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Abstract
With the aim of progressing toward a practical implementation of an effect-
ive quantum-electrodynamics (QED) theory of atoms and molecules, which
includes the effects of vacuum polarization through the creation of virtual
electron–positron pairs but without the explicit photon degrees of freedom,
we study a one-dimensional effective QED model of the hydrogen-like atom
with delta-potential interactions. This model resembles the three-dimensional
(3D) effective QED theory with Coulomb interactions while being substan-
tially simpler. We provide some mathematical details about the definition of
this model, calculate the vacuum-polarization density, and the Lamb-type shift
of the bound-state energy, correcting and extending results of previous works.
We also study the approximation of the model in a finite plane-wave basis,
and in particular we discuss the basis convergence of the bound-state energy
and eigenfunction, of the vacuum-polarization density, and of the Lamb-type
shift of the bound-state energy. We highlight the difficulty of converging the
vacuum-polarization density in a finite basis and we propose a way to improve
it. The present work could give hints on how to perform similar calculations
for the 3D effective QED theory of atoms and molecules.
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1. Introduction

It is important to take into account the effects of special relativity in the quantum electronic-
structure theory of atoms, molecules, and solids [1–3]. State-of-the-art relativistic electronic-
structure calculations are based on the Dirac–Coulomb–Breit Hamiltonian in the no-pair
approximation (see, e.g. [4–6]). The next step is to go beyond the no-pair approximation,
i.e. including the quantum-electrodynamics (QED) effect of virtual electron–positron pairs.
This is not only important for highly accurate calculations, but also to put relativistic electronic-
structure theory on deeper theoretical grounds.

Highly accurate bound-state QEDperturbativemethods have been developed but are limited
to few-electron atomic systems (see, e.g. [7–11]). For many-electron atoms and molecules,
it has been proposed to estimate QED corrections with model one-electron operators (see,
e.g. [12–21]). An appealing approach for ab initio relativistic electronic-structure calculations
beyond the no-pair approximation is given by an effective QED theory, which includes the
effects of vacuum polarization through the creation of virtual electron–positron pairs but still
uses a static Coulomb or Coulomb–Breit two-particle interaction instead of explicit photons
(see, e.g. [4, 22–30]). This effective QED theory with the Coulomb two-particle interaction has
been the subject of a number of detailed mathematical studies which established the soundness
of this approach at the Hartree–Fock level [31–38]. Based on this effective QED theory, it
has been proposed to formulate a relativistic density-functional theory [28] and a relativistic
reduced density-matrix functional theory [39].

As in full QED, the difficulty with this effective QED theory lies in the fact that it contains
infinities. In particular, the vacuum-polarization density diverges in the ultraviolet (UV) limit
(see, e.g. [40]). This UV divergence can be regularized with a UV momentum cutoff and the
dependence on the cutoff can be absorbed into a redefinition of the elementary charge, which
is called charge renormalization (see, e.g. [34, 38]). However, it is presently not clear how to
deal with this situation in a finite basis and consequently no practical implementation of this
effective QED theory has been done so far.

To progress toward the goal of a practical implementation of the above-mentioned effect-
ive QED theory for atomic and molecular calculations, this theory was studied in [30] in the
context of a one-dimensional (1D) model of the relativistic hydrogen-like atom using delta-
potential interactions. In the non-relativistic version of this model [41–44], the use of the
delta potential is motivated by the fact that it leads to the same ground-state energy and wave
function as the ground-state energy and radial wave function of the three-dimensional (3D)
hydrogen-like atom with the Coulomb potential. The relativistic version of this model without
QED effects was also previously studied [45–48]. The calculation of the vacuum-polarization
density in this model was first attempted in [49]. A more thorough study of the QED effects,
including the Lamb-type shift of the bound-state energy, was performed in [30]. The interest
in this 1D effective QED model lies in the fact that it resembles the 3D effective QED theory
with Coulomb interactions while being substantially simpler.

In the present work, we reexamine in more mathematical details this 1D effective QED
model, correcting and extending results of previous works. In particular, we perform a more
careful calculation of the exact vacuum-polarization density and show that there is a Dirac-
delta contribution that was missed in the previous calculations. We also study the calculation
of the vacuum-polarization density in a finite plane-wave basis, highlighting the difficulty of
converging this quantity with the size of the basis, and we propose a way to improve the con-
vergence of the calculation.
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The paper is organized as follows. In section 2, we provide the mathematical definition
of the 1D hydrogen-like Dirac model, we perform the calculation of the exact vacuum-
polarization density, and discuss the resulting QED correction to the bound-state energy. In
section 3, we study the approximation of the model in a finite plane-wave basis: we discuss
the convergence of the bound-state energy and eigenfunction, the convergence of the vacuum-
polarization density, and the convergence of the QED correction to the bound-state energy
with respect to the size of the basis. Finally, section 4 contains our conclusions. In the appen-
dices, we provide some mathematical details about the definition of the Hamiltonian of the
present model and about the rate of convergence of the bound-state energy in a plane-wave
basis.

2. Exact 1D hydrogen-like Dirac model

In this section, we study the exact 1D hydrogen-like Dirac model in the infinite-dimensional
setting.

2.1. Hamiltonian

We consider a 1D spinless relativistic electron with two-component states in the Hilbert space
h = L2(R,C2). The 1D hydrogen-like Dirac Hamiltonian with an electrostatic-type nucleus-
electron Dirac-delta potential can be formally defined as [30, 46]

DZ = D0 −Z δ (x)I2, (1)

where D0 is the 1D free 2× 2 Dirac Hamiltonian

D0 = cσ1 px+σ3 mc
2, (2)

where px =−id/dx is the momentum operator, c is the speed of light, m is the electron mass,
and σ1 and σ3 are the 2× 2 Pauli matrices

σ1 =

(
0 1
1 0

)
and σ3 =

(
1 0
0 −1

)
, (3)

and Z⩾ 0 is the nuclear charge and I2 is the 2× 2 identity matrix. For all the other usual
physical constants, we always assume atomic units in which ℏ= e= 4πϵ0 = 1.

The delta potential in equation (1) makes in fact the definition of DZ ambiguous. There are
several self-adjoint operators DZ compatible with the above formal definition. As in [30], we
choose the self-adjoint operator DZ defined as having the same action of D0 for x 6= 0, i.e.

DZψ = D0ψ on R\{0} , (4)

with the Z-dependent domain [50–54]

Dom(DZ) =
{
ψ ∈ H1

(
R\{0} ,C2

)
|ψ
(
0+
)
=MZψ

(
0−
)}
. (5)

In equation (5),H1(R\{0},C2)≡ H1(R−,C2)⊕H1(R+,C2) is the first-order broken Sobolev
space (allowing for a non-square-integrable derivative only at x= 0) expressed with the
standard first-order Sobolev space H1(Ω,C2) = {ψ ∈ L2(Ω,C2) | dψ/dx ∈ L2(Ω,C2)} for a
domain Ω⊆ R, and MZ is the following unitary 2× 2 matrix enforcing a boundary condition
at x= 0 [45–47]

MZ =

(
cosθ i sinθ
i sinθ cosθ

)
, (6)
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with θ = 2arctan(Z/2c).
The Hamiltonian DZ has a single bound state with energy [30, 46, 49, 55]

εZb = mc2
1− (Z/2c)2

1+(Z/2c)2
, (7)

and eigenfunction

ψZ
b (x) = Ab

(
1

isgn(x)Z/2c

)
e−κb|x|, (8)

where sgn is the sign function, κb = mZ/(1+(Z/2c)2), and Ab =
√
κb/(1+(Z/2c)2). Note

that the large (upper) component of the bound-state eigenfunction is an even function of
x, while the small (lower) component is an odd function of x with a discontinuity at
x= 0. Beside the eigenvalue εZb , the Hamiltonian DZ has also a continuous energy spectrum
(−∞,−mc2]∪ [mc2,+∞). At Z= 0, only the continuous energy spectrum (−∞,−mc2]∪
[mc2,+∞) remains. The bound-state energy in equation (7) is strictly positive for Z< 2c.
Moreover, the bound-state energy level never dives into the negative-energy continuum for all
Z> 0. The bound-state energy only approaches the top of the negative-energy continuum as
Z→∞, i.e. limZ→∞ εZb =−mc2. Hence, there are no supercritical QED effects in the present
model [56, 57].

In appendix A, we argue that the matrix elements of the Hamiltonian DZ can be defined on
a larger Z-independent set of functions with the expression

〈ϕ,DZψ〉= 〈ϕ,D0ψ〉− Zϕ̄
†
(0)ψ̄ (0) , (9)

where 〈. , .〉 designates the inner product of L2(R,C2), and ψ̄(0) = [ψ(0+)+ψ(0−)]/2 and
ϕ̄(0) = [ϕ(0+)+ϕ(0−)]/2. Importantly, equation (9) can be used to calculate the matrix ele-
ments of the Hamiltonian on a basis of functions which are continuous and thus which do not
belong to the domain considered in equation (5).

