–positron effects.

Similar to the 3D case with Coulomb interaction,37 we expect
that the energies EN remain finite in the IR limit L→∞ but diverge
to −∞ in the UV limit Λ→∞. However, we speculate that the
relative energies with respect to the correlated vacuum energy

EN = EN − E0 (30)

remain finite as L→∞ and Λ→∞. The first quantity of interest
is, thus, E1, i.e., the ground-state energy of a 1D hydrogen-like atom
including effective QED electron–positron effects with respect to the
correlated vacuum energy. In Sec. III E, we will show that the first-
order perturbative estimate of E1 with respect to the two-particle
interaction remains, indeed, finite as L→∞ and Λ→∞.

We note that, in the limit of a zero external nuclear poten-
tial (i.e., Z = 0), Eq. (26) reduces to the Hamiltonian of the massive
Thirring model (up to a possible different choice of normal order-
ing), which can be diagonalized exactly with the Bethe ansatz.53–55,76

However, for Z ≠ 0, we have to resort to approximations.

B. Hartree–Fock approximation
In the Hartree–Fock (HF) approximation, the lowest energy for

N ≥ 0 negative charges is approximated as

EHF
N = min

∣Φ⟩∈SN

⟨Φ∣Ĥ∣Φ⟩, (31)

where the search is restricted to the manifold of N-electron single-
determinant states SN ⊂ FN ,

SN = {∣Φ⟩ = eκ̂ (κ)b̂†
1 b̂†

2 ⋅ ⋅ ⋅ b̂
†
N ∣0⟩ ∣ κ ∈ C

M×M , κ†
= −κ}, (32)

where eκ̂ (κ) is a unitary operator in Fock space performing an orbital
rotation (corresponding to a Bogoliubov transformation mixing
electron annihilation operators b̂p and positron creation operators
d̂†

p)2,3,26,32,75,77,78 with the anti-Hermitian operator κ̂(κ),

κ̂(κ) = ∑
p∈PS
∑
q∈PS

κp,qb̂†
p b̂q +∑

p∈PS
∑
q∈NS

κp,qb̂†
p d̂†

q

+ ∑
p∈NS
∑
q∈PS

κp,q d̂pb̂q + ∑
p∈NS
∑
q∈NS

κp,q d̂p d̂†
q (33)

with the orbital rotation parameters κp,q being the elements of the
anti-Hermitian matrix κ. The operator eκ̂ (κ) generates new creation
operators ˆ̃b†

p = eκ̂ (κ)b̂†
pe−κ̂ (κ) and a new polarized (or dressed) vac-

uum state ∣0̃⟩ = eκ̂ (κ)∣0⟩ such that a single-determinant state ∣Φ⟩
∈ SN can be written as

∣Φ⟩ = ˆ̃b†
1

ˆ̃b†
2 ⋅ ⋅ ⋅

ˆ̃b†
N ∣0̃⟩, (34)

and the corresponding new orbitals are obtained from the original
ones via the unitary matrix U = eκ,

∀p ∈ PS ∪ NS, ϕ̃p(x) = ∑
q∈PS∪NS

ψq(x) Uq,p. (35)

Putting the Hamiltonian of Eq. (26) in normal ordering with
respect to the single-determinant state Φ (see Refs. 26 and 32) leads
to the expression of the HF energy as

EHF
N = ∫

ΩL

tr[D(x)nHF
1 (x, x′)]x′=x dx

+
1
2∫ΩL

∫
ΩL

Tr[w(x1, x2)nHF
2 (x1, x2)] dx1 dx2, (36)

where nHF
1 (x, x′) = ⟨Φ∣n̂1(x, x′)∣Φ⟩ is the HF one-particle density

matrix, which can be written as

nHF
1 (x, x′) = nHF,el

1 (x, x′) + nHF,vp
1 (x, x′), (37)

including the contribution from the occupied electronic (el) orbitals,

nHF,el
1 (x, x′) =

N

∑
i=1

ϕ̃i(x)ϕ̃†
i (x
′
), (38)

and the vacuum-polarization (vp) contribution,

nHF,vp
1 (x, x′) = ∑

p∈NS
ϕ̃p(x)ϕ̃†

p(x
′
) − ∑

p∈NS
ψp(x)ψ

†
p(x
′
), (39)
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and nHF
2 (x1, x2) = ⟨Φ∣n̂2(x1, x2)∣Φ⟩ is the HF pair-density matrix,

nHF
2 (x1, x2) = nHF

1 (x1, x1)⊗ nHF
1 (x2, x2)

− X (nHF
1 (x2, x1)⊗ nHF

1 (x1, x2)), (40)

where X is the permutation matrix,

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (41)

which exchanges the second and third lines in the matrix it
multiplies on the right.

The stationary condition corresponding to the minimization in
Eq. (31) leads to the following HF equations, which determine the
HF orbitals {ϕ̃p}p∈PS∪NS and HF orbital energies {ε̃p}p∈PS∪NS,

(D(x) + vH(x))ϕ̃p(x) + ∫
ΩL

vx(x, x′)ϕ̃p(x′) dx′ = ε̃pϕ̃p(x), (42)

with the local 2 × 2 Hartree potential,

vH(x1) = ∫
ΩL

Tr2[w(x1, x2) (I2 ⊗ nHF
1 (x2, x2))] dx2, (43)

and the non-local 2 × 2 exchange potential,

vx(x1, x2) = −Tr2[w(x1, x2) X(I2 ⊗ nHF
1 (x1, x2))], (44)

where Tr2 designates the partial trace with respect to the second
particle (see Appendix B).

