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There is more to electronic-structure theory than bound states!

� The Coulomb nuclei-electron potential is non-confining, which leads to a continuous
energy spectrum with“continuum states”.

� Mathematically, the continuum states are not truly energy
eigenstates since they do not belong to the L2 Hilbert space.

� In principle, pointwise/distribution convergence to continuum
states can be obtained with L2 basis functions.

� In practice, convergence to continuum states (or to properties
crucially depending on continuum states) can be very slow or
impossible with straightforward basis expansions.

Reinhardt, Comp. Phys. Comm., 1979
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Photoionization cross section

� The photoabsorption cross section is

σ(ω) = lim
η→0+

4πω

c
Im[α(ω + iη)]

where α(ω) is the dynamic dipole polarizability.

� For ω ≥ IP, this is the photoionization cross section, which
crucially depends on continuum states.

� If Ĥ were diagonalizable in a complete eigenfunction basis
{Ψn}n∈N, the cross section could be written as

σ(ω) =
4π2ω

c

∞∑

n=0

|〈Ψ0|d̂ |Ψn〉|
2 δ(ω − (En − E0))

where d̂ is the dipole-moment operator (along the direction of
the electric field).

� Formally, it can be expressed as an expectation value

σ(ω) =
4π2ω

c
〈Ψ0|d̂ δ(ω + E0 − Ĥ) d̂ |Ψ0〉

where δ(ω + E0 − Ĥ) is the spectral-density operator.
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Photoionization from linear-response TDDFT/TDHF: The naive way

� In a finite basis set, the linear-response (adiabatic) TDDFT/TDHF equations are
(

A B
−B∗ −A∗

)(
Xn

Yn

)

= ωn

(
Xn

Yn

)

with Aia,jb = (εa − εi )δijδab + 〈aj |f̂Hxc|ib〉 and Bia,jb = 〈ab|f̂Hxc|ij〉.

� We obtain M excitation energies ωn and associated oscillator strengths fn. The
photoabsorption cross section is then

σ(ω) =
2π2

c

M∑

n=1

fn δ(ω − ωn)

� For ω ≥ IP, the photoionization cross section at ω = ωn may be approximated as

σ(ωn) ≈
2π2

c
fn ρDOS(ωn)

where ρDOS(ωn) is a finite-difference estimate of the density of states at ω = ωn

ρDOS(ωn) =
dn

dωn

≈
2

ωn+1 − ωn−1

Maćıas, Mart́ın, Riera, Yánez, Int. J. Quantum Chem., 1988
Yang, van Faassen, Burke, J. Chem. Phys., 2009
Zapata, Luppi, Toulouse, J. Chem. Phys., 2019
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Photoionization cross sections of He and Be

� We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical
box Ω, with Dirichlet (zero) boundary conditions.

� TDHF photoionization cross sections of the He and Be atoms:
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=⇒ Reasonable spectrum for He but it does not work for core ionization in Be

Zapata, Luppi, Toulouse, J. Chem. Phys., 2019
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So, how to deal with continuum states?

Some approaches for calculating cross sections involving continuum states:

� Various techniques involving the complex-frequency plane

E.g., analytical continuation of α(ω):
Tenorio, Coriani, Rocha, Nascimento, Prog. Theor. Chem. Phys., 2021

� Imposing boundary conditions adapted to continuum states

E.g., in TDDFT:
Stener, Decleva, Lisini, J. Phys. B, 1995

=⇒ Here, I will talk about using Robin boundary conditions

� Semiclassical approximations

E.g., in nuclear physics:
Schuck, Hasse, Jaenicke, Grégoire, Rémaud, Sébille, Suraud, Prog. Part. Nucl. Phys., 1989

=⇒ Here, I will talk about semiclassical approximations for photoionization
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Sternheimer formulation of linear-response TDDFT/TDHF

� Let us look at a basis-independent formulation of linear-response TDDFT/TDHF.

� In (adiabatic) TDDFT/TDHF, the occupied orbitals evolve in time according to

i
∂

∂t
ψi (t) = ĥ[γ(t)]ψi (t) + v̂(t)ψi (t)

where ĥ[γ(t)] is the KS/HF Hamiltonian depending on the density matrix γ(t) and

v̂(t) = −d̂E
(
e−iωt + e+iωt

)
is the electric-dipole interaction.