2.2. Vacuum-polarization density

The vacuum-polarization density nvp(x) for the 1D hydrogen-like Dirac model was calculated
in [30, 49]. However, these calculations were only valid for x 6= 0. Here, we reexamine the cal-
culation of the vacuum-polarization density using the momentum-space Green function and
show that there is a Dirac-delta function contribution at x= 0 that was missed in the previ-
ously cited works. In order to make things mathematically simpler, we will now work on the
following Hilbert space with a UV momentum cutoff parameter Λ (similarly to the 3D case,
see e.g. [34])

hΛ =
{
ψ ∈ h | ψ̂ (p) = 0 for |p|> Λ

}
, (10)

where ψ̂ is the Fourier transform of ψ. Wewill then be interested in the infinite UVmomentum
cutoff limit, i.e. Λ→∞.

2.2.1. General expression in terms of the Green function. The formal definition of the
Hamiltonian in equation (1) or the definition via matrix elements in equation (9) leads to the
following expression for the 1D hydrogen-like Dirac Hamiltonian in momentum space (for
|p|⩽ Λ and |p ′|⩽ Λ)

DZ (p,p
′) = D0 (p,p

′)+V(p,p ′) , (11)
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with

D0 (p,p
′) = δ (p− p ′)

[
cσ1p+σ3mc

2
]
and V(p,p ′) =− Z

2π
I2. (12)

The Green function (or resolvent) operator G0(ω) = (ωI2 −D0)
−1 of the 1D free Dirac

Hamiltonian D0 in momentum space is, for ω ∈ C \σ(D0) where σ(D0) is the spectrum
of D0,

G0 (p,p
′;ω) =

δ (p− p ′)

ω2 − ε2p

(
mc2 +ω cp
cp −mc2 +ω

)
, (13)

with εp =
√
p2c2 +m2c4. The Green function operator GZ(ω) = (ωI2 −DZ)

−1 of the 1D
hydrogen-like Dirac Hamiltonian DZ in momentum space satisfies the Dyson equation, for
ω ∈ C \σ(DZ),

GZ (p,p
′;ω) = G0 (p,p

′;ω)+

ˆ Λ

−Λ

ˆ Λ

−Λ

G0 (p,p1;ω)V(p1,p2)GZ (p2,p
′;ω)dp1dp2. (14)

Using the expression of V(p,p ′), the Dyson equation can be simplified as

GZ (p,p
′;ω) = G0 (p,p

′;ω)− Z
2π

Ḡ0 (p;ω) ḠZ (p
′;ω) , (15)

where Ḡ0(p,ω) =
´ Λ
−Λ

G0(p,p1;ω)dp1 and ḠZ(p ′;ω) =
´ Λ
−Λ

GZ(p2,p ′;ω)dp2. Integrating
equation (15) over p gives

ḠZ (p
′;ω) = Ḡ0 (p

′;ω)− Z
2π

¯̄G0 (ω) ḠZ (p
′;ω) , (16)

where ¯̄G0(ω) =
´ Λ
−Λ

Ḡ0(p;ω)dp, and thus

ḠZ (p
′;ω) =

[
I2 +

Z
2π

¯̄G0 (ω)

]−1

Ḡ0 (p
′;ω) . (17)

Inserting the last expression in equation (15), we obtain for the variation of the Green function
due to the nucleus-electron potential,∆GZ(p,p ′;ω) = GZ(p,p ′;ω)−G0(p,p ′;ω),

∆GZ (p,p
′;ω) =− Z

2π
Ḡ0 (p;ω)

[
I2 +

Z
2π

¯̄G0 (ω)

]−1

Ḡ0 (p
′;ω) . (18)

From equation (13), we can calculate Ḡ0(p;ω) and ¯̄G0(ω),

Ḡ0 (p;ω) =
1

ω2 − ε2p

(
mc2 +ω cp
cp −mc2 +ω

)
, (19)

and

¯̄G0 (ω) =
π ξ (Λ,ω)

c

(
−g(ω) 0

0 g(−ω)

)
, (20)

with g(ω) =
√
(mc2 +ω)/(mc2 −ω) and ξ(Λ,ω) = (2/π)arctan(cΛ/

√
m2c4 −ω2). Note

that the function ξ(Λ,ω) reduces to 1 in the infinite UV momentum cutoff limit, i.e.
limΛ→∞ ξ(Λ,ω) = 1. Note also that the zero off-diagonal elements in equation (20) come from
the fact that we have integrated an odd function of p over the symmetric interval [−Λ,Λ], i.e.´ Λ
−Λ

cp/(ω2 − ε2p)dp= 0. A non-symmetric UVmomentum cutoff gives non-zero off-diagonal
elements (see appendix B). So, the Green function obtained in the limit Λ→∞ depends on
how the UV momentum cutoff is chosen. The symmetric UV momentum cutoff correctly
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gives, in the limit Λ→∞, the Green function corresponding to the Hamiltonian defined by
equations (4) and (5), which was already calculated in position space using different methods
in [30, 50]. From equations (18)–(20), we finally arrive at the expression of the variation of
the Green function in momentum space

∆GZ (p,p
′;ω) =− Z

2π
z1 (ω)A1 (p,p ′;ω)+ z2 (ω)A2 (p,p ′;ω)(

ω2 − ε2p
)(
ω2 − ε2p′

) , (21)

with z1(ω) = (1−Zg(ω)ξ(Λ,ω)/2c)−1 and z2(ω) = (1+Zg(−ω)ξ(Λ,ω)/2c)−1, and
A1(p,p ′;ω) and A2(p,p ′;ω) are the following matrices

A1 (p,p
′;ω) =

( (
mc2 +ω

)2
cp ′ (mc2 +ω

)
cp
(
mc2 +ω

)
c2pp ′

)
and

A2 (p,p
′;ω) =

(
c2pp ′ cp

(
−mc2 +ω

)
cp ′ (−mc2 +ω

) (
−mc2 +ω

)2 )
. (22)

The Fourier transform of the vacuum-polarization density matrix is given by (see, e.g. [34,
40, 58, 59])

n̂vp1 (p,p ′) =
1
2π

ˆ ∞

−∞
∆GZ (p,p

′; iu+ γ)du, (23)

where γ is a real constant such that−mc2 < γ < εZb , and the Fourier transform of the vacuum-
polarization local density matrix can then be obtained as (see, e.g. [36, 40, 60])

n̂vpΛ (k) =
1√
2π

ˆ
|p+k/2|⩽Λ
|p−k/2|⩽Λ

n̂vp1 (p+ k/2,p− k/2)dp, (24)

where, for clarity, we have explicitly indicated the dependence on the UV momentum cutoff
parameter Λ in n̂vpΛ (k). The constant γ in equation (23) is there so that the integration over u
selects only the continuous negative-energy spectrum and not the bound-state energy εZb . From
now on, we will assume that Z< 2c so that the bound-state eigenvalue εZb is always strictly
positive, and we will choose γ= 0. What we call the vacuum-polarization local density matrix
is thus obtained as the inverse Fourier transform of n̂vpΛ (k)

nvpΛ (x) =
1√
2π

ˆ ∞

−∞
n̂vpΛ (k)eikxdk, (25)

i.e. it is the position-space diagonal of the vacuum-polarization density matrix. Note that the
slowest-decaying terms in the integrand in equation (23) decay as 1/u2, so that the correspond-
ing integral over u is convergent. Note also that, due to the integration domain in equation (24),
n̂vpΛ (k) is zero for |k|> 2Λ. Hence, the integral in equation (25) is convergent.

We will see below that, in the limit Λ→∞, the Fourier transform n̂vpΛ (k) in equation (24)
contains terms that go to a constant as k→±∞ and thus, in this limit, the integral in
equation (25) contains a Dirac-delta contribution. In fact, in the limit Λ→∞, the density
matrix is not a trace-class operator and defining its associated density is not a priori obvious.