As for the exact energies, we expect the HF total energies EHF
N to

diverge to −∞ in the UV limit Λ→∞. It is then natural to consider
the HF relative energies with respect to the HF vacuum energy,

EHF
N = EHF

N − EHF
0 , (45)

which should remain finite as L→∞ and Λ→∞. Unfortunately,
even for the present relatively simple 1D model, the HF equations
cannot be solved exactly, even for N = 0. If the vacuum-polarization
density matrix nHF,vp

1 (x, x′) is neglected in Eq. (37), the present HF
equations reduce to standard non-QED relativistic HF equations.
In particular, for N = 1, the latter equations simply reduce to the
hydrogen-like Dirac equation [Eq. (9)].

C. First-order perturbation theory
Since the HF equations cannot be solved exactly, we con-

sider instead a perturbation theory with respect to the two-particle
interaction w(x1, x2) [Eq. (27)].

Instead of the HF one-particle density matrix in Eq. (37), we
thus consider the zeroth-order one-particle density matrix

n1(x, x′) = nel
1 (x, x′) + nvp

1 (x, x′) (46)

with the contribution from the occupied electronic orbitals,

nel
1 (x, x′) =

N

∑
i=1

ψ̃i(x)ψ̃†
i (x
′
), (47)

and the vacuum-polarization contribution,

nvp
1 (x, x′) = ∑

p∈NS
ψ̃p(x)ψ̃†

p(x
′
) − ∑

p∈NS
ψp(x)ψ

†
p(x
′
), (48)

where the zeroth-order orbitals {ψ̃p}p∈PS∪NS are the 1D hydrogen-
like orbitals (determined in Sec. II B in the limits L→∞ and
Λ→∞). The zeroth-order energy is then

E(0)N = ∫
ΩL

tr[D(x)n1(x, x′)]x′=x dx, (49)

and the zeroth-order relative energy with respect to the vacuum is

E(0)N = E(0)N − E(0)0

= ∫
ΩL

tr[D(x)nel
1 (x, x′)]x′=x dx. (50)

Let us now move on to the first-order energy correction,
which is

E(1)N =
1
2∫ΩL

∫
ΩL

Tr[w(x1, x2)n2(x1, x2)] dx1 dx2, (51)

where n2(x1, x2) is the zeroth-order pair-density matrix,

n2(x1, x2) = n1(x1, x1)⊗ n1(x2, x2)

− X (n1(x2, x1)⊗ n1(x1, x2)). (52)

The first-order relative correction is thus

E(1)N = E(1)N − E(1)0

=
1
2∫ΩL

∫
ΩL

Tr[w(x1, x2)Δn2(x1, x2)] dx1 dx2, (53)

where

Δn2(x1, x2) = n2(x1, x2) − nvp
2 (x1, x2), (54)

and nvp
2 (x1, x2) is the zeroth-order vacuum-polarization pair-

density matrix,

nvp
2 (x1, x2) = nvp

1 (x1, x1)⊗ nvp
1 (x2, x2)

− X (nvp
1 (x2, x1)⊗ nvp

1 (x1, x2)). (55)

It can be decomposed as

E(1)N = Eel,(1)
N + Evp,(1)

N , (56)

where Eel,(1)
N is the contribution coming only from the occupied

electronic orbitals,

Eel,(1)
N =

1
2∫ΩL

∫
ΩL

Tr[w(x1, x2)nel
2 (x1, x2)] dx1 dx2 (57)

with

nel
2 (x1, x2) = nel

1 (x1, x1)⊗ nel
1 (x2, x2)

− X (nel
1 (x2, x1)⊗ nel

1 (x1, x2)), (58)
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and Evp,(1)
N is the contribution involving vacuum-polarization terms

Evp,(1)
N = ∫

ΩL
∫
ΩL

Tr[w(x1, x2)nel/vp
2 (x1, x2)] dx1 dx2 (59)

with

nel/vp
2 (x1, x2) = nel

1 (x1, x1)⊗ nvp
1 (x2, x2)

− X (nel
1 (x2, x1)⊗ nvp

1 (x1, x2)). (60)

For the form of the two-particle interaction in Eq. (27), the
vacuum-polarization first-order relative energy correction has four
contributions,

Evp,(1)
N = Evp,(1),DC

N + Evp,(1),XC
N + Evp,(1),DB

N + Evp,(1),XB
N . (61)

The direct Coulomb-type (DC) and exchange Coulomb-type (XC)
contributions are

Evp,(1),DC
N = ∫

ΩL

nel
(x)nvp

(x) dx (62)

and

Evp,(1),XC
N = −∫

ΩL

tr[nel
1 (x)n

vp
1 (x)] dx, (63)

where we have introduced the local electronic and vacuum-
polarization density matrices nel

