

Two strategies for continuum excited states: Robin boundary conditions and semiclassical approximations

Julien Toulouse Laboratoire de Chimie Théorique Sorbonne Université and CNRS, Paris, France Institut Universitaire de France

Workshop on excited-state methods April 2023, Toulouse

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_toulouse_23.pdf

1 Difficulties with continuum states

2 Robin boundary conditions

3 Semiclassical approximations

Difficulties with continuum states

Semiclassical approximations

There is more to electronic-structure theory than bound states!

- ► The Coulomb nuclei-electron potential is non-confining, which leads to a **continuous** energy spectrum with "continuum states".
- Mathematically, the continuum states are not truly energy eigenstates since they do not belong to the L² Hilbert space.
- In principle, pointwise/distribution convergence to continuum states can be obtained with L² basis functions.
- In practice, convergence to continuum states (or to properties crucially depending on continuum states) can be very slow or impossible with straightforward basis expansions.

Reinhardt, Comp. Phys. Comm., 1979

Photoionization cross section

The photoabsorption cross section is

$$\sigma(\omega) = \lim_{\eta \to 0^+} \frac{4\pi\omega}{c} \text{Im}[\alpha(\omega + i\eta)]$$

where $\alpha(\omega)$ is the dynamic dipole polarizability.

- For $\omega \ge$ IP, this is the **photoionization cross section**, which crucially depends on continuum states.
- ▶ If \hat{H} were diagonalizable in a complete eigenfunction basis $\{\Psi_n\}_{n \in \mathbb{N}}$, the cross section could be written as

$$\sigma(\omega) = rac{4\pi^2\omega}{c}\sum_{n=0}^\infty |\langle \Psi_0|\hat{d}|\Psi_n
angle|^2 \ \delta(\omega-(E_n-E_0))$$

where \hat{d} is the dipole-moment operator (along the direction of the electric field).

Formally, it can be expressed as an expectation value

$$\sigma(\omega) = rac{4\pi^2\omega}{c} \langle \Psi_0 | \hat{d} \,\, \delta(\omega + E_0 - \hat{H}) \,\, \hat{d} | \Psi_0
angle$$

where $\delta(\omega + E_0 - \hat{H})$ is the spectral-density operator.

Photoionization from linear-response TDDFT/TDHF: The naive way

▶ In a finite basis set, the linear-response (adiabatic) TDDFT/TDHF equations are

$$\left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ -\mathbf{B}^* & -\mathbf{A}^* \end{array}\right) \left(\begin{array}{c} \mathbf{X}_n \\ \mathbf{Y}_n \end{array}\right) = \omega_n \left(\begin{array}{c} \mathbf{X}_n \\ \mathbf{Y}_n \end{array}\right)$$

with $A_{ia,jb} = (\varepsilon_a - \varepsilon_i)\delta_{ij}\delta_{ab} + \langle aj|\hat{f}_{Hxc}|ib\rangle$ and $B_{ia,jb} = \langle ab|\hat{f}_{Hxc}|ij\rangle$.

▶ We obtain *M* excitation energies ω_n and associated oscillator strengths f_n . The photoabsorption cross section is then

$$\sigma(\omega) = \frac{2\pi^2}{c} \sum_{n=1}^{M} f_n \, \delta(\omega - \omega_n)$$

▶ For $\omega \ge IP$, the **photoionization cross section** at $\omega = \omega_n$ may be approximated as

$$\sigma(\omega_n)\approx\frac{2\pi^2}{c}f_n\ \rho_{\rm DOS}(\omega_n)$$

where $\rho_{\text{DOS}}(\omega_n)$ is a finite-difference estimate of the **density of states** at $\omega = \omega_n$

$$\rho_{\text{DOS}}(\omega_n) = \frac{\mathrm{d}n}{\mathrm{d}\omega_n} \approx \frac{2}{\omega_{n+1} - \omega_{n-1}}$$

Macías, Martín, Riera, Yánez, Int. J. Quantum Chem., 1988 Yang, van Faassen, Burke, J. Chem. Phys., 2009 Zapata, Luppi, Toulouse, J. Chem. Phys., 2019

Photoionization cross sections of He and Be

- We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical box Ω, with Dirichlet (zero) boundary conditions.
- ▶ TDHF photoionization cross sections of the He and Be atoms:

 \implies Reasonable spectrum for He but it does not work for core ionization in Be

Zapata, Luppi, Toulouse, J. Chem. Phys., 2019

So, how to deal with continuum states?