2.2.2. Uehling vacuum-polarization density. The integral in equation (23) can be analytic-
ally calculated at first order in Z, which gives the Fourier transform of the 1D analog of the
Uehling vacuum-polarization density matrix
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n̂vp,(1)1

(
p,p ′)= 1

2π

ˆ ∞

−∞
∆G(1)

Z

(
p,p ′; iu

)
du

=− Z

4π
(
ε2pεp′ + εpε2p′

) ( m2c4 + c2pp ′ − εpεp′ −mc3 (p− p ′)

mc3 (p− p ′) m2c4 + c2pp ′ − εpεp′

)
, (26)

which is independent ofΛ, and the Fourier transform of the Uehling vacuum-polarization local
density matrix is then obtained using equation (24)

n̂vp,(1)Λ (k) =
1√
2π

ˆ
|p+k/2|⩽Λ
|p−k/2|⩽Λ

n̂vp,(1)1 (p+ k/2,p− k/2)dp. (27)

The expression of n̂vp,(1)Λ (k) resulting from the integration in equation (27) is lengthy, but it
has a relatively simple expression in the infinite UV momentum cutoff limit,

n̂vp,(1) (k) = lim
Λ→∞

n̂vp,(1)Λ (k) =
N vp,(1)

0

2
√
2π

I2 + n̂vp,(1)reg (k) , (28)

which contains a diagonal constant contribution with N vp,(1)
0 = Z/(π c) and a regular contri-

bution which goes to zero as k→±∞

n̂vp,(1)reg (k) = − Zm

(2π)3/2 hk


4mc
k

arctanh

(
k
hk

)
ln

(
hk− k
hk+ k

)
− ln

(
hk− k
hk+ k

)
4mc
k

arctanh

(
k
hk

)
 , (29)

with hk =
√
k2 + 4m2c2. Note that, in contrast with the 3D case (see, e.g. [34, 40]), here there is

no divergence in the infinite UVmomentum cutoff limit. Therefore, wewill implicitly consider
this limit in the rest of section 2. Taking the inverse Fourier transform in equation (28), we find
the Uehling vacuum-polarization local density matrix in position space (in the distribution
sense)

nvp,(1) (x) =
N vp,(1)

0

2
δ (x)I2 +nvp,(1)reg (x) , (30)

where the regular contribution can be expressed as, for x 6= 0, (see appendix D of [30])

nvp,(1)reg (x) =− Z
4c2

ˆ ∞

−∞

du
2π

e−2κ(iu)|x|

(
g(iu)2 + 1 −i sgn(x) [g(iu)+ g(−iu)]

i sgn(x) [g(iu)+ g(−iu)] g(−iu)2 + 1

)
,

(31)

with κ(iu) =
√
m2c4 + u2/c. Finally, the Uehling vacuum-polarization density nvp,(1)(x) =

tr[nvp,(1)(x)] (where tr designates the trace of a 2× 2 matrix) has the expression

nvp,(1) (x) =N vp,(1)
0 δ (x)+ nvp,(1)reg (x) , (32)

where the regular contribution was obtained in [30] in the compact form

nvp,(1)reg (x) = − Zm
π

ˆ ∞

1

e−2mc|x|t

t
√
t2 − 1

dt. (33)

Note that nvp,(1)(x) represents an opposite charge density (or electron-excess density). The
vacuum-polarization charge density is the opposite: ρvp,(1)(x) =−nvp,(1)(x).
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Figure 1. The Uehling and total vacuum-polarization densities nvp,(1)(x) (equation (32))
and nvp(x) (equation (42)) for m= c= Z= 1. The vertical line represents a Dirac-delta
function.

The Dirac-delta contribution in equation (32) was missed in [30], in which the calculation
was done entirely in position space. The present calculation which starts in momentum space is
better suited to correctly catch the Dirac-delta contribution (see, however, appendix C for how
to find theDirac-delta contribution in position space). The coefficient in front of the Dirac-delta
function is exactly the opposite of the spatial integral of the regular contribution nvp,(1)reg (x), so
that the total Uehling vacuum-polarization density integrates to zero, i.e.

ˆ ∞

−∞
nvp,(1) (x)dx= 0. (34)

The overall shape of the present Uehling vacuum-polarization density, represented in figure 1,
is consistent with its usual interpretation as the spatial distribution of virtual electron–positron
pairs induced by the nuclear charge (see, e.g. [61]), i.e. there is an excess of electrons at the
nucleus (the Dirac-delta contribution) and an excess of positrons distributed farther away (the
regular contribution).

We emphasize that, in the present 1D model, the Uehling vacuum-polarization density can
be obtained without performing any renormalization. This is in sharp contrast with the case
of the 3D hydrogen-like atom for which there is a contribution to the first-order vacuum-
polarization density that diverges inmomentum space andwhich is eliminated by charge renor-
malization. The Uehling vacuum-polarization density is then only the remaining contribution
after renormalization (see, e.g. [40, 62]). This remaining 3D Uehling vacuum-polarization
density integrates to zero [59, 62], as in the present 1D model. However, in the 3D hydrogen-
like atom, the Uehling vacuum-polarization density (after charge renormalization) has a shape
which is the opposite of the one obtained in the present 1D model, i.e. there is an excess of
positrons at the nucleus and an excess of electrons farther away [62]. This shape of the Uehling
vacuum-polarization density in the 3D hydrogen-like atom may seem counterintuitive but one
has to keep in mind that it comes after charge renormalization which has eliminated an (infin-
ite) excess of electrons at the nucleus.
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2.2.3. Total vacuum-polarization density. The case of the total vacuum-polarization density
(i.e. at all orders in Z) is more complicated to study since we have not managed to analytically
perform the integral in equation (23). Nevertheless, by a mixed analytical-numerical study, we
have been able to determine that the Fourier transform of the total vacuum-polarization local
density matrix has the form (still in the infinite UV momentum cutoff limit)

n̂vp (k) =
N vp

0

2
√
2π

I2 + n̂vpreg (k) , (35)

with a diagonal constant contribution involving the quantity

N vp
0 =

Z/c

π
(
1+(Z/2c)2

) , (36)

and a regular contribution (which goes to zero as k→±∞) which, in practice, can be obtained
by inverting the orders of the integrals in equations (23) and (24), leading to

n̂vpreg (k) =− Z√
2πc2

ˆ ∞

−∞

du
2π

z1 (iu)B1 (k,u)+ z2 (iu)B2 (k,u)
κ(iu)(k2c2 + 4m2c4 + 4u2)

, (37)

with the matrices

B1 (k,u) =

( (
mc2 + iu

)2 −kc
(
mc2 + iu

)
/2

kc
(
mc2 + iu

)
/2 m2c4 + u2

)
and

B2 (k,u) =

(
m2c4 + u2 −kc

(
mc2 − iu

)
/2

kc
(
mc2 − iu

)
/2

(
mc2 − iu

)2 )
. (38)

In position space, the total vacuum-polarization local density matrix is

nvp (x) =
N vp

0

2
δ (x)I2 +nvpreg (x) , (39)

where the regular contribution can be expressed as, for x 6= 0, (see appendix D of [30]) [63]

nvpreg (x) =− Z
4c2

ˆ ∞

−∞

du
2π

e−2κ(iu)|x| [z1 (iu)C1 (x,u)+ z2 (iu)C2 (x,u)] , (40)

with the matrices

C1 (x,u) =

(
g(iu)2 −i sgn(x)g(iu)

i sgn(x)g(iu) 1

)
and

C2 (x,u) =

(
1 −i sgn(x)g(−iu)

i sgn(x)g(−iu) g(−iu)2

)
. (41)

Finally, the total vacuum-polarization density nvp(x) = tr[nvp(x)] has the form

nvp (x) =N vp
0 δ (x)+ nvpreg (x) , (42)

where the regular part nvpreg(x) = tr[nvpreg(x)] was given in different forms in [30, 49]. Again, the
reason why the Dirac-delta contribution was missed in [30, 49] is that these references focused
on pointwise calculations of the vacuum-polarization density in position space. The present
momentum-space approach avoids this limitation.
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The form of the total vacuum-polarization density is very similar to the one of the Uehling
vacuum-polarization density, as shown in figure 1. However, an important difference is that,
for Z 6= 0, the total vacuum-polarization density does not integrate to zero

N vp =

ˆ ∞

−∞
nvp (x)dx=N vp

0 +N vp
reg 6= 0, (43)

where the integral of the regular contribution is [30, 49]

N vp
reg =

ˆ ∞

−∞
nvpreg (x)dx=− 2

π
arctan

(
Z
2c

)
. (44)

We may define the effective nuclear charge observed at a distance d from the nucleus as

Zobs (d) = Z−
ˆ d

−d
nvp (x)dx, (45)

with the limits

lim
d→0+

Zobs (d) = Z−N vp
0 ⩽ Z, (46)

and

lim
d→∞

Zobs (d) = Z−N vp ⩾ Z. (47)

Thus, at short distances d the vacuum-polarization density screens the nuclear charge, resulting
in an observed nuclear charge Zobs(d)which is smaller than the bare nuclear charge Z. At large
distances d from the nucleus (d� λ− where λ− = 1/(mc) is the reduced Compton wavelength
providing a measure of the spatial extension of the vacuum-polarization density), the observed
nuclear charge Zobs(d) is larger than the bare nuclear charge Z.

It may be tempting to think that the fact that the total vacuum-polarization density does
not integrate to zero should lead to a (finite) charge renormalization. However, the present
situation is different from the charge renormalization performed in the 3D case with a finite
UV momentum cutoff (see, e.g. [34]). Indeed, we believe that the fact that N vp is not zero
(and not even an integer) in the present model should be understood as an example of fermion-
number fractionalization, which is a phenomenon known to appear for 1D Dirac equations
with soliton-type potentials (see, e.g. [64–67]). The non-zero value of the fermion number is
related to the infrared (IR) limit [68–70]. Note, in particular, that the expression of N vp

reg in
equation (44) has the general form of the fermion number found in soliton models [64, 65].
Also, we may note that, in the present model, for Z= 2c the (unoccupied) bound state has zero
energy and the spectrum of DZ is charge-conjugation symmetric, and N vp

reg reduces to −1/2,
which resembles the soliton scenario of [71] (see, also, [67]).