1 (x) = nel
1 (x, x) and nvp

1 (x)
= nvp

1 (x, x) and the associated electronic and vacuum-polarization
densities nel

(x) = tr[nel
1 (x)] and nvp

(x) = tr[nvp
1 (x)]. Similarly, the

direct Breit-type (DB) and exchange Breit-type (XB) contributions
are

Evp,(1),DB
N = −

1
c2∫ΩL

j el
(x)j vp

(x) dx (64)

and

Evp,(1),XB
N =

1
c2∫ΩL

tr[jel
1 (x)j

vp
1 (x)] dx, (65)

where we have introduced the local electronic and vacuum-
polarization current-density matrices jel

1 (x) = cσ1nel
1 (x)

and jvp
1 (x) = cσ1nvp

1 (x) and the associated electronic and
vacuum-polarization current densities j el

(x) = tr[jel
1 (x)] and

jvp
(x) = tr[jvp

1 (x)].
Note that, in standard QED, the direct contributions in

Eqs. (62) and (64) and the exchange contributions in Eqs. (63)
and (65) are often called “vacuum polarization” and “self-energy”
contributions to the Lamb shift, respectively (see, e.g., Refs. 7 and
18). Here, as in Ref. 32, we adopt the terminology of Ref. 26 and
use “vacuum polarization” to qualify both the direct and exchange
contributions.

D. Vacuum-polarization density
We now calculate the vacuum-polarization density nvp

(x)
appearing in Eq. (62) in the limit L→∞ and Λ→∞. We stress
that this quantity is the opposite-charge vacuum-polarization den-
sity. The charge vacuum-polarization density, e.g., discussed in
Ref. 79, is ρvp

(x) = −nvp
(x).

Using the negative-energy generalized eigenfunctions in
Eqs. (7) and (17), we find the expressions of the local vacuum-
polarization density matrix,

nvp
1 (x) = −∫

∞

0

dk
π

κ
k2
+ κ2

εk +mc2

2mc2

⎛
⎜
⎝

−s2
k fk(x) − iskgk(x)

iskgk(x) fk(x)

⎞
⎟
⎠

, (66)

where fk(x) = κ cos (2kx) − (ε̃1/εk)k sin (2k∣x∣) and
gk(x) = (ε̃1/εk)k cos (2kx) + κ sin (2k∣x∣). We remind that εk
and sk were defined before Eq. (6) and after Eq. (7), respectively, and
ε̃1 and κ were defined in Eq. (13) and after Eq. (14), respectively.
The vacuum-polarization density is then

nvp
(x) = −∫

∞

0

dk
π

κ
k2
+ κ2 fk(x). (67)

It is also easy to check that the vacuum-polarization current density
vanishes, i.e., jvp

(x) = 0.
Note that to obtain Eq. (66) or Eq. (67), we have formally taken

the limits L→∞ and Λ→∞ in each of the two sums in Eq. (48),
which gives two divergent integrals over k, but taking the difference
of the two integrands finally gives a convergent integral over k. The
same approach used for the alternative commutator definition of
the vacuum-polarization density leads to the same result, as shown
in Appendix C. In addition, the vacuum-polarization density inde-
pendently calculated by Nogami and Beachey51 on the same non-
interacting model agrees numerically with the values obtained with
Eq. (67). Finally, we give in Appendix D an alternative expression
of the vacuum-polarization density using a more rigorous approach
based on the Green function, which numerically agrees perfectly
with the expression in Eq. (67).

The vacuum-polarization density originates from the presence
of free electron–positron pairs in the polarized vacuum state due to
the external potential. The vacuum-polarization density is plotted in
Fig. 1 for the physical value of the speed of light c = 137.036 and dif-
ferent values of the nuclear charge Z, and for a fixed value of the
nuclear charge Z = 1 and different values of the speed of light c. For
Z = 0, the vacuum-polarization density is, of course, zero. For Z ≠ 0,
the vacuum-polarization density is localized around the nucleus and
is always negative. At least close to the nucleus, this negative sign can
be understood from Eq. (48) and the fact that the external poten-
tial −Zδ(x) tends to give negative-energy eigenfunctions {ψ̃p}p∈NS
with a smaller probability density near the nucleus in comparison
with the free negative-energy eigenfunctions {ψp}p∈NS (for similar
discussions in the standard QED case, see Ref. 79). As expected,
the amplitude of the vacuum-polarization density increases with
Z. As c decreases, the relativistic effects increase, and the vacuum-
polarization density becomes more and more extended around the
nucleus.

In Appendix D, we also derive the first-order vacuum-
polarization density with respect to Z, i.e., with respect to the
external potential, as

nvp,(1)
(x) = −

Zm
π ∫

∞

1
dt

e−2mc∣x∣t

t
√

t2
− 1

, (68)
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FIG. 1. The vacuum-polarization density nvp
(x) [Eq. (67)] for (a) a fixed value of the speed of light c = 137.036 and different values of the nuclear charge Z and for (b) a

fixed value Z = 1 and different values of c.

which is the equivalent for the present 1D model of the
Uehling vacuum-polarization density (or potential, since the delta-
interaction density and potential are identical) for the 3D hydrogen-
like atom80 (see also, e.g., Refs. 79 and 81). In Eq. (68), it is
manifest that the spatial range of the vacuum-polarization density
is of the order of the reduced Compton wavelength λ- = 1/(mc).
The Uehling-type vacuum-polarization density nvp,(1)

(x) is plot-
ted in Fig. 2 for c = 137.036 and Z = 120. It appears to be a good
approximation to the vacuum-polarization density nvp