Some approaches for calculating cross sections involving continuum states:

- Various techniques involving the complex-frequency plane
 E.g., analytical continuation of α(ω):
 Tenorio, Coriani, Rocha, Nascimento, Prog. Theor. Chem. Phys., 2021
- Imposing boundary conditions adapted to continuum states E.g., in TDDFT: Stener, Decleva, Lisini, J. Phys. B, 1995

 \implies Here, I will talk about using Robin boundary conditions

Semiclassical approximations

E.g., in nuclear physics: Schuck, Hasse, Jaenicke, Grégoire, Rémaud, Sébille, Suraud, Prog. Part. Nucl. Phys., 1989

 \Longrightarrow Here, I will talk about semiclassical approximations for photoionization

Difficulties with continuum states

Robin boundary conditions with E. Cancès, A. Levitt, E. Luppi, K. Schwinn, F. Zapata

Semiclassical approximations

Sternheimer formulation of linear-response TDDFT/TDHF

- Let us look at a basis-independent formulation of linear-response TDDFT/TDHF.
- ► In (adiabatic) TDDFT/TDHF, the occupied orbitals evolve in time according to

$$\mathbf{i}rac{\partial}{\partial t}\psi_i(t)=\hat{h}[\gamma(t)]\psi_i(t)+\hat{\mathbf{v}}(t)\psi_i(t)$$

where $\hat{h}[\gamma(t)]$ is the KS/HF Hamiltonian depending on the density matrix $\gamma(t)$ and $\hat{v}(t) = -\hat{d}\mathcal{E}\left(e^{-i\omega t} + e^{+i\omega t}\right)$ is the electric-dipole interaction.

At first order in the electric field, the perturbed occupied orbitals (in the interaction picture) are

$$\psi_i^{(1)}(t) = \psi_i^{(+)}(\omega)e^{-\mathrm{i}\omega t} + \psi_i^{(-)}(\omega)e^{+\mathrm{i}\omega t}$$

where the Fourier modes $\psi_i^{(\pm)}(\omega)$ satisfy the **TDDFT/TDHF Sternheimer equations** $\left(\pm\omega+\varepsilon_i-\hat{h}[\gamma^{(0)}]\right)\psi_i^{(\pm)}(\omega) = \left(\hat{v}_{\mathsf{Hxc}}^{(\pm)}(\omega)-\hat{d}\right)\psi_i^{(0)}$

The dynamic dipole polarizability is then obtained as

$$\alpha(\omega) = \sum_{i=1}^{N} \langle \psi_i^{(0)} | \hat{d} | \psi_i^{(+)}(\omega) \rangle + \langle \psi_i^{(-)}(\omega) | \hat{d} | \psi_i^{(0)} \rangle$$

Tackling the continuum with Robin boundary conditions

- For ω ≥ −ε_i, the first-order perturbed occupied orbital ψ⁽⁺⁾_i(ω) is a "continuum wave function" (i.e., not belonging to the Hilbert space).
- ► Key idea: Expand $\psi_i^{(+)}(\omega)$ in a basis set only in a box Ω and use an analytical asymptotic approximation $\bar{\psi}_i^{(+)}(\omega)$ to it outside the box. Match the two functions on the box surface $\partial\Omega$ by equating the normal logarithmic derivatives.
- For spherical symmetry, this leads to local Robin boundary conditions for $\psi_i^{(+)}(\omega)$

$$\forall \mathbf{r} \in \partial \Omega, \ \frac{\mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \psi_i^{(+)}(\mathbf{r}, \omega)}{\psi_i^{(+)}(\mathbf{r}, \omega)} = \frac{\mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \overline{\psi}_i^{(+)}(\mathbf{r}, \omega)}{\overline{\psi}_i^{(+)}(\mathbf{r}, \omega)}$$

where $\bar{\psi}_i^{(+)}(\mathbf{r},\omega)$ are chosen as hydrogen-like continuum wave functions.