In [30] (section 3.4 and appendix E), it was attempted to calculate the charge of the vacuum
of the present model using the notion of ‘P0-trace’ of [31, 34, 35]. A rough numerical integ-
ration suggested that the P0-trace formula of the charge of the vacuum gives zero, similarly
to what is obtained in the 3D case in the presence of an UV momentum cutoff. However, for
the present work, we have performed a more careful numerical integration which shows in
fact that the P0-trace formula of the (opposite) charge of the vacuum is numerically identical
to the integral of the vacuum-polarization density, i.e. the fractional fermion number N vp.
The fact that the P0-trace formula of the charge of the vacuum is not an integer implies that
the vacuum-polarization density matrix n̂vp1 (p,p ′) (equation (23)) of the present model is not
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a Hilbert–Schmidt operator and/or is not the difference of two projectors in the infinite UV
momentum cutoff limit (see [31, 34]). If n̂vp1 (p,p ′) were not a Hilbert–Schmidt operator, this
would imply, according to the Shale–Stinespring theorem [72, 73], that the polarized vacuum
state of the present model, in the infinite UV momentum cutoff limit, could not be reached
from a unitary transformation of the free vacuum state in the second-quantized Fock space
(see, also, [74, 75]). In any case, this confirms that the fact that the total vacuum-polarization
density does not integrate to zero in the present 1D model is completely different from the
situation of charge renormalization in 3D in the presence of an UV momentum cutoff. In the
latter case, the vacuum-polarization density also does not integrate to zero but the vacuum-
polarization density matrix is a Hilbert–Schmidt operator, the P0-trace is an integer defining
the charge of the vacuum, and the Shale–Stinespring theorem applies.

2.3. QED corrections to the bound-state energy

In the present 1D hydrogen-like Dirac model, we can calculate the shift of the bound-state
energy due to the phenomenon of vacuum polarization, similarly to the Lamb shift in standard
QED (see, e.g. [7, 19]). The analog of the 3D Coulomb–Breit two-particle interaction in the
present model is [30, 55]

w(x1,x2) = δ (x1 − x2)(I2 ⊗ I2 −σ1 ⊗σ1) , (48)

where the first and second terms are the 1D analogs of the Coulomb and Breit interactions,
respectively (see, e.g. [5, 6, 28]). Note that, in 1D, the Breit interaction exactly reduces to the
magnetic Gaunt interaction [30]. At first order with respect to the two-particle interaction, the
QED correction to the bound-state energy contains four contributions [30]

Evp,(1)
b = Evp,(1),DC

b + Evp,(1),XC
b + Evp,(1),DB

b + Evp,(1),XB
b . (49)

The direct-Coulomb-type (DC) and exchange-Coulomb-type (XC) contributions are

Evp,(1),DC
b =

ˆ ∞

−∞
nel (x)nvp (x)dx, (50)

and

Evp,(1),XC
b =−

ˆ ∞

−∞
tr
[
nel (x)nvp (x)

]
dx, (51)

where nel(x) =ψb(x)ψ
†
b(x) is the electronic bound-state local density matrix and nel(x) =

tr[nel(x)] is its associated density. The direct-Breit-type (DB) and exchange-Breit-type (XB)
contributions are

Evp,(1),DB
b =− 1

c2

ˆ ∞

−∞
jel (x) jvp (x)dx, (52)

and

Evp,(1),XB
b =

1
c2

ˆ ∞

−∞
tr
[
jel (x) jvp (x)

]
dx, (53)

where jel(x) = cσ1nel(x) and jvp(x) = cσ1nvp(x) are the electronic bound-state and vacuum-
polarization current local density matrices, and jel(x) = tr[jel(x)] and jvp(x) = tr[jvp(x)] are
their associated current densities. By time-reversal symmetry, the current densities vanish,
i.e. jel(x) = jvp(x) = 0 (see, e.g. [76]), and thus the DB contribution is zero, i.e. Evp,(1),DB

b = 0.
Figure 2 reports these QED corrections to the bound-state energy as a function of the inverse

speed of light 1/c, using either the Uehling or total vacuum-polarization local density matrix

11
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Figure 2. First-order QED correction to the bound-state energy (equation (49)) for
m= Z= 1 as a function of the inverse speed of light 1/c, using either the (a) Uehling
or (b) total vacuum-polarization local density matrix (equations (30) and (39)). The
total correction, as well as the direct-Coulomb-type (DC) (equation (50)), exchange-
Coulomb-type (XC) (equation (51)), and exchange-Breit-type (XB) (equation (53)) con-
tributions are shown.

(equations (30) and (39)). Whereas the total first-order QED correction was negative without
the Dirac-delta contribution [30], it becomes positive after adding it. Thus, the total effect
of the vacuum polarization in the present model is to destabilize the bound-state energy. We
note that, for the 3D hydrogen-like atom, the total QED energy correction on the ground-state
energy is also positive, i.e. the ground state is also destabilized (see, e.g. [77]).

3. Finite-dimensional approximation to the 1D hydrogen-like Dirac model

In this section, we study the 1D hydrogen-like Dirac model using a finite plane-wave basis.

3.1. Calculations in a finite plane-wave basis

We consider a finite-dimensional approximation of the Hilbert space with an IR cutoff para-
meter L and an UV cutoff parameter Λ,

hL,Λ = span
({
χL
n

}
|n|⩽nmax

∪
{
χS
n

}
|n|⩽nmax

)
, (54)

which is spanned by a basis of large- and small-component plane-wave functions χL
n ,χ

S
n :

[−L/2,L/2]→ C2

χL
n (x) =

1√
L

(
eiknx

0

)
and χS

n (x) =
1√
L

(
0

eiknx

)
, (55)

with kn = 2πn/L and nmax = bLΛ/(2π)c. Physically, it corresponds to an electron on the inter-
val [−L/2,L/2] with maximal momentum |knmax |⩽ Λ. Ultimately, we will be interested in the
limits L→∞ and Λ→∞.

Using equation (9), the 1D hydrogen-like Dirac eigenvalue equation,DZψ
Z
p = εZpψ

Z
p , on this

finite-dimensional Hilbert space leads to the following matrix eigenvalue equation(
mc2I+V cP

cP −mc2I+V

)(
cLp
cSp

)
= εZp

(
cLp
cSp

)
, (56)
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where cLp and cSp are (2nmax + 1)-component vectors, and I, P, and V are (2nmax + 1)×
(2nmax + 1) matrices with elements

In,m = 〈χL
n ,χ

L
m〉L = 〈χS

n ,χ
S
m〉L = δn,m, (57)

Pn,m = 〈χL
n ,σ1pxχ

S
m〉L = 〈χS

n ,σ1pxχ
L
m〉L = knδn,m, (58)

and

Vn,m =−ZχL†
n (0)χL

m (0) =−ZχS†
n (0)χS

m (0) =−Z
L
, (59)

where 〈. , .〉
L
denotes here the standard inner product in L2([−L/2,L/2],C2). Note that, since

σ1pxχL
n = knχS

n and σ1pxχS
n = knχL

n , the plane-wave basis satisfies the kinetic-balance con-
dition in all its variants (see, e.g. [76, 78–83]). This ensures that, as c→∞, the non-relativistic
limit with the same basis is correctly reached.Moreover, by analogy with the 3D case, since the
plane-wave basis is adapted to the free Dirac operator D0, it is expected to avoid any spectral
pollution [84, 85].

After solving equation (56), we obtain 4nmax + 2 eigenfunctions of the form

ψZ
p (x) =

nmax∑
n=−nmax

cLp,nχ
L
n (x)+

nmax∑
n=−nmax

cSp,nχ
S
n (x) , (60)

which can be partitioned into a set of positive-energy states (PS) {ψZ
p}p∈PS and a set of

negative-energy states (NS) {ψZ
p}p∈NS. The vacuum-polarization local density matrix can then

be calculated as, for given IR cutoff parameter L and UV cutoff parameter Λ,

nvpL,Λ (x) =
∑
p∈NS

ψZ
p (x)ψ

Z†
p (x)−

∑
p∈NS

ψ0
p (x)ψ

0†
p (x) , (61)

where {ψ0
p} are the eigenfunctions for Z= 0 calculated in the same basis. The correspond-

ing vacuum-polarization density is nvpL,Λ(x) = tr[nvpL,Λ(x)]. We also calculate in the finite basis

the Uehling vacuum-polarization local density matrix nvp,(1)L,Λ (x) and the Uehling vacuum-

polarization density nvp,(1)L,Λ (x).

3.2. Convergence of the bound-state energy and eigenfunction

Figure 3 reports the convergence of the bound-state energy as a function of the IR cutoff para-
meter L and the UV cutoff parameterΛ. As L→∞ andΛ→∞, the bound-state energy calcu-
lated in the plane-wave basis correctly converges to the exact value in equation (7). This sup-
ports the fact that the basis calculations based on equation (9) corresponds to the self-adjoint
realization of the Hamiltonian DZ that we have selected via equations (4)–(6). Numerically,
we find that the bound-state energy converges exponentially as L→∞, and roughly as 1/Λ
as Λ→∞. This is expected based on the theoretical analysis in appendix D.