(x).
In the 3D case, both for effective QED and for standard QED,

the calculation of the vacuum-polarization density suffers from UV
divergences that require regularization, for example with a finite UV
cutoff Λ, and charge renormalization to absorb the dependence on
the UV cutoff (see, e.g., Refs. 37 and 81). It is noteworthy that, in

FIG. 2. The vacuum-polarization density nvp
(x) [Eq. (67)] (all orders in Z) and the

Uehling-type vacuum-polarization density nvp,(1)
(x) [Eq. (68)] (first order in Z) for

the speed of light c = 137.036 and nuclear charge Z = 120.

the present 1D model, we can obtain a finite vacuum-polarization
density in the limit Λ→∞ without regularization and Λ-dependent
charge renormalization.

As apparent in Fig. 1, the integral over space of the vacuum-
polarization density nvp

(x) is not zero. Nogami and Beachey51 found
an analytical expression for this integral,

∫

+∞

−∞

nvp
(x) dx = −

2
π

arctan(
Z
2c
), (69)

which we numerically confirmed. This means that, sufficiently far
from the nucleus (x≫ λ-), one observes a nucleus charge,

Zobs = Z +
2
π

arctan(
Z
2c
). (70)

Surprisingly, the observed nucleus charge Zobs is larger than the bare
nuclear charge Z. Thus, in contrast to 3D effective or standard QED,
where the bare charge is screened by the vacuum-polarization den-
sity (see, e.g., Ref. 37), in the present 1D model, the bare charge is
(slightly) antiscreened.

However, one should not conclude from Eq. (69) that the vac-
uum state contains a fractional charge. As explained in Refs. 34, 37,
and 38, the opposite charge of the vacuum state should be calculated
as

Nvac
= Nvac

e −Nvac
p , (71)

where Nvac
e and Nvac

p are the number of free electrons and free
positrons, respectively, defined as

Nvac
e = ∫

+∞

−∞
∫

+∞

−∞

tr[P0
+(x

′, x)nvp
1 (x, x′)] dx dx′, (72)

and

Nvac
p = −∫

+∞

−∞
∫

+∞

−∞

tr[P0
−(x

′, x)nvp
1 (x, x′)] dx dx′, (73)
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where P0
+(x′, x) and P0

−(x′, x) are the projectors on the positive-
energy and negative-energy eigenfunctions of the free-particle Dirac
Hamiltonian, respectively. In Appendix E, we calculate Nvac

e and
Nvac

p and numerically find Nvac
e = Nvac

p (to a good precision), i.e., the
vacuum state has zero (fermionic) charge,

Nvac
= 0, (74)

as expected. If, instead of calculating Nvac
e and Nvac

p separately, one
naively adds the integrands in Eqs. (72) and (73), the projector on
the full one-particle Hilbert space P0(x′, x) = P0

+(x′, x) + P0
−(x′, x)

= δ(x − x′)I2 will appear, and one will obtain the non-vanishing
integral of the vacuum-polarization density,

∫

+∞

−∞
∫

+∞

−∞

tr[P0(x′, x)nvp
1 (x, x′)] dx dx′

= ∫

+∞

−∞

tr[nvp
1 (x, x)] dx = ∫

+∞

−∞

nvp
(x) dx ≠ 0. (75)

This apparent paradox comes from the fact that the vacuum-
polarization density matrix nvp

1 (x, x′) is a kernel of an operator
that is not trace-class, which means that the integral trace over
x is ill-defined. It can lead to different values depending on the
way it is calculated. A very similar situation appears when calcu-
lating the screening of the charge of a defect (or impurity) by the
polarization of the Fermi sea in a crystal.82–84 As understood by
Nogami,85 the problem is related to the IR limit L→∞: for finite L,
the vacuum-polarization density integrates to zero, but in the limit
L→∞, there is a contribution to the vacuum-polarization density
that goes uniformly to zero, so that after taking the limit L→∞, one
cannot recover the total charge of the vacuum from the vacuum-
polarization density. The correct zero vacuum charge is obtained by
first calculating the vacuum charge for finite L (which is zero) and
then taking the limit L→∞. Alternatively, after the limit L→∞
has been taken, the information about the zero vacuum charge can
be retrieved from the vacuum-polarization density matrix nvp

1 (x, x′)
via Eqs. (71)–(73).

As noted in Ref. 37, in a finite-dimensional approximation,
the vacuum-polarization density matrix nvp

1 (x, x′) would be trace-
class and, hence, the integral of the vacuum-polarization density in
Eq. (69) would necessarily be zero. It is, therefore, not clear how
one could estimate the observed nuclear charge in Eq. (70) from a
finite-dimensional calculation.

E. First-order energy corrections for the hydrogen-like
atom

We now evaluate the first-order energy corrections in the case
of the hydrogen-like atom, i.e., N = 1, again in the limits L→∞ and
Λ→∞.