► For non-spherical symmetry, it is extended to nonlocal Robin boundary conditions

$$\forall \mathbf{r} \in \partial \Omega, \ \mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \psi_i^{(+)}(\mathbf{r}, \omega) = \int_{\partial \Omega} \bar{K}_i(\mathbf{r}, \mathbf{r}'; \omega) \psi_i^{(+)}(\mathbf{r}', \omega) \mathrm{d}\mathbf{r}'$$

where the kernel $ar{\mathcal{K}}_i(\mathbf{r},\mathbf{r}';\omega)$ contains information about $ar{\psi}_i^{(+)}(\omega).$

Using now a basis set in the box, it amounts to using the kinetic integrals

$$t_{i,\mu,\nu}(\omega) = \frac{1}{2} \int_{\Omega} \nabla \chi_{\mu}^{*}(\mathbf{r}) \cdot \nabla \chi_{\nu}(\mathbf{r}) d\mathbf{r} - \frac{1}{2} \int_{\partial \Omega^{2}} \chi_{\mu}^{*}(\mathbf{r}) \bar{K}_{i}(\mathbf{r},\mathbf{r}';\omega) \chi_{\nu}(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$$

Photoionization cross section of Be

- We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical box Ω, with Robin boundary conditions.
- ▶ TDLDA and TDHF photoionization cross sections of the Be atom:

 \implies We can now easily converge the spectra for all frequencies

Schwinn, Zapata, Levitt, Cancès, Luppi, Toulouse, JCP, 2022

Core resonances in the Be atom

The 1s → np core excitations are embedded in the continuum of the valence excitations from the 2s ⇒ they are resonances, i.e. quasi-bound states with finite lifetimes.

• Example of the 1s \rightarrow 2p core resonance (resonance energy $E_{\rm R}$ and inverse lifetime Γ):

 \Longrightarrow Good resonance energy with TDLRSH but much too small inverse lifetime

▶ The resonance decays via the Auger process

$$1\text{s}2\text{s}^22\text{p} \rightarrow 1\text{s}^22\text{p} + \text{e}$$

The configuration $1s^22p$ is a double excitation with respect to the ground state $1s^22s^2$ and thus cannot be described by adiabatic TDDFT/TDHF.

Summary:

- TDDFT/TDHF with special boundary conditions for describing continuum states
- It allows for calculations of photoionization spectra of atoms, including core resonances
- ► TDLRSH gives good resonance energies but unreliable lifetimes

Outlook:

- Extension to Gaussian basis sets
- Extension to molecules
- Extension to time propagation for nonlinear optical properties

1 Difficulties with continuum states

3 Semiclassical approximations with P. Schuck

Photoionization cross section in the velocity gauge

▶ We start from the photoionization cross section in the velocity gauge

$$\sigma(\omega) = rac{4\pi^2}{c\omega} \langle \Psi_0 | \hat{P} \; \delta(\omega + E_0 - \hat{H}) \; \hat{P} | \Psi_0
angle$$

where \hat{P} is the total momentum operator (along the direction of the field).

We introduce the operators

$$\hat{A} = \delta(\omega + E_0 - \hat{H})$$
 and $\hat{B} = \hat{P} \hat{A} \hat{P}$

and the ground-state density matrix

$$\hat{\rho}_0 = |\Psi_0\rangle \langle \Psi_0|$$

▶ We arrive at the following expression for the photoionization cross section

$$\sigma(\omega) = \frac{4\pi^2}{c\omega} \operatorname{Tr}[\hat{B} \ \hat{\rho}_0] = \frac{4\pi^2}{c\omega} \int_{\mathbb{R}^{6N}} \mathsf{drd}\mathbf{r}' B(\mathbf{r}, \mathbf{r}') \rho_0(\mathbf{r}', \mathbf{r})$$

where $B(\mathbf{r},\mathbf{r}') = \langle \mathbf{r} | \hat{B} | \mathbf{r}' \rangle$ and $\rho_0(\mathbf{r}',\mathbf{r}) = \langle \mathbf{r}' | \hat{\rho}_0 | \mathbf{r} \rangle$.