Figure 4 reports the convergence of the large and small components of the bound-state
eigenfunction as a function of the IR cutoff parameter L and the UV cutoff parameter Λ. The
large component of the exact eigenfunction (see equation (8)) has a derivative discontinuity at
x= 0, and consequently the convergence with Λ is slow near x= 0. The small component of
the exact eigenfunction (see equation (8)) has a discontinuity at x= 0, in addition of having
the same derivative discontinuity at x= 0 as the large component, and consequently the con-
vergence with respect to Λ near x= 0 is even slower than for the large component. Note that
this discontinuity at x= 0 of the exact small-component eigenfunction cannot be reproduced
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Figure 3. Convergence of the bound-state energy of the 1D hydrogen-like Dirac model
with a plane-wave basis as a function of (a) the IR cutoff parameter L and (b) the UV
cutoff parameterΛ form= c= Z= 1. The exact value in the limits L→∞ andΛ→∞
is εb = 0.6.

Figure 4. Convergence of the (a) large component and (b) small component of the
bound-state eigenfunction of the 1D hydrogen-like Dirac model with a plane-wave basis
as a function of the UV cutoff parameter Λ for an IR cutoff parameter L= 10 and
m= c= Z= 1. The exact eigenfunction (equation (8)) corresponds to the limits L→∞
and Λ→∞.

in the finite plane-wave basis, since the expansion of an odd function in a basis of continuous
functions necessarily gives zero at x= 0. This implies that the finite plane-wave basis always
incorrectly gives a vanishing small-component contribution to the bound-state density at x= 0.
As seen from the analysis in appendix D, the convergence of the small-component eigenfunc-
tion is the limiting factor in the convergence of the bound-state energy asΛ→∞. Naively, this
last fact might lead one to think that a faster convergence of the bound-state energywith respect
to Λ would be obtained in the non-relativistic limit since only the large component survives in
this limit. In fact, it can be shown that, in the non-relativistic limit, the bound-state energy still
converges as 1/Λ as Λ→∞. This is because the non-relativistic Hamiltonian involves now
the second-order derivative of the large-component eigenfunction (see, also, [44] for a related
discussion on the basis convergence of the non-relativistic bound-state energy).

14



J. Phys. A: Math. Theor. 58 (2025) 125304 T Audinet et al

Figure 5. (a) Uehling and (b) total vacuum-polarization densities for m= c= Z= 1,
calculated exactly (equations (32) and (42)) and with a plane-wave basis for a IR cutoff
parameter L= 10 and a UV cutoff parameter Λ = 50 (from equation (61)).

Figure 6. Fourier transform of the (a) Uehling and (b) total vacuum-polarization dens-
ities calculated exactly (equations (32) and (42)) and with a plane-wave basis for a IR
cutoff parameter L= 10 and different UV cutoff parameters Λ for m= c= Z= 1. The
black dot indicates the beginning of the exact curve (for L→∞ and Λ→∞).

3.3. Convergence of the vacuum-polarization density

We now discuss the convergence of the vacuum-polarization density nvpL,Λ(x) calculated from
equation (61) with a finite plane-wave basis. The Uehling and total vacuum-polarization dens-
ities calculated with a plane-wave basis with a IR cutoff parameter L= 10 and a UV cutoff
parameter Λ = 50 are reported in figure 5, and compared with the exact ones (equations (32)
and (42)). The plane-wave basis calculation reproduces well the vacuum-polarization dens-
ity for large enough x. However, the plane-wave basis generates large oscillations near x= 0
while trying to reproduce the Dirac-delta contribution, resulting in an effectively impossible
pointwise convergence of the vacuum-polarization density near x= 0.

To analyze this convergence problem, we report in figure 6 the Fourier transform of the
vacuum-polarization density calculated with the plane-wave basis

n̂vpL,Λ (k) =
1√
2π

ˆ L/2

−L/2
nvpL,Λ (x)e

−ikxdx. (62)

To reproduce the Dirac-delta contribution to the vacuum-polarization density in position space,
n̂vpL,Λ(k) should tend to a constant as k→∞. However, with a finite UV cutoff parameter Λ,
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the Fourier transform n̂vpL,Λ(k) is only able to approximately converge to a constant for k≲ Λ,
but for k≳ Λ quickly decays to reach zero at k= 2Λ. Note that the reason why the Fourier
transform of the vacuum-polarization density is not zero for Λ⩽ k⩽ 2Λ is that, according
to equation (61), the vacuum-polarization density involves the product of two plane waves,
each with momenta going up to Λ. However, n̂vpL,Λ(k) cannot be expected to be accurate for the
momentum range Λ⩽ k⩽ 2Λ since contributions from plane waves with momenta greater
than Λ are missing.

For the Uehling vacuum-polarization density, the basis calculation produces a curve of
n̂vp,(1)L,Λ (k) which is nearly superimposed with the curve of the exact n̂vp,(1)(k) for k≲ Λ.
However, for the total vacuum-polarization density, the basis calculation produces a curve
of n̂vpL,Λ(k) which is shifted upward with respect to the curve of the exact n̂

vp(k). This is due to
the fact that the exact total vacuum-polarization density does not integrate to zero, as explained
in section 2.2.3. Hence, the Fourier transform of the exact total vacuum-polarization density
is not zero at k= 0, i.e. n̂vp(0) =N vp/

√
2π 6= 0. This behavior cannot be reproduced with our

finite plane-wave basis calculation. Indeed, since in our finite plane-wave basis, we obtain the
same number of negative-energy states for a non-vanishing nuclear charge Z< 2c and Z= 0,
the total vacuum-polarization densities necessarily integrates to zero for any finite cutoff para-
meters L and Λ, i.e.

´∞
−∞ nvpL,Λ(x)dx= 0 and n̂vpL,Λ(0) = 0 .

The above analysis suggests the following simple scheme to extract the regular part of the
Uehling or total vacuum-polarization density in a finite basis. For given L and Λ, we select a
maximal momentum kmax, and truncate n̂

vp
L,Λ(k)− n̂vpL,Λ(kmax) for |k|> kmax, i.e.

n̂vpreg,L,Λ (k) =
[
n̂vpL,Λ (k)− n̂vpL,Λ (kmax)

]
θ (kmax − |k|) . (63)

By construction, n̂vpreg,L,Λ(k) is thus zero for |k|> kmax. In practice, we choose for kmax the value
of k at which n̂vpL,Λ(k) reaches its maximum, i.e.

kmax = argmax
k∈[0,2Λ]

n̂vpL,Λ (k) . (64)

The values of kmax obtained in this way are close to Λ. The choice of kmax in equation (64),
instead of the simpler choice kmax = Λ, has the advantage that it leads to n̂vpreg,L,Λ having a
continuous vanishing derivative at k= kmax. We finally take the inverse Fourier transform of
n̂vpreg,L,Λ(k), i.e.

nvpreg,L,Λ (x) =
1√
2π

ˆ kmax

−kmax

n̂vpreg,L,Λ (k)e
ikxdk, (65)

resulting in a regularized vacuum-polarization density where the approximation of the Dirac-
delta contribution in the finite basis has been removed. This quantity should then converge
to the regular part of the total vacuum-polarization density as L→∞ and Λ→∞, i.e.
limL→∞ limΛ→∞ nvpreg,L,Λ(x) = nvpreg(x).

The regularized vacuum-polarization density nvpreg,L,Λ(x) obtained by the above scheme is
reported in figure 7 for different UV cutoff parameters Λ. We see that our regularization
scheme has properly eliminated the large oscillations near x= 0 and the regularized vacuum-
polarization density converges indeed toward the regular part of the exact vacuum-polarization
density as the UV cutoff is increased. However, this convergence remains slow near x= 0 due
to the fact that the regular part of the exact vacuum-polarization density has an infinite deriv-
ative discontinuity at x= 0.
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Figure 7. Regularized (a) Uehling and (b) total vacuum-polarization densities
(equation (65)) for m= c= Z= 1 calculated in a plane-wave basis for a IR cutoff para-
meter L= 10 and different UV cutoff parameters Λ, compared to the exact regular part
of the Uehling and total vacuum-polarization densities.

Once the regular part of the vacuum-polarization density in the basis has been regularized,
one can add the Dirac-delta contribution to obtain the final approximation of the vacuum-
polarization density from the finite basis calculation

ñvpL,Λ (x) =N vp
0 δ (x)+ nvpreg,L,Λ (x) . (66)

In the case of the Uehling vacuum-polarization density, we can also extract the coefficient
of the Dirac-delta contribution from the basis calculation, N vp,(1)

0 ≈N vp,(1)
0,L,Λ where N vp,(1)

0,L,Λ is
defined as the opposite of the integral of the regular part

N vp,(1)
0,L,Λ =−

ˆ L/2

−L/2
nvp,(1)reg,L,Λ (x)dx

=−
√
2π n̂vp,(1)reg,L,Λ (0)

=
√
2π n̂vp,(1)L,Λ (kmax) . (67)

In the case of the total vacuum-polarization density, as far as we can see, there is no way
to extract the correct coefficient of the Dirac-delta contribution corresponding to a non-zero
integral of the total vacuum-polarization density, since the finite basis calculations always gives
a total vacuum-polarization density that integrates to zero. So, in this case, we have to rely on
the coefficient of the Dirac-delta contribution obtained from the exact calculation.