The zeroth-order relative energy in Eq. (50) is just the bound-
state orbital energy

E(0)1 = ε̃1, (76)

given in Eq. (13).
The direct and exchange electronic contributions in Eq. (57)

cancel out, i.e., Eel,(1)
1 = 0, and we only have the vacuum-polarization

contribution. Using the bound-state eigenfunction in Eq. (14), we
find the expression of the local electronic density matrix,

nel
1 (x) =

κ
1 + λ2

⎛
⎜
⎝

1 − iλ sgn (x)

iλ sgn (x) λ2

⎞
⎟
⎠

e−2κ∣x∣, (77)

where λ was defined after Eq. (12). The electronic bound-state den-
sity is nel

(x) = κe−2κ∣x∣, and the electronic current density vanishes,
i.e., jel

(x) = 0.
This leads to the expression of the first-order direct and

exchange Coulomb-type vacuum-polarization energy corrections to
the bound-state energy,

Evp,(1),DC
1 = −∫

+∞

−∞

dx∫
∞

0

dk
π
κ2e−2κ∣x∣

k2
+ κ2 fk(x) (78)

and

Evp,(1),XC
1 =

1
1 + λ2∫

+∞

−∞

dx∫
∞

0

dk
π
κ2e−2κ∣x∣

k2
+ κ2

λ2
− s2

k

1 − s2
k

fk(x), (79)

and, similarly, to the first-order direct and exchange Breit-type
vacuum-polarization energy corrections,

Evp,(1),DB
1 = 0 (80)

and

Evp,(1),XB
1 =

−1
1 + λ2∫

+∞

−∞

dx∫
∞

0

dk
π
κ2e−2κ∣x∣

k2
+ κ2

1 − λ2s2
k

1 − s2
k

fk(x). (81)

Finally, after some simplifications, the total first-order vacuum-
polarization energy correction can be put into the compact form

Evp,(1)
1 = −∫

+∞

−∞

dx∫
∞

0

dk
π
κ2e−2κ∣x∣

k2
+ κ2 (1 +

ε̃1εk

m2c4 ) fk(x). (82)

In the present 1D model, the direct contributions in Eqs. (78)
and (80) and the exchange contributions in Eqs. (79) and (81) are the
equivalent of the direct and exchange contributions to the first-order
QED ground-state energy correction in the 3D hydrogen-like atom
with Coulomb potential,86–88 which both contribute to the Lamb
shift.

The different contributions to the first-order QED vacuum-
polarization energy correction, as well as the total energy correction,
are plotted in Fig. 3 as a function of Z for c = 137.036 and as a func-
tion of 1/c for Z = 1. As expected, as Z increases or 1/c increases,
the effect of relativity becomes stronger, and the different contribu-
tions increase in absolute value. The direct Coulomb-type correction
is always negative and is the dominant contribution. The exchange
Coulomb-type correction is always positive, and the exchange Breit-
type correction is always negative, with these two contributions
partially canceling each other. In particular, in the low-relativistic
regime (Z ≲ 40 for c = 137.036 or 1/c ≲ 0.1 for Z = 1), the latter two
contributions almost perfectly cancel each other. The total QED
energy correction is always negative, thus leading to a stabiliza-
tion of the bound state of the 1D hydrogen-like atom. This must
be compared with standard QED, in which the equivalent correc-
tion, after renormalization, on the ground-state energy of the 3D
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FIG. 3. First-order QED vacuum-polarization correction to the bound-state energy of the 1D hydrogen-like atom (a) for c = 137.036 and as a function of Z and (b) for Z = 1
and as a function of 1/c. The direct Coulomb-type (DC) [Eq. (78)], exchange Coulomb-type (XC) [Eq. (79)], and exchange Breit-type (XB) [Eq. (81)] contributions are shown,
as well as the total correction.

hydrogen-like atom contains a largely dominant positive exchange
contribution (the “self-energy” contribution) and a much smaller
negative direct contribution (the “vacuum-polarization” contribu-
tion), resulting in an overall destabilization of the ground state
(see, e.g., Ref. 89). However, note that, just like in the 3D case, the
QED energy correction in the present 1D model has the opposite
sign than the leading relativistic energy correction in Eq. (15) and,
thus, tends to reduce the leading relativistic correction. Finally, using
the Uehling-type approximation in Eq. (68), it can be inferred that
the QED energy correction for the present 1D model starts at order
Z2
/c, whereas for the 3D case, the QED energy correction, after

renormalization, starts at order Z4
/c3 (see, e.g., Ref. 13).

IV. CONCLUSION
In this work, we have considered a 1D effective QED model

of the relativistic hydrogen-like atom using delta-potential inter-
actions. We have exposed the general exact theory and the
Hartree–Fock approximation. We have calculated the vacuum-
polarization density at zeroth order in the two-particle interaction
and the QED correction to the bound-state energy at first order in
the two-particle interaction. The interest of this 1D toy model is that
it shares the essential physical features of the 3D theory but elim-
inates some of the most serious technical difficulties coming from
renormalization.