� At first order in the electric field, the perturbed occupied orbitals (in the interaction
picture) are

ψ
(1)
i (t) = ψ

(+)
i (ω)e−iωt + ψ

(−)
i (ω)e+iωt

where the Fourier modes ψ
(±)
i (ω) satisfy the TDDFT/TDHF Sternheimer equations

(

±ω + εi − ĥ[γ(0)]
)

ψ
(±)
i (ω) =

(

v̂
(±)
Hxc (ω)− d̂

)

ψ
(0)
i

� The dynamic dipole polarizability is then obtained as

α(ω) =

N∑

i=1

〈ψ
(0)
i |d̂ |ψ

(+)
i (ω)〉+ 〈ψ

(−)
i (ω)|d̂ |ψ

(0)
i 〉
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Tackling the continuum with Robin boundary conditions

� For ω ≥ −εi , the first-order perturbed occupied orbital ψ
(+)
i (ω) is a “continuum wave

function” (i.e., not belonging to the Hilbert space).

� Key idea: Expand ψ
(+)
i (ω) in a basis set only in a box Ω and use an analytical

asymptotic approximation ψ̄
(+)
i (ω) to it outside the box. Match the two functions

on the box surface ∂Ω by equating the normal logarithmic derivatives.

� For spherical symmetry, this leads to local Robin boundary conditions for ψ
(+)
i (ω)

∀r ∈ ∂Ω,
n(r)·∇ψ

(+)
i (r, ω)

ψ
(+)
i (r, ω)

=
n(r)·∇ψ̄

(+)
i (r, ω)

ψ̄
(+)
i (r, ω)

where ψ̄
(+)
i (r, ω) are chosen as hydrogen-like continuum wave functions.

� For non-spherical symmetry, it is extended to nonlocal Robin boundary conditions

∀r ∈ ∂Ω, n(r)·∇ψ
(+)
i (r, ω) =

∫

∂Ω

K̄i (r, r
′;ω)ψ

(+)
i (r′, ω)dr′

where the kernel K̄i (r, r
′;ω) contains information about ψ̄

(+)
i (ω).

� Using now a basis set in the box, it amounts to using the kinetic integrals

ti,µ,ν(ω) =
1

2

∫

Ω

∇χ∗µ(r) · ∇χν(r)dr −
1

2

∫

∂Ω2

χ∗µ(r)K̄i(r, r
′;ω)χν(r

′)drdr′
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Photoionization cross section of Be

� We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical
box Ω, with Robin boundary conditions.

� TDLDA and TDHF photoionization cross sections of the Be atom:
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=⇒ We can now easily converge the spectra for all frequencies

Schwinn, Zapata, Levitt, Cancès, Luppi, Toulouse, JCP, 2022
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Core resonances in the Be atom

� The 1s → np core excitations are embedded in the continuum of the valence excitations
from the 2s =⇒ they are resonances, i.e. quasi-bound states with finite lifetimes.

� Example of the 1s → 2p core resonance (resonance energy ER and inverse lifetime Γ):
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ER (eV) Γ (meV)
TDLDA 103.0 2.3
TDHF 118.3 0.2
TDLRSH 114.8 0.1
Reference 115.5 37

=⇒ Good resonance energy with TDLRSH but much too small inverse lifetime

� The resonance decays via the Auger process

1s2s22p → 1s22p + e

The configuration 1s22p is a double excitation with respect to the ground state 1s22s2

and thus cannot be described by adiabatic TDDFT/TDHF.
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Conclusions on Robin boundary conditions

� Summary:

� TDDFT/TDHF with special boundary conditions for describing continuum
states

� It allows for calculations of photoionization spectra of atoms, including core
resonances

� TDLRSH gives good resonance energies but unreliable lifetimes

� Outlook:

� Extension to Gaussian basis sets
� Extension to molecules
� Extension to time propagation for nonlinear optical properties
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Photoionization cross section in the velocity gauge

� We start from the photoionization cross section in the velocity gauge

σ(ω) =
4π2

cω
〈Ψ0|P̂ δ(ω + E0 − Ĥ) P̂|Ψ0〉

where P̂ is the total momentum operator (along the direction of the field).