3.4. Convergence of the QED correction to the bound-state energy

In figure 8, we report the convergence of the total first-order QED correction to the bound-state
energy in equation (49) calculated in different ways in the plane-wave basis as a function of
the UV cutoff parameter Λ, for both the Uehling and total vacuum-polarization cases. Since
the electronic bound-state local density matrix nelL,Λ(x) calculated in the plane-wave basis has
a slow convergence with respect to Λ and since we want to focus here on the effect of the
vacuum-polarization local density matrix, we use in these calculations the exact electronic
bound-state local density matrix nel(x). For the vacuum-polarization local density matrix, we
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Figure 8. Convergence of the first-order QED correction to the bound-state energy cal-
culated in a plane-wave basis as a function of the UV cutoff parameter Λ for a IR cutoff
parameter L= 10 and for m= c= Z= 1, using either the non-regularized vacuum-
polarization local density matrix nvpL,Λ(x) (equation (61)) or the regularized vacuum-
polarization local densitymatrix ñvpL,Λ(x) (equation (68)), for both the (a) Uehling and (b)
total vacuum-polarization cases, and the exact bound-state local density matrix nel(x).

use either the non-regularized one nvpL,Λ(x) in equation (61) or the following regularized one

ñvpL,Λ (x) =
N vp

0

2
δ (x)I2 +nvpreg,L,Λ (x) , (68)

where nvpreg,L,Λ(x) is a regularized vacuum-polarization local density matrix that we define in
momentum space as, similarly to equation (63),

n̂vpreg,L,Λ (k) =
[
n̂vpL,Λ (k)− n̂vpL,Λ (kmax)

]
θ (kmax − |k|) , (69)

using the same value for kmax as the one used for the vacuum-polarization density (see
equation (64)).

For the Uehling case, the first-order QED correction obtained from the non-regularized
vacuum-polarization local density matrix appears to slowly converge to the exact value, while
the first-order QED correction obtained from the regularized vacuum-polarization local density
matrix has much smaller errors for small values of Λ. For the total vacuum-polarization case,
the first-order QED correction obtained from the non-regularized vacuum-polarization local
density matrix converges to a value larger than the exact value. This is again a manifestation of
the fact that the non-regularized total vacuum-polarization density in the finite basis incorrectly
integrates to zero. By contrast, the first-order QED correction obtained from the regularized
vacuum-polarization local density matrix, which has the correct coefficient in front of the
Dirac-delta contribution, does converge toward the exact value.

4. Conclusion

In this work, we have reexamined the 1D effective QEDmodel of the hydrogen-like atom with
delta-potential interactions. We have provided some mathematical details on the definition of
this model.We have calculated the exact vacuum-polarization density and local density matrix,
using momentum-space Green-function techniques, showing that a Dirac-delta contribution
was missed in previous calculations. We have calculated the resulting Lamb-type shift of the
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bound-state energy. We have also studied the approximation of this model in a finite plane-
wave basis, in particular the basis convergence of the bound-state energy and eigenfunction,
of the vacuum-polarization density, of the Lamb-type shift of the bound-state energy. We have
shown that it is difficult to converge the vacuum-polarization density with respect to the UV
momentum cutoff of the plane-wave basis due to the presence of the Dirac-delta contribution.
We have proposed a way of filtering out in momentum space this Dirac-delta contribution in
the plane-wave calculations in order to converge the regular part of the vacuum-polarization
density in the basis. A possible extension of this work would be to determine the effect of
the two-particle interaction [30] on the vacuum-polarization density and density matrix in the
present model and its computational consequences.

We believe that the present work may give some hints on how to perform finite-basis cal-
culations of the vacuum-polarization density of atoms and molecules in the 3D effective QED
theory with Coulomb interactions. Indeed, for atoms and molecules, the calculation of the
vacuum-polarization density in a finite basis presents similar problems as in the present 1D
model. For instance, the vacuum-polarization density of an atom with a point-charge nucleus
also contains a Dirac-delta contribution at the nucleus (see, e.g. [40, 62]). A similar regular-
ization technique in momentum space as the one used in the present work may be therefore
useful in this case as well. We hope to confirm this in a future work.
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Appendix A. Matrix elements of the 1D hydrogen-like Dirac Hamiltonian

In this appendix, we argue that the matrix elements of the 1D hydrogen-like Dirac Hamiltonian
DZ can be defined on a set of functions larger than its domain.

We start from the definition of the Hamiltonian DZ as having the same action of the free
Dirac Hamiltonian D0 for x 6= 0, i.e.

DZψ = D0ψ on R\{0} . (A1)

with the Z-dependent domain

Dom(DZ) =
{
ψ ∈ H1

(
R\{0} ,C2

)
|ψ
(
0+
)
=MZψ

(
0−
)}
, (A2)

where the matrix MZ is defined in equation (6). Let us consider two functions ψ and ϕ in
Dom(DZ). Since they have a discontinuity at x= 0, they can be written as, for x ∈ R,

ψ (x) =ψ− (x)+H(x)
[
ψ+ (x)−ψ− (x)

]
and ϕ(x) = ϕ− (x)+H(x)

[
ϕ+ (x)−ϕ− (x)

]
,

(A3)
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where H is the Heaviside-step function, and ψ± and ϕ± are (non-unique) functions in
H1(R,C2) such that ψ− =ψ and ϕ− = ϕ on R− and ψ+ =ψ and ϕ+ = ϕ on R+. Since
they are chosen in H1(R,C2), the functions ψ± and ϕ± are continuous at x= 0 and we have
ψ±(0) =ψ(0

±) and ϕ±(0) = ϕ(0
±). The matrix element 〈ϕ,DZψ〉 can be written as

〈ϕ,DZψ〉=
ˆ 0

−∞
ϕ†

− (x)D0ψ− (x)dx+
ˆ ∞

0
ϕ†

+ (x)D0ψ+ (x)dx. (A4)

We would like to rewrite equation (A4) as a single integral over (−∞,+∞) of ϕ†(x)D0ψ(x)
but the problem is that ϕ†(x)D0ψ(x) formally contains a multiplication of distributions,
namely the product of a Heaviside-step distribution and a Dirac-delta distribution, which is
meaningless in the standard theory of distributions (where only the product of a distribution
by a smooth function is defined). One way around this, in the spirit of Colombeau’s general-
ized functions [47, 86–88], is to introduce regularized functions ψϵ and ϕϵ depending on a
regularization parameter ϵ> 0

ψϵ (x) =ψ− (x)+Hϵ (x)
[
ψ+ (x)−ψ− (x)

]
and ϕϵ (x) = ϕ− (x)+Hϵ (x)

[
ϕ+ (x)−ϕ− (x)

]
,

(A5)

where Hϵ(x) is a regularized Heasivide-step function obtained by convoluting H with ηϵ : x 7→
(1/ϵ)η(x/ϵ)

Hϵ (x) = (H ∗ ηϵ)(x) =
ˆ +∞

−∞
H(x− y)

1
ϵ
η
(y
ϵ

)
dy, (A6)

where η is amollifier, i.e. a compactly supported smooth real function satisfying
´∞
−∞ η(x)dx=

1. The derivative of ψϵ is then

ψ ′
ϵ (x) =ψ

′
− (x)+Hϵ (x)

[
ψ ′

+ (x)−ψ ′
− (x)

]
+ δϵ (x)

[
ψ+ (x)−ψ− (x)

]
, (A7)

where δϵ = H ′
ϵ is the corresponding regularized Dirac-delta function

δϵ (x) = (δ ∗ ηϵ)(x) =
1
ϵ
η
(x
ϵ

)
. (A8)

Obviously, the limit ϵ→ 0 corresponds to the non-regularized case with limϵ→0Hϵ = H and
limϵ→0 δϵ = δ in the sense of distributions. Now, since the regularized functionsψϵ andϕϵ are
in H1(R,C2), we can integrate ϕ†

ϵ(x)D0ψϵ(x) over (−∞,+∞) and take the limit ϵ→ 0

lim
ϵ→0

ˆ ∞

−∞
ϕ†

ϵ (x)D0ψϵ (x)dx= 〈ϕ,DZψ〉+ S, (A9)

where the regular part (not involving a delta function) of the integrand gives the value 〈ϕ,DZψ〉
in equation (A4) and the singular part (involving a delta function) of the integrand gives an
additional contribution

S= lim
ϵ→0

ˆ ∞

−∞
−ic

[
ϕ†

− (x)+Hϵ (x)
[
ϕ†

+ (x)−ϕ†
− (x)

]]
σ1δϵ (x)

[
ψ+ (x)−ψ− (x)

]
dx. (A10)

The difficult term in this expression is the one involving the product Hϵ(x)δϵ(x) that we cal-
culate now for any continuous and integrable function f : R→ C
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lim
ϵ→0