The next step will be to solve the present 1D effective QED
model in a finite basis set with quantum-chemistry methods, such as
Hartree–Fock and configuration interaction. In particular, it will be
interesting to understand how to efficiently represent the vacuum-
polarization density in a finite basis set. This understanding should
be very useful to reach the ultimate goal of having a full-fledged
quantum-chemistry implementation of 3D effective QED for atoms
and molecules.
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APPENDIX A: REDUCTION OF THE DIRAC
HAMILTONIAN FROM 3D TO 1D

In 3D, we work in the Hilbert space L2
(R3,C)⊗C4 and the

free-electron 4 × 4 Dirac Hamiltonian is
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D0 = c (α⃗ ⋅ p⃗) + β mc2, (A1)

where p⃗ = −i∇⃗ is the momentum operator and α⃗ and β are the 4 × 4
Dirac matrices,

α⃗ =
⎛
⎜
⎝

02 σ⃗

σ⃗ 02

⎞
⎟
⎠

and β =
⎛
⎜
⎝

I2 02

02 −I2

⎞
⎟
⎠

, (A2)

where σ⃗ = (σ1, σ2, σ3) is the three-dimensional vector of the 2 × 2
Pauli matrices and 02 and I2 are the 2 × 2 zero and identity matrices,
respectively. The natural reduction of this Hamiltonian to the x-axis
is the 1D free-electron 4 × 4 Dirac Hamiltonian,

D0,x = c (α1 px) + β mc2. (A3)

Using the unitary transformation,

U =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (A4)

the Hamiltonian D0,x can be transformed into the block-diagonal
form

D′0,x = UD0,xU−1
=
⎛
⎜
⎝

D0 02

02 D0

⎞
⎟
⎠

, (A5)

where D0 = c (σ1px) + σ3mc2 is the 1D free-electron 2 × 2 Dirac
Hamiltonian introduced in Eq. (3). Correspondingly, the eigenstates
of the block-diagonal Hamiltonian D′0,x can be chosen of the form

ψ′1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψL

ψS

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and ψ′2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

ψL

ψS

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A6)

Thus, one can work simply with the 2 × 2 Dirac Hamiltonian D0.
The same result can also be obtained starting from the reduction of
the Hamiltonian to the y-axis.

The eigenstates in Eq. (A6) do not have definite spin, i.e., they
are not eigenstates of the spin-projection operator Σ3 = σ3 ⊕ σ3,
where⊕ designates the matrix direct sum. However, they have time-
reversal symmetry. Indeed, the 1D Dirac Hamiltonian D0 commutes
with the 1D time-reversal operator,50 T1D = σ3K0, where K0 is the
complex-conjugation operator. This implies that ψL and ψS can be
chosen as real-valued and pure-imaginary functions, respectively,

i.e., ψL
= ψL∗ and ψS

= −ψS∗. Imposing these constraints, we can
show that ψ′1 and ψ′2 form a Kramers pair, i.e., they are connected by
the 3D time-reversal operator,2,3 T3D = −iΣ2K0, where Σ2 = σ2 ⊕ σ2.
Indeed, applying the operator T3D in the new basis, we find

UT3DU−1ψ′1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

ψL∗

−ψS∗

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

ψL

ψS

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= ψ′2 (A7)

and

UT3DU−1ψ′2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ψL∗

ψS∗

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ψL

−ψS

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= −ψ′1. (A8)

APPENDIX B: TENSOR PRODUCT AND PARTIAL
TRACE

We briefly review the tensor product (or Kronecker product) of
vectors and matrices and the concept of the partial trace.

Let us consider two vectors ψ ∈ C2 and ϕ ∈ C2,

ψ =
⎛
⎜
⎝

ψ1

ψ2

⎞
⎟
⎠

and ϕ =
⎛
⎜
⎝

ϕ1

ϕ2

⎞
⎟
⎠

. (B1)

The tensor product of ψ and ϕ is a vector Ξ ∈ C4,

Ξ = ψ ⊗ ϕ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ1ϕ1

ψ1ϕ2

ψ2ϕ1

ψ2ϕ2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ξ11

Ξ12

Ξ21

Ξ22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (B2)

where the elements Ξρσ = ψρϕσ are conveniently written with a com-
posite index ρσ ≡ (ρ, σ) ∈ {1, 2}2. The tensor product of ψ† and ϕ is
a matrix M ∈ C2×2,

M = ψ†
⊗ ϕ =

⎛
⎜
⎝

ψ∗1 ϕ1 ψ∗2 ϕ1

ψ∗1 ϕ2 ψ∗2 ϕ2

⎞
⎟
⎠
=
⎛
⎜
⎝

M1,1 M1,2

M2,1 M2,2

⎞
⎟
⎠

(B3)

with elements Mρ,σ = ψ∗σ ϕρ.
Let us consider now two matrices A ∈ C2×2 and B ∈ C2×2,

A =
⎛
⎜
⎝

A1,1 A1,2

A2,1 A2,2

⎞
⎟
⎠

and B =
⎛
⎜
⎝

B1,1 B1,2

B2,1 B2,2

⎞
⎟
⎠

. (B4)
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The tensor product of A and B is a matrix C ∈ C4×4,

C = A⊗ B =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1,1B1,1 A1,1B1,2 A1,2B1,1 A1,2B1,2

A1,1B2,1 A1,1B2,2 A1,2B2,1 A1,2B2,2

A2,1B1,1 A2,1B1,2 A2,2B1,1 A2,2B1,2

A2,1B2,1 A2,1B2,2 A2,2B2,1 A2,2B2,2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11,11 C11,12 C11,21 C11,22

C12,11 C12,12 C12,21 C12,22

C21,11 C21,12 C21,21 C21,22

C22,11 C22,12 C22,21 C22,22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (B5)

with elements Cρν,στ = Aρ,σBν,τ written with composite indices ρν and
στ.