Wigner representation of the photoionization cross section

• Let us introduce the **Wigner transform** of an operator \hat{C}

$$[\hat{C}]_{\mathsf{W}}(\mathbf{q},\mathbf{p}) \equiv C_{\mathsf{W}}(\mathbf{q},\mathbf{p}) = \int_{\mathbb{R}^{3N}} \mathsf{ds} \; e^{-i\mathbf{p}\cdot\mathbf{s}} \langle \underbrace{\mathbf{q} + \mathbf{s}/2}_{=\mathbf{r}} |\hat{C}| \underbrace{\mathbf{q} - \mathbf{s}/2}_{=\mathbf{r}'} \rangle$$

where $\mathbf{q} = (\mathbf{r} + \mathbf{r}')/2 \in \mathbb{R}^{3N}$ is the average position vector, $\mathbf{s} = \mathbf{r} - \mathbf{r}' \in \mathbb{R}^{3N}$ is the relative position vector, $\mathbf{p} \in \mathbb{R}^{3N}$ is the conjugate momentum vector of \mathbf{s} . Ring, Schuck, The Nuclear Many-Body Problem, Springer, 2004 Case, Am. J. Phys., 2008

> The Wigner transformation preserves the trace of a product of operators, so we have

$$\sigma(\omega) = \frac{4\pi^2}{c\omega} \int_{\mathbb{R}^{6N}} \frac{d\mathbf{q}d\mathbf{p}}{(2\pi)^{3N}} \ B_{\mathsf{W}}(\mathbf{q},\mathbf{p})\rho_{0,\mathsf{W}}(\mathbf{q},\mathbf{p})$$

- ▶ We have put the photoionization cross section in the form of a phase-space integral.
- ► So far, everything is exact. We will assume that we know the Wigner function of the ground state $\rho_{0,W}(\mathbf{q}, \mathbf{p})$, and we will now use a semiclassical expansion approximation for $B_W(\mathbf{q}, \mathbf{p})$.

Semiclassical expansion

The Wigner transform of a product of operators is given by the Groenewold/Moyal/star-product formula:

$$[\hat{C}\hat{D}]_{\mathsf{W}}(\mathbf{q},\mathbf{p}) = C_{\mathsf{W}}(\mathbf{q},\mathbf{p})e^{(i\hbar/2)\overleftarrow{\Lambda}}D_{\mathsf{W}}(\mathbf{q},\mathbf{p})$$

where $\stackrel{\leftrightarrow}{\Lambda} = \stackrel{\leftarrow}{\nabla}_{q} \cdot \stackrel{\rightarrow}{\nabla}_{p} - \stackrel{\leftarrow}{\nabla}_{p} \cdot \stackrel{\rightarrow}{\nabla}_{q}$ is the Poisson bracket differential operator.

• Using this formula, we find the Wigner transform of $\hat{B} = \hat{P}\hat{A}\hat{P}$

$$B_{\mathsf{W}}(\mathsf{q},\mathsf{p}) = rac{1}{3}\mathsf{P}^2\mathcal{A}_{\mathsf{W}}(\mathsf{q},\mathsf{p}) + rac{\hbar^2}{12}\mathsf{D}^2\mathcal{A}_{\mathsf{W}}(\mathsf{q},\mathsf{p})$$

where $\mathbf{P} = \sum_{i=1}^{N} \mathbf{p}_i$ and $\mathbf{D} = \sum_{i=1}^{N} \nabla_{\mathbf{q}_i}$.

