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The problem with “continuum states”

» The Coulomb nuclei-electron potential is non-confining, which leads to a continuous
energy spectrum with “continuum states”.

» Mathematically, the continuum states are not truly energy
eigenstates since they do not belong to the L2 Hilbert space.

» In principle, pointwise/distribution convergence to continuum
states can be obtained with L2 basis functions.

» In practice, convergence to continuum states (or to properties
crucially depending on continuum states) can be very slow or
impossible with straightforward basis expansions.

Reinhardt, Comp. Phys. Comm., 1979
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Photoionization cross section

» The photoabsorption cross section is

o(w) = lim —Im[a(w—km)]

n—0t

where a(w) is the dynamic dipole polarizability.

» For w > IP, this is the photoionization cross section, which
crucially depends on continuum states.

> If A were diagonalizable in a complete eigenfunction basis
{W,}nen, the cross section could be written as

4 e
- Z| WoldWa)* 3w — (B — o))
where d is the dipole-moment operator (along the direction of
the electric field). o

» Formally, it can be expressed as an expectation value

47w

o(w) = (\Ilo|d O(w+ Eo — ) 3|W0>

where §(w + Eg — I:I) is the spectral-density operator.
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Photoionization from linear-response TDDFT/TDHF: The naive way

» In a finite basis set, the linear-response (adiabatic) TDDFT/TDHF equations are

A B Xo\ _ X,
—B"< —A* Yn — Yn
with Aj b = (€2 — 1)050a6 + (aj| Fixc|ib) and Biajp = (ab|fiuc|if)-

» We obtain M excitation energies w, and associated oscillator strengths f,. The
photoabsorption cross section is then

272 M
o(w) ==~ > 8(w — wa)
n=1

» For w > IP, the photoionization cross section at w = w, may be approximated as
272
a(wn) ~ ?fn pDOS(Wn)

where ppos(wn) is a finite-difference estimate of the density of states at w = wj

(w) dn 2
Wp)=—~ —————
PROSIN) = Gion W1 — a1

Macias, Martin, Riera, Yéanez, Int. J. Quantum Chem., 1988
Yang, van Faassen, Burke, J. Chem. Phys., 2009

Zapata, Luppi, Toulouse, J. Chem. Phys., 2019 6/23



Photoionization cross sections of He and Be

» We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical
box €, with Dirichlet (zero) boundary conditions.

» TDHF photoionization cross sections of the He and Be atoms:
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— Reasonable spectrum for He but it does not work for core ionization in Be

Zapata, Luppi, Toulouse, J. Chem. Phys., 2019
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So, how to deal with continuum states?

Some approaches for calculating cross sections involving continuum states:

» Various techniques involving the complex-frequency plane

E.g., analytical continuation of a(w):
Tenorio, Coriani, Rocha, Nascimento, Prog. Theor. Chem. Phys., 2021

» Imposing boundary conditions adapted to continuum states
E.g., in TDDFT:
Stener, Decleva, Lisini, J. Phys. B, 1995

—> Here, | will talk about using Robin boundary conditions

» Semiclassical approximations

E.g., in nuclear physics:
Schuck, Hasse, Jaenicke, Grégoire, Rémaud, Sébille, Suraud, Prog. Part. Nucl. Phys., 1989

—> Here, | will talk about semiclassical approximations for photoionization
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© Robin boundary conditions
with E. Cancés, A. Levitt, E. Luppi, K. Schwinn, F. Zapata
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Sternheimer formulation of linear-response TDDFT/TDHF

> Let us look at a basis-independent formulation of linear-response TDDFT /TDHF.

» In (adiabatic) TDDFT/TDHF, the occupied orbitals evolve in time according to
.0 2 N
15 ¥i(t) = hh(D)]i(t) + v(t)vi(t)

where h[(t)] is the KS/HF Hamiltonian depending on the density matrix ~(t) and
¥(t) = —d€ (e7' + e™™") is the electric-dipole interaction.
» At first order in the electric field, the perturbed occupied orbitals (in the interaction
picture) are
B0 (e) = ¥ (w)e ™ 4yl (w)er
where the Fourier modes w;i)(w) satisfy the TDDFT /TDHF Sternheimer equations
(:I:w +ei— ;7[7(0)]) wfi)(w) = (Oﬁi)(w) = 3) 1/150)

» The dynamic dipole polarizability is then obtained as
N

a(w) = > @Al (W) + (@7 (W) d[p®)

i=1
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Tackling the continuum with Robin boundary conditions

» For w > —¢;, the first-order perturbed occupied orbital wf+)(w) is a “continuum wave
function” (i.e., not belonging to the Hilbert space).