The (total) trace of C is, of course,

Tr[C] =∑
ρ,ν

Cρν,ρν =∑
ρ,ν

Aρ,ρBν,ν = tr[A] tr[B]. (B6)

Due to the fact that C is a tensor product of two matrices, we can
also define a partial trace matrix Tr1[C] ∈ C2×2 with respect to the
first matrix A (or the first “particle”), with elements

(Tr1[C])ν,τ =∑
ρ

Cρν,ρτ =
⎛

⎝
∑
ρ

Aρ,ρ
⎞

⎠
Bν,τ , (B7)

i.e., Tr1[C] = tr[A] B. Similarly, we can define a partial trace matrix
Tr2[C] ∈ C2×2 with respect to the second matrix B (or the second
“particle”), with elements

(Tr2[C])ρ,σ =∑
ν

Cρν,σν = (∑
ν

Bν,ν)Aρ,σ , (B8)

i.e., Tr2[C] = tr[B] A.

APPENDIX C: COMMUTATOR DEFINITION
OF THE VACUUM-POLARIZATION DENSITY

The vacuum-polarization density nvp
(x) in Eq. (67) has been

obtained with the normal-ordered definition of the density operator
[see Eq. (24)],

n̂(x) = tr(N [ψ̂†
(x)⊗ ψ̂(x)]). (C1)

Another definition of the density operator commonly used in the
literature (see, e.g., Refs. 16, 32, 36, 37, 51, 86, and 90) uses a
commutator (c) instead of the normal ordering,

n̂ c
(x) =

1
2

tr([ψ̂†
(x), ψ̂(x)]

⊗

), (C2)

where [ψ̂†
(x), ψ̂(x)]⊗ = ψ̂†

(x)⊗ ψ̂(x) − ψ̂(x)⊗ ψ̂†
(x) is

the tensor-product commutator. With this definition, the
corresponding vacuum-polarization density takes the form

nc,vp
(x) =

1
2
⎛

⎝
∑
p∈NS

ψ̃†
p(x)ψ̃p(x) −∑

p∈PS
ψ̃†

p(x)ψ̃p(x)
⎞

⎠
. (C3)

To calculate nc,vp
1 (x), in the limits L→∞ and Λ→∞, we express

the first sum over NS using the generalized negative-energy eigen-
functions in Eq. (17) and the second sum over PS using the bound-
state eigenfunction in Eq. (14) and the generalized positive-energy
eigenfunctions in Eq. (16), which leads to

nc,vp
(x) = −

κe−2κ∣x∣

2
+ ∫

∞

0

dk
π

κ
k2
+ κ2

ε̃1

εk
k sin (2k∣x∣). (C4)

Using the relation

κe−2κ∣x∣

2
= ∫

∞

0

dk
π

κ
k2
+ κ2 κ cos (2k∣x∣), (C5)

we see that nc,vp
(x) is identical to nvp

(x) in Eq. (67),

nc,vp
(x) = nvp

(x). (C6)

However, we note that the expression of nc,vp
(x) in Eq. (C4) is sub-

ject to numerical instabilities for large x, contrary to the expression
of nvp

(x) in Eq. (67).

APPENDIX D: VACUUM-POLARIZATION DENSITY
FROM THE GREEN FUNCTION

We derive here an alternative expression for the vacuum-
polarization density nvp

(x) in Eq. (67) based on the Green
function.

The Green function (or resolvent) operator G0(ω)
= (ωI2 −D0)

−1 of the 1D free-electron Dirac Hamiltonian D0
in Eq. (3) can be easily calculated in momentum space and
Fourier-transformed back to real space (see, e.g., Refs. 48 and 65)
for ω ∈ C/σ(D0), where σ(D0) is the spectrum of D0,

G0(x, x′;ω) = −
1
2c

⎛
⎜
⎝

g(ω) i sgn (x − x′)

i sgn (x − x′) −g(−ω)

⎞
⎟
⎠

e−κ(ω)∣x−x′ ∣,

(D1)
where κ(ω) =

√

m2c4
− ω2
/c (with Re[κ(ω)] > 0) and g(ω)

=

√

(mc2
+ ω)/(mc2

− ω). The Green function of the 1D hydrogen-
like Dirac Hamiltonian D in Eq. (10) satisfies the Dyson equation
for ω ∈ C/σ(D),

G(x, x′;ω) = G0(x, x′;ω) + ∫
+∞

−∞

dy G0(x, y;ω)V(y)G(y, x′;ω),
(D2)

where V(y) = −Zδ(y)I2, which gives

G(x, x′;ω) = G0(x, x′;ω) − ZG0(x, 0;ω)G(0, x′;ω). (D3)

In particular, for x = 0, we have

G(0, x′;ω) = G0(0, x′;ω) − ZG0(0, 0;ω)G(0, x′;ω), (D4)

giving

G(0, x′;ω) = [I2 + ZG0(0, 0;ω)]−1G0(0, x′;ω). (D5)

Inserting the last expression in Eq. (D3), we obtain for the change of
the Green function ΔG(x, x′; ω) = G(x, x′; ω) −G0(x, x′; ω)

ΔG(x, x′;ω) = −ZG0(x, 0;ω)[I2 + ZG0(0, 0;ω)]−1G0(0, x′;ω).
(D6)
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Finally, using the expression of G0(x, x′; ω) in Eq. (D1), with the
understanding that sgn(0) = 0, we obtain (see, e.g., Ref. 65)