� We introduce the operators

Â = δ(ω + E0 − Ĥ) and B̂ = P̂ Â P̂

and the ground-state density matrix

ρ̂0 = |Ψ0〉〈Ψ0|

� We arrive at the following expression for the photoionization cross section

σ(ω) =
4π2

cω
Tr[B̂ ρ̂0] =

4π2

cω

∫

R6N

drdr′B(r, r′)ρ0(r
′, r)

where B(r, r′) = 〈r|B̂|r′〉 and ρ0(r
′, r) = 〈r′|ρ̂0|r〉.
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Wigner representation of the photoionization cross section

� Let us introduce the Wigner transform of an operator Ĉ

[Ĉ ]W(q, p) ≡ CW(q, p) =

∫

R3N

ds e−ip·s〈q+ s/2
︸ ︷︷ ︸

=r

|Ĉ | q− s/2
︸ ︷︷ ︸

=r′

〉

where q = (r + r′)/2 ∈ R
3N is the average position vector, s = r − r′ ∈ R

3N is the
relative position vector, p ∈ R

3N is the conjugate momentum vector of s.

Ring, Schuck, The Nuclear Many-Body Problem, Springer, 2004

Case, Am. J. Phys., 2008

� The Wigner transformation preserves the trace of a product of operators, so we have

σ(ω) =
4π2

cω

∫

R6N

dqdp

(2π)3N
BW(q, p)ρ0,W(q, p)

� We have put the photoionization cross section in the form of a phase-space integral.

� So far, everything is exact. We will assume that we know the Wigner function of the
ground state ρ0,W(q, p), and we will now use a semiclassical expansion approximation
for BW(q, p).
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Semiclassical expansion

� The Wigner transform of a product of operators is given by the
Groenewold/Moyal/star-product formula:

[Ĉ D̂]W(q, p) = CW(q, p)e(i~/2)
↔

Λ
DW(q, p)

where
↔

Λ =
←

∇q ·
→

∇p −
←

∇p ·
→

∇q is the Poisson bracket differential operator.

� Using this formula, we find the Wigner transform of B̂ = P̂ÂP̂

BW(q, p) =
1

3
P2

AW(q, p) +
~
2

12
D2

AW(q, p)

where P =
∑N

i=1 pi and D =
∑N

i=1 ∇qi .

� We also find the semiclassical expansion of the Wigner transform of Â = δ(ω + E0 − Ĥ)

AW(q, p) = A
(0)
W (q, p) + ~

2
A

(2)
W (q, p) + O(~4)

where A
(0)
W (q, p) = δ(ω + E0 − H(q, p)) and H(q, p) =

p2

2
+ V (q)

A
(2)
W (q, p) =

1

8

[

−∇2
qV (q) δ′′(ω + E0 − H(q, p))

+
1

3

(

(∇qV (q))2 + (p · ∇q)
2
V (q)

)

δ′′′(ω + E0 − H(q, p))

]
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Semiclassical expansion of the photoionization cross section

� We obtain the semiclassical expansion of the photoionization cross section (for
~ = 1):

σ(ω) = σ(0)(ω) + σ(2)(ω) + · · ·

� The zeroth-order term is

σ(0)(ω) =
4π2

3cω

∫

R6N

dqdp

(2π)3N
P2

A
(0)
W (q, p)ρ0,W(q, p)

� The second-order term is

σ(2)(ω) =
4π2

3cω

∫

R6N

dqdp

(2π)3N

[

P2
A

(2)
W (q, p) +

1

4
D2

A
(0)
W (q, p)

]

ρ0,W(q, p)

� We have arrived at an approximation to the photoionization cross section that only
requires to know the ground-state Wigner function ρ0,W(q, p) but does not require the
calculation of the continuum states.

� Note that it is not a full expansion in powers of ~ since we do not expand ρ0,W(q, p).
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Photoionization cross section of the hydrogen atom

Calculation of σ(0)(ω) and σ(2)(ω) by numerical integration:
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=⇒ As expected, the semiclassical expansion correctly captures the high-energy part
of the spectrum
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Photoionization cross section of the helium atom

Calculation of σ(0)(ω) and an approximation to σ(2)(ω) by numerical integration:
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=⇒ Again, the semiclassical expansion correctly captures the high-energy part of the
spectrum
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Conclusions on semiclassical approximations

� Summary:

� We derived semiclassical approximations for photoionization cross sections
� Tests on atoms confirm that they correctly captures the high-energy part of

the spectrum

� Outlook:

� Extension to linear-response TDHF/TDDFT
� Extension to many-body calculations with Monte Carlo integration
� Extension to other properties such as second-order correlation energy
� Development of hybrid methods: basis set for low-energy part +

semiclassical approximations for high-energy part

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_toulouse_23.pdf
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