» Key idea: Expand wfﬂ(w) in a basis set only in a box Q and use an analytical

asymptotic approximation 1/_)f+) (w) to it outside the box. Match the two functions
on the box surface 092 by equating the normal logarithmic derivatives.

» For spherical symmetry, this leads to local Robin boundary conditions for wfﬂ(w)

v e o0, "V (rw) _ nn) Vi w)
oePe) P(rw)

where 1/_)§+)(r,w) are chosen as hydrogen-like continuum wave functions.
» For non-spherical symmetry, it is extended to nonlocal Robin boundary conditions
vr € 09, n(r)- Vi (r,w) = /asz Ki(r, ¢'; w)p ™M (¢, w)dr’
where the kernel Ki(r,r’;w) contains information about 1,5?”(0.)).
» Using now a basis set in the box, it amounts to using the kinetic integrals

) = 3 [ VG0 V=5 [ xR (¢ )drer
o

11/23



Photoionization cross section of Be

» We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical
box Q, with Robin boundary conditions.

» TDLDA and TDHF photoionization cross sections of the Be atom:
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—> We can now easily converge the spectra for all frequencies

Schwinn, Zapata, Levitt, Cancés, Luppi, Toulouse, JCP, 2022 1223



Core resonances in the Be atom

» The 1s — np core excitations are embedded in the continuum of the valence excitations
from the 2s = they are resonances, i.e. quasi-bound states with finite lifetimes.

» Example of the 1s — 2p core resonance (resonance energy Er and inverse lifetime I):
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—> Good resonance energy with TDLRSH but much too small inverse lifetime

» The resonance decays via the Auger process
1s2s22p — 1s°2p + e
The configuration 1s?2p is a double excitation with respect to the ground state 1s2s?
and thus cannot be described by adiabatic TDDFT /TDHF.

Schwinn, Zapata, Levitt, Cancés, Luppi, Toulouse, JCP, 2022 13/23



Core resonances in the Li atom

» In Li, due to spin, each 1s — np resonance split in two resonances.

» Example of the 1st — 2p; and 1s| — 2p, core resonance:

1ST — 2pT
&0 Er (eV) T (meV)
2 TOHE TDLDA 49.7 0.3
i TDHF 59.6 5.6
3. : TDLRSH 5838 5.4
g Reference 58.9 3.3
g 1s, — 2p;
§ 10 J : Ex (V) T (meV)
z k UL TDLDA 50.3 0.1
= 60 62 64 66 TDHF 60.9 0.2
Freauency o (eV) TDLRSH 60.4 0.3
Reference 60.4 9.6

— Again, good resonance energies with TDLRSH but unreliable inverse lifetimes
» Note that now the resonances decay via the Auger process
1s2s2p — 1s®> + e

which does not invove any double excitation with respect to the ground state 1s22s.

Toulouse, Schwinn, Zapata, Levitt, Cancés, Luppi, JCP, 2022 14/23



Conclusions on Robin boundary conditions

» Summary:

» TDDFT/TDHF with special boundary conditions for describing continuum states

» It allows for calculations of photoionization spectra of atoms, including core
resonances

» TDLRSH gives good resonance energies but unreliable lifetimes

Schwinn, Zapata, Levitt, Cances, Luppi, Toulouse, JCP, 2022
Toulouse, Schwinn, Zapata, Levitt, Cances, Luppi, JCP, 2022
» Outlook:

» Extension to double excitations
» Extension to molecules

» Extension to time propagation for nonlinear optical properties
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e Semiclassical approximations

started with P. Schuck
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Photoionization cross section in the velocity gauge

» We start from the photoionization cross section in the velocity gauge
472 A A
o(w) = ZWJO'P 0(w + Eo — H) P|Wy)

where P is the total momentum operator (along the direction of the field).