ΔG(x, x′;ω) = −
Z

4c2 e−κ(ω)(∣x∣+∣x
′
∣)

× [z1(ω)G1(x, x′;ω) + z2(ω)G2(x, x′;ω)], (D7)

with z1(ω) = (1 − λ g(ω))−1, z2(ω) = (1 + λg(−ω))−1, λ = Z/(2c),
and G1(x, x′; ω) and G2(x, x′; ω) being the following matrices:

G1(x, x′;ω) =
⎛
⎜
⎝

g(ω)2
− i sgn (x′)g(ω)

i sgn (x)g(ω) sgn (x) sgn (x′)

⎞
⎟
⎠

(D8)

and

G2(x, x′;ω) =
⎛
⎜
⎝

sgn (x) sgn (x′) − i sgn (x)g(−ω)

i sgn (x′)g(−ω) g(−ω)2

⎞
⎟
⎠

. (D9)

The vacuum-polarization density matrix (in the limits L→∞
and Λ→∞) is obtained by integrating ΔG(x, x′; ω) along the
imaginary axis of frequency (see, e.g., Ref. 37),

nvp
1 (x, x′) = ∫

+∞

−∞

du
2π

ΔG(x, x′; iu). (D10)

In particular, the vacuum-polarization density nvp
(x) is given by

nvp
(x) = ∫

+∞

−∞

du
2π

tr[ΔG(x, x; iu)], (D11)

where, for x ≠ 0,

tr[ΔG(x, x; iu)] = −
Z

4c2 e−2κ(iu)∣x∣

× (z1( iu)(g(iu)2
+ 1) + z2( iu)(1 + g(−iu)2

)).
(D12)

The integral in Eq. (D11) can be done numerically and perfectly
matches the results from Eq. (67).

We can also obtain the first-order vacuum-polarization density
nvp,(1)

(x)with respect to Z, i.e., with respect to the external potential.
It corresponds to setting z1(ω) = 1 and z2(ω) = 1, leading to

tr[ΔG(1)(x, x; iu)] = −
Z

4c2 e−2κ(iu)∣x∣
(2 + g(iu)2

+ g(−iu)2
) (D13)

and

nvp,(1)
(x) = ∫

+∞

−∞

du
2π

tr[ΔG(1)(x, x; iu)]

= −
Zm2c2

π ∫

∞

0
du

e−2
√

m2c4
+u2
∣x∣/c

m2c4
+ u2 . (D14)

Using the change of variables t =
√

1 + (u/mc2
)

2, it can be
expressed as

nvp,(1)
(x) = −

Zm
π ∫

∞

1
dt

e−2mc∣x∣t

t
√

t2
− 1

. (D15)

It is the equivalent for the present 1D model of the Uehling vacuum-
polarization density (or potential) for the 3D hydrogen-like atom80

(see also, e.g., Refs. 79 and 81).

APPENDIX E: CHARGE OF THE VACUUM
FROM THE GREEN FUNCTION

We calculate here the charge of the vacuum from Eqs. (71)–(73)
using the Green function.

We use the non-symmetry-adapted version of the generalized
eigenfunctions of the free-particle Dirac Hamiltonian in Eqs. (6)
and (7),

ψ
+,k(x) = Bk

⎛

⎝

1

sk

⎞

⎠
eikx and ψ

−,k(x) = Bk
⎛

⎝

−sk

1

⎞

⎠
eikx (E1)

for k ∈ R and Bk =

√

(εk +mc2
)/(4πεk). The projectors on the

positive-energy and negative-energy eigenfunctions are then

P0
+(x

′, x) = ∫
+∞

−∞

dk ψ
+,k(x

′
)ψ†
+,k(x)

= ∫

+∞

−∞

dk B2
k
⎛

⎝

1 sk

sk s2
k

⎞

⎠
eik(x′−x) (E2)

and

P0
−(x

′, x) = ∫
+∞

−∞

dk ψ
−,k(x

′
)ψ†
−,k(x)

= ∫

+∞

−∞

dk B2
k
⎛

⎝

s2
k −sk

−sk 1

⎞

⎠
eik(x′−x). (E3)

Inserting Eqs. (E2) and (D10) in Eq. (72), and performing the inverse
Fourier transformations over x and x′, leads to the expression of the
number of free electrons in the vacuum state

Nvac
e = −Z∫

+∞

−∞

du
2π ∫

+∞

−∞

dk
B2

k

(u2
+ ε2

k)
2

× [z1( iu)vk( iu) + z2( iu)wk( iu)], (E4)

where vk(ω) = [sk(mc2
+ ω) − ck]2 and wk(ω)

= [(mc2
− ω) + skck]2. Similarly, inserting Eqs. (E3) and (D10)

in Eq. (73) leads to the expression of the number of free positrons in
the vacuum state

Nvac
p = Z∫

+∞

−∞

du
2π ∫

+∞

−∞

dk
B2

k

(u2
+ ε2

k)
2

× [z1(iu)wk(− iu) + z2(iu)vk(− iu)]. (E5)

Performing the integrals in Eqs. (E4) and (E5) numerically, we
have checked that Nvac

e = Nvac
p within the numerical precision.
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