► We also find the semiclassical expansion of the Wigner transform of $\hat{A} = \delta(\omega + E_0 - \hat{H})$ $A_W(\mathbf{q}, \mathbf{p}) = A_W^{(0)}(\mathbf{q}, \mathbf{p}) + \hbar^2 A_W^{(2)}(\mathbf{q}, \mathbf{p}) + O(\hbar^4)$

where $A_{W}^{(0)}(\mathbf{q},\mathbf{p}) = \delta(\omega + E_0 - H(\mathbf{q},\mathbf{p}))$ and $H(\mathbf{q},\mathbf{p}) = \frac{\mathbf{p}^2}{2} + V(\mathbf{q})$

$$\begin{split} \mathcal{A}_{\mathrm{W}}^{(2)}(\mathbf{q},\mathbf{p}) \; = & \frac{1}{8} \Biggl[-\nabla_{\mathbf{q}}^{2} V(\mathbf{q}) \; \delta^{\prime\prime}(\omega + E_{0} - \mathcal{H}(\mathbf{q},\mathbf{p})) \\ & + \frac{1}{3} \left((\nabla_{\mathbf{q}} V(\mathbf{q}))^{2} + (\mathbf{p} \cdot \nabla_{\mathbf{q}})^{2} V(\mathbf{q}) \right) \; \delta^{\prime\prime\prime}(\omega + E_{0} - \mathcal{H}(\mathbf{q},\mathbf{p})) \Biggr] \end{split}$$

18/22

Semiclassical expansion of the photoionization cross section

► We obtain the semiclassical expansion of the photoionization cross section (for ħ = 1):

$$\sigma(\omega) = \sigma^{(0)}(\omega) + \sigma^{(2)}(\omega) + \cdots$$

The zeroth-order term is

$$\sigma^{(0)}(\omega) = \frac{4\pi^2}{3c\omega} \int_{\mathbb{R}^{6N}} \frac{\mathrm{d}\mathbf{q}\mathrm{d}\mathbf{p}}{(2\pi)^{3N}} \, \mathbf{P}^2 A^{(0)}_{\mathsf{W}}(\mathbf{q},\mathbf{p}) \rho_{0,\mathsf{W}}(\mathbf{q},\mathbf{p})$$

► The second-order term is

$$\sigma^{(2)}(\omega) = \frac{4\pi^2}{3c\omega} \int_{\mathbb{R}^{6N}} \frac{d\mathbf{q}d\mathbf{p}}{(2\pi)^{3N}} \left[\mathbf{P}^2 A_{\mathsf{W}}^{(2)}(\mathbf{q}, \mathbf{p}) + \frac{1}{4} \mathbf{D}^2 A_{\mathsf{W}}^{(0)}(\mathbf{q}, \mathbf{p}) \right] \rho_{0,\mathsf{W}}(\mathbf{q}, \mathbf{p})$$

- We have arrived at an approximation to the photoionization cross section that only requires to know the ground-state Wigner function ρ_{0,W}(**q**, **p**) but does not require the calculation of the continuum states.
- Note that it is not a full expansion in powers of \hbar since we do not expand $\rho_{0,W}(\mathbf{q},\mathbf{p})$.

Photoionization cross section of the hydrogen atom

Calculation of $\sigma^{(0)}(\omega)$ and $\sigma^{(2)}(\omega)$ by numerical integration:

 \Longrightarrow As expected, the semiclassical expansion correctly captures the high-energy part of the spectrum

Photoionization cross section of the helium atom

Calculation of $\sigma^{(0)}(\omega)$ and an approximation to $\sigma^{(2)}(\omega)$ by numerical integration:

 \Longrightarrow Again, the semiclassical expansion correctly captures the high-energy part of the spectrum

Summary:

- ► We derived semiclassical approximations for photoionization cross sections
- Tests on atoms confirm that they correctly captures the high-energy part of the spectrum

Outlook:

- ► Extension to linear-response TDHF/TDDFT
- ► Extension to many-body calculations with Monte Carlo integration
- ► Extension to other properties such as second-order correlation energy
- Development of hybrid methods: basis set for low-energy part + semiclassical approximations for high-energy part

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_toulouse_23.pdf