ˆ ∞

−∞
Hϵ (x)δϵ (x) f(x)dx= lim

ϵ→0

ˆ ∞

−∞

ˆ ∞

−∞
H(x− y)

1
ϵ
η
(y
ϵ

) 1
ϵ
η
(x
ϵ

)
f(x)dxdy

= lim
ϵ→0

ˆ ∞

−∞

ˆ ∞

−∞
H(x− y)η (y)η (x) f(ϵx)dxdy

= af(0) , (A11)

where the real number a is given by

a=
ˆ ∞

−∞

ˆ ∞

−∞
H(x− y)η (x)η (y)dxdy=

ˆ ∞

−∞

ˆ ∞

−∞
[1−H(y− x)]η (x)η (y)dxdy

= 1−
ˆ ∞

−∞

ˆ ∞

−∞
H(y− x)η (x)η (y)dxdy

= 1− a, (A12)

i.e. a= 1/2 independently of the mollifier η. Thus, we have shown that limϵ→0Hϵδϵ = (1/2)δ
in the sense of distributions, which corresponds to the result obtained in Colombeau theory.
Notice that the value a= 1/2 is obtained only if we use the same regularized Heasivide-
step function Hϵ for both ψϵ and ϕϵ in equation (A5). Using equation (A11), the term S in
equation (A10) simplifies to

S= − ic
2

[
ϕ†

+ (0)+ϕ†
− (0)

]
σ1
[
ψ+ (0)−ψ− (0)

]
= − ic

2

[
ϕ† (0+)+ϕ† (0−)]σ1

[
ψ
(
0+
)
−ψ

(
0−
)]
. (A13)

Using now the boundary condition ψ(0+) =MZψ(0−) and the matrix identity
−icσ1 [MZ− I2] = (Z/2) [MZ+ I2], we can write S as

S= − ic
2

[
ϕ† (0+)+ϕ† (0−)]σ1 [MZ− I2]ψ

(
0−
)

=
Z
4

[
ϕ† (0+)+ϕ† (0−)] [MZ+ I2]ψ

(
0−
)

=
Z
4

[
ϕ† (0+)+ϕ† (0−)][ψ (0+)+ψ (0−)]

= Zϕ̄
†
(0)ψ̄ (0) , (A14)

where we have defined ψ̄(0) = [ψ(0+)+ψ(0−)]/2 and ϕ̄(0) = [ϕ(0+)+ϕ(0−)]/2.
Therefore, we arrive at the following expression for 〈ϕ,DZψ〉

〈ϕ,DZψ〉= lim
ϵ→0

ˆ ∞

−∞
ϕ†

ϵ (x)D0ψϵ (x)dx−Zϕ̄
†
(0)ψ̄ (0) . (A15)

If we define the matrix element 〈ϕ,D0ψ〉 using the regularized functions, or equivalently in
Fourier space,

〈ϕ,D0ψ〉= lim
ϵ→0

ˆ ∞

−∞
ϕ†

ϵ (x)D0ψϵ (x)dx=
ˆ ∞

−∞
ϕ̂† (k)

[
cσ1 k+σ3 mc

2
]
ψ̂ (k)dk, (A16)

where ψ̂ and ϕ̂ are the Fourier transforms of ψ and ϕ, respectively, we can finally write
〈ϕ,DZψ〉 as

〈ϕ,DZψ〉= 〈ϕ,D0ψ〉− Zϕ̄
†
(0)ψ̄ (0) . (A17)

Thus, the potential term in equation (A17) corresponds to interpreting the multiplication of the
delta function δ(x) with a function ψ(x) discontinuous at x= 0 as δ(x)ψ(x) = ψ̄(0)δ(x), as
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done in [45–47]. This can also be understood from a distribution theory for discontinuous test
functions [89]. Using the bound-state eigenfunction ψZ

b in equation (8), it can be explicitly
checked that calculating 〈ψZ

b ,DZψ
Z
b〉 using equation (A17) correctly gives the bound-state

energy εZb in equation (7). We argue that equation (A17) can be used to define the matrix
elements of the Hamiltonian DZ on a Z-independent set of functions larger than its domain,
and in particular containing continuous functions.

The formal Dirac Hamiltonian with a delta-function potential in equation (1) has also been
interpreted in various works [48, 55, 90–92] as another self-adjoint operatorD ′

ζ corresponding
to another boundary condition which has the same form as equation (6) but with θ replaced by
θ ′ = ζ/c for 0⩽ ζ < cπ. In this case, equation (A17) becomes

〈ϕ,D ′
ζψ〉= 〈ϕ,D0ψ〉− 2c tan

(
ζ

2c

)
ϕ̄

†
(0)ψ̄ (0) . (A18)

This operatorD ′
ζ is thus identical to the operatorDZ(ζ) considered in the present work with the

nuclear charge Z(ζ) = 2c tan(ζ/2c). The reason why the operator D ′
ζ is sometimes considered

to be a realization of equation (1) is that, if we take a family of local regular real-valued poten-
tials vϵ(x) = v(x/ϵ)/ϵ with

´∞
−∞ v(x)dx= 1 that converges (in the distribution sense) to the

Dirac-delta function δ(x) as ϵ→ 0, then the family of Dirac operators Dlocal
ζ,ϵ with these local

potentials −ζvϵ converges (in the norm-resolvent sense) to D ′
ζ as ϵ→ 0 [50, 52, 53, 90, 91,

93–95]

Dlocal
ζ,ϵ = D0 − ζvϵ −→

ϵ→0
D ′

ζ = DZ(ζ). (A19)

The fact that Dlocal
ζ,ϵ does not converge to Dζ but to DZ(ζ) is surprising. Instead, if we consider

a family of Dirac operators Dnonlocal
Z,ϵ with the nonlocal potentials −Z|vϵ〉〈vϵ|, where vϵ(x) still

converges to the Dirac-delta function δ(x) as ϵ→ 0, then Dnonlocal
Z,ϵ converges (in the norm-

resolvent sense), as expected, to DZ as ϵ→ 0 [50, 89, 90, 94, 96–98]

Dnonlocal
Z,ϵ = D0 −Z|vϵ〉〈vϵ| −→

ϵ→0
DZ. (A20)

In a finite basis {χn} of functions that are continuous at x= 0, the matrix elements of the
local and nonlocal operators Dlocal

Z,ϵ and Dnonlocal
Z,ϵ both reduce, in the limit ϵ→ 0, to the matrix

elements of the operator DZ as given in equation (A17), i.e.

lim
ϵ→0

〈χn,Dlocal
Z,ϵ χm〉= lim

ϵ→0
〈χn,Dnonlocal

Z,ϵ χm〉= 〈χn,D0χm〉− Zχ†
n (0)χm (0) = 〈χn,DZχm〉.

(A21)

Appendix B. Green function from an asymmetric UV momentum cutoff

In this appendix, we calculate the Green function that would have been obtained if we had
used an asymmetric UV momentum cutoff in section 2.2.1.

We consider a momentum interval I(Λ) = [k1(Λ),k2(Λ)] containing 0 and such that
limΛ→∞ k1(Λ) =−∞ and limΛ→∞ k2(Λ) = +∞, but which is not necessarily symmetric
around 0, e.g. I(Λ) = [−Λ,2Λ]. The calculation in section 2.2.1 corresponds to using the sym-
metric interval I(Λ) = [−Λ,Λ]. Following the same steps as in the calculation in section 2.2.1,
we obtain for the variation of the Green function

∆GZ (p,p
′;ω) =− Z

2π
Ḡ0 (p;ω)

[
I2 +

Z
2π

¯̄G0 (ω)

]−1

Ḡ0 (p
′;ω) , (B1)
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where Ḡ0(p;ω) is given in equation (19) and ¯̄G0(ω) =
´
I(Λ)

Ḡ0(p;ω)dp. In the limit Λ→∞,
we obtain

lim
Λ→∞

¯̄G0 (ω) =
π

c

(
−g(ω) a
a g(−ω)

)
, (B2)

with

a=
c
π

lim
Λ→∞

ˆ
I(Λ)

cp
ω2 − ε2p

dp. (B3)

Depending on the choice of I(Λ), the constant a can be infinite or a finite real number inde-
pendent of ω. To see this, we note that the off-diagonal elements of Ḡ0(p;ω) can be written as

cp
ω2 − ε2p

=− 1
cp
H(|p| − 1)+R(p,ω) , (B4)

where H is the Heaviside-step function and R is an odd function in p and integrable in p over
(−∞,+∞). Thus, in the limit Λ→∞, the integral of R(p,ω) over p vanishes, and it remains

a= − 1
π

lim
Λ→∞

ˆ
I(Λ)

1
p
H(|p| − 1)dp

= − 1
π

lim
Λ→∞

ln

(
k2 (Λ)
−k1 (Λ)

)
. (B5)

For example, for the asymmetric interval I= [−Λ,2Λ], we have a=−(ln2)/π. For a sym-
metric interval, i.e. k2(Λ) =−k1(Λ), we recover a= 0.