» We introduce the operators

A=0(w+E —H) and B

Il

o
>
v

and the ground-state density matrix

po = [Wo) (Vo
» We arrive at the following expression for the photoionization cross section
47 4 47? , , /
= —Tr[B po] = — drdr' B
o) =TT o) = - [ drde B ool )
where B(r,r') = (r|B|r') and po(¥',r) = (¥'|po]r).
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Wigner representation of the photoionization cross section

» Let us introduce the Wigner transform of an operator c
(Chu(a.p) = Gula.p) = [ dse ™ (a-+3/2[¢1a=5/2)
]R?)N Hﬁ,—/ T/

where q = (r +r')/2 € R*" is the average position vector, s =r — ¥’ € R*" is the
relative position vector, p € R3V is the conjugate momentum vector of s.

Ring, Schuck, The Nuclear Many-Body Problem, Springer, 2004
Case, Am. J. Phys., 2008

» The Wigner transformation preserves the trace of a product of operators, so we have

_4n? dqdp
U(w) = /RGN (271_)3/\/ Bw(q,p)po,w(q,p)

» We have put the photoionization cross section in the form of a phase-space integral.

» So far, everything is exact. We will assume that we know the Wigner function of the
ground state po.w(q, p), and we will now use a semiclassical expansion approximation
for Bw(a,p).
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Semiclassical expansion

» The Wigner transform of a product of operators is given by the
Groenewold/Moyal/star-product formula:

[€Dlw(a.p) = Cw(a,p)e™?" Dw(a,p)

— =

g
where A = Vg4 -V, — Vp - Vg is the Poisson bracket differential operator.

» Using this formula, we find the Wigner transform of B = PAP
2 "
Bw(a,p) = *P Aw(a, p) + 75D Aw(a, p)

where P =3V p;and D=3V V.
» We also find the semiclassical expansion of the Wigner transform of A = §(w + Ey — H)

Aw(a.p) = AR (a.p) + 1°AR)(a,p) + O(1*)
2
where A\(,(\),)(q7p) = 6(w+ Eo — H(q,p)) and H(q,p) = % + V(q)

1
AQ(a,p) =5 |-VaV(a) 6" (w + E — H(a,p))

+3 ((VaV(@) + (b Va)* V(@) 6" (w+ Es — H(a,p))
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Semiclassical expansion of the photoionization cross section

» We obtain the semiclassical expansion of the photoionization cross section (for

hn=1):
o(w) = cr(o)(w) + 0(2)(w) T

» The zeroth-order term is

2
© = An” dqdp P20
W) 3cw Jgon (27)3N w (9, P)po,w(a; p)

» The second-order term is

>

4n* [ dadp

@ () = p2A®@ 152,40
o (w) 3cw Jgon (27[_)3[\/ [ w (q,P) + 4 w (q,P) po,w(q,p)

We have arrived at an approximation to the photoionization cross section that only
requires to know the ground-state Wigner function pow(q, p) but does not require the
calculation of the continuum states.

Note that it is not a full expansion in powers of i since we do not expand po,w(q, p).

Toulouse, EPJA, 2023
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Photoionization cross section of the hydrogen atom

Calculation of 0(®(w) and ¢/®(w) by numerical integration:
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—> As expected, the semiclassical expansion correctly captures the high-energy part
of the spectrum

Toulouse, EPJA, 2023
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Photoionization cross section of the helium atom

Calculation of o(®(w) and an approximation to ¢(®(w) by numerical integration:
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—> Again, the semiclassical expansion correctly captures the high-energy part of the
spectrum

Toulouse, EPJA, 2023
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Conclusions on semiclassical approximations

» Summary:

>
>

We derived semiclassical approximations for photoionization cross sections
Tests on atoms confirm that they correctly captures the high-energy part of the
spectrum

Toulouse, EPJA, 2023

» Outlook:

vvyy

Extension to linear-response TDHF/TDDFT

Extension to many-body calculations with Monte Carlo integration

Extension to other properties such as second-order correlation energy
Development of hybrid methods: basis set for low-energy part + semiclassical
approximations for high-energy part

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_toulouse_24.pdf
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