Thus, we obtain, in the limit Λ→∞, a Green function with an arbitrary parameter a ∈ R,
whose value depends on how the infinite UV momentum limit is taken. In position space, we
can extract from this Green function its associated boundary-condition matrix at x= 0

Ma
Z =

1

1− (a− i)2λ2

(
1−

(
a2 + 1

)
λ2 2iλ

2iλ 1−
(
a2 + 1

)
λ2

)
, (B6)

with λ= Z/2c. This matrix can be rewritten in the form (see [51])

Ma
Z = w

(
A iB

−iC D

)
, (B7)

where w= (1− (a+ i)2λ2)/(1− (a− i)2λ2), A= D= (1− (a2 + 1)λ2)/
√
P, B=−C=

2λ/
√
Pa, and P= 1− 2(a2 − 1)λ2 +(a2 + 1)2λ4. For a= 0, we recover the boundary condi-

tion in equation (5). For a general parameter a, it can be checked that |w|= 1, AD−BC= 1,
and A,B,C,D ∈ R, so that it still corresponds to a self-adjoint Dirac Hamiltonian Da

Z with
a point-interaction potential [51]. More precisely, this Hamiltonian Da

Z is (see [99–101] for
related discussions)

Da
Z = UDZaU

†, (B8)

with the unitary operator U= χ I2 where χ is the function of modulus 1 given by

χ(x) =

{
1, x< 0

w, x⩾ 0,
(B9)

and Za/2c=
√
(1−A)/(1+A). This Hamiltonian Da

Z is thus unitarily equivalent to the
Hamiltonian in equations (4) and (5) but with the nuclear charge Z replaced by Za. This shows
the importance of choosing a symmetric UV momentum cutoff to obtain the Green function
corresponding to the Hamiltonian in section 2.1 with the correct nuclear charge Z.
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Appendix C. Error in the calculation of the vacuum-polarization density in
position space

In this appendix, we explain why the Dirac-delta contribution was missed in the calculation
of the vacuum-polarization density in position space in appendix D of [30]. The error was to
conclude from the expression of the vacuum-polarization density matrix in position space in
equation (D10) of [30],

nvp1 (x,x ′) =
1
2π

ˆ ∞

−∞
∆G(x,x ′; iu)du (C1)

where ∆G(x,x ′; iu) is the variation of the position-space Green function, that the position-
space vacuum-polarization density was given by the expression in equation (D11) of [30],

“nvp (x) =
1
2π

ˆ ∞

−∞
tr [∆G(x,x; iu)]du”. (C2)

Indeed, while∆G(x,x ′; iu) is continuous around the diagonal x= x ′ for a given u, the integral
over u contains a singular contribution which is not continuous at x= x ′ = 0. This singular
term in tr[nvp1 (x,x ′)], at first order in Z for simplicity, is

tr
[
nvp,(1)1,sing (x,x

′)
]
= − Z

4π c2
[sgn(x)sgn(x ′)− 1]

ˆ ∞

−∞
e−κ(iu)(|x|+|x ′|)du

= − mZ
2π

[sgn(x)sgn(x ′)− 1] K1 (mc (|x|+ |x ′|)) , (C3)

where K1 is the modified Bessel function of the second kind. This term has a diagonal x= x ′

that vanishes for x 6= 0, but gives raise of the Dirac-delta contribution in the Uehling vacuum-
polarization density nvp,(1)(x). To see this, we first use K1(z)∼ 1/z as z→ 0 to find

tr
[
nvp,(1)1,sing (x,x

′)
]

∼
x,x ′→0

Z
2π c

[1− sgn(x)sgn(x ′)]
|x|+ |x ′|

. (C4)

In the spirit of [102, 103], we define the x= x ′ diagonal of the kernel tr[nvp,(1)1,sing (x,x
′)] by aver-

aging it around the diagonal as

nvp,(1)sing (x) = lim
ϵ→0+

1

(2ϵ)2

ˆ x+ϵ

x−ϵ

ˆ x+ϵ

x−ϵ

tr
[
nvp,(1)1,sing (y,y

′)
]
dydy ′. (C5)

This gives

nvp,(1)sing (x) =
Z
π c

lim
ϵ→0+

f(x/ϵ)
ϵ

, (C6)

where

f(x) =

{
(1/2) ln

(
4/
(
1− x2

))
− xarctanh(x) , |x|< 1

0, |x|⩾ 1,
(C7)

and
´∞
−∞ f(x)dx= 1. Thus, in the sense of distributions, the limit in equation (C6) tends to a

Dirac-delta function

nvp,(1)sing (x) =
Z
π c
δ (x) , (C8)
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in agreement with equation (32). The derivation in momentum space presented in section 2.2
of this paper is valid without the need of a regularization like in equation (C5), because
tr[n̂vp,(1)1 (p,p ′)] is smooth in (p,p ′).

Appendix D. Rate of convergence of the bound-state energy in a plane-wave
basis

In this appendix, we study the rate of convergence of the bound-state energy of the 1D
hydrogen-like Dirac atom in a plane-wave basis.

The exact bound-state eigenfunction of the 1D hydrogen-like Dirac HamiltonianDZ has the
form (see equation (8))

ψZ
b (x) =

(
ψL (x)
ψS (x)

)
, (D1)

with ψL(x) = Abe−κb|x| and ψS(x) = Abisgn(x)(Z/2c)e−κb|x| (the expressions of the constants
Ab and κb are given after equation (8)). The associated exact bound-state energy is

εZb = 〈ψZ
b ,DZψ

Z
b〉

= 〈ψZ
b ,mc

2σ3ψ
Z
b〉. (D2)

The last equality in equation (D2) comes from the relativistic virial theorem [104–106], which
can be shown, e.g. using a scaling argument, to have the same form for the 1D Dirac equation
with a Dirac-delta potential as for the 3D Dirac equation with a Coulomb potential. It provides
a convenient expression for calculating the energy.

We consider a complete plane-wave basis {χn}n∈Z on the interval [−L/2,L/2] where
χn(x) = (1/

√
L)eiknx and kn = 2πn/L, and use it to expand the restriction of the exact bound-

state eigenfunctionψZ
b to the interval [−L/2,L/2]. SinceψL andψS are even and odd functions,

respectively, we introduce even and odd basis functions

χg
n (x) =


χ0 (x) for n= 0

χn (x)+χ−n (x)√
2

for n ∈ N∗
and χu

n (x) =
χn (x)−χ−n (x)√

2
for n ∈ N∗. (D3)

For x ∈ [−L/2,L/2], we have thus

ψL (x) =
∞∑
n=0

cLn χ
g
n (x) and ψS (x) =

∞∑
n=1

cSn χ
u
n (x) , (D4)

with coefficients

cLn = 〈ψL,χg
n〉L =


2Ab

κb
√
L

(
1− e−κbL/2

)
for n= 0

2
√
2Abκb√
L

1− (−1)n e−κbL/2

κb+ k2n
for n ∈ N∗

and

cSn = 〈ψS,χu
n〉L =− Zkn

2cκb
cLn for n ∈ N∗. (D5)

As n→∞, the large-component coefficients cLn decay as 1/n2 while the small-component
coefficients cSn decay as 1/n.
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We now consider the best approximation (in the sense of the L2 norm) ψ̃Z
b toψ

Z
b in the finite

basis {χn}|n|⩽nmax
, for x ∈ [−L/2,L/2],

ψ̃Z
b (x) =

(
ψ̃L (x)
ψ̃S (x)

)
, (D6)

where

ψ̃L (x) =
nmax∑
n=0

cLn χ
g
n (x) and ψ̃S (x) =

nmax∑
n=1

cSn χ
u
n (x) . (D7)

The corresponding approximation to the bound-state energy, as a function of the IR cutoff L
and the UV cutoff Λ = 2πnmax/L, is

ε̃Zb (L,Λ) = 〈ψ̃Z
b ,mc

2σ3ψ̃
Z
b〉L = mc2

(
nmax∑
n=0

|cLn |2 −
nmax∑
n=1

|cSn |2
)
. (D8)

From the expression of the coefficients in equation (D5), we find the behavior of the bound-
state energy as Λ→∞

ε̃Zb (L,Λ) ∼
Λ→∞

ε̃Zb (L,∞)+
A2
bZ

2
(
1+ e−κbL

)
π c2 Λ

, (D9)

with

ε̃Zb (L,∞) = lim
Λ→∞

ε̃Zb (L,Λ) =
(
1− e−κbL

)
εZb , (D10)

where εZb is the exact bound-state energy. We thus find that ε̃Zb(L,Λ) converges as 1/Λ as
Λ→∞. This asymptotic convergence rate comes entirely from the small-component contri-
bution which, having a discontinuity at x= 0 in addition to a derivative discontinuity, repres-
ents the limiting factor in the convergence of the bound-state energy. We also see that, at least
for large enough Λ, the bound-state energy converges exponentially with L as L→∞. Even
though the best approximate eigenfunction ψ̃Z

b in the sense of the L2 norm considered here
does not exactly correspond to the approximate eigenfunction obtained in section 3.1 by diag-
onalizing the Hamiltonian in the plane-wave basis, in practice we expect a similar convergence
rate for the latter case.
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