Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Julien Toulouse
Université Pierre & Marie Curie and CNRS, Paris, France

CEA Saclay, SPhN
Orme des Merisiers
April 2015
1. Quantum Monte Carlo (QMC) in a nutshell

2. Wave function optimization

3. Calculation of excited states

4. Symmetry breaking

5. New forms of wave functions
1. Quantum Monte Carlo (QMC) in a nutshell
2. Wave function optimization
3. Calculation of excited states
4. Symmetry breaking
5. New forms of wave functions
Variational Monte Carlo (VMC)

a method for calculating multidimensional integrals

e.g., the energy

\[\langle \Psi | \hat{H} | \Psi \rangle = \int dR \left(\frac{H(R)\psi(R)}{\psi(R)} \right) \psi(R)^2 \]
Variational Monte Carlo (VMC)

a method for calculating multidimensional integrals
e.g., the energy

\[
\langle \psi | \hat{H} | \psi \rangle = \int d\mathbf{R} \left(\frac{H(\mathbf{R})\psi(\mathbf{R})}{\psi(\mathbf{R})} \right) \psi(\mathbf{R})^2 \approx \frac{1}{M} \sum_{k=1}^{M} \frac{H(\mathbf{R}_k)\psi(\mathbf{R}_k)}{\psi(\mathbf{R}_k)}
\]

Metropolis sampling: \(M \) points \(\mathbf{R}_k \)
Variational Monte Carlo (VMC)

A method for calculating multidimensional integrals
e.g., the energy

\[
\langle \psi | \hat{H} | \psi \rangle = \int dR \left(\frac{H(R)\psi(R)}{\psi(R)} \right) \psi(R)^2 \approx \frac{1}{M} \sum_{k=1}^{M} \frac{H(R_k)\psi(R_k)}{\psi(R_k)}
\]

Metropolis sampling: \(M \) points \(R_k \)

Advantage: can use a flexible explicitly correlated \(\psi(R) \)

In practice, 2 types of error:
- unknown systematic error due to approximate wave function
- known statistical uncertainty (finite sampling) \(\propto 1/\sqrt{M} \)
Basic idea: diffusion in imaginary time $\tau = i t$

$$\Psi_{\text{exact}}(R) \xleftarrow{\text{sampling}} e^{-\tau \hat{H}} (\tau \to \infty) \xrightarrow{\text{sampling}} \Psi(R)$$
Diffusion Monte Carlo (DMC)

Basic idea: diffusion in imaginary time $\tau = i t$

$\Psi_{\text{exact}}(R) \xrightarrow{e^{-\tau \hat{H}} (\tau \to \infty)} \Psi(R)$

but:

sign problem: “converges” to the *bosonic* ground-state!
Diffusion Monte Carlo (DMC)

Basic idea: diffusion in imaginary time $\tau = i t$

$$\Psi_{\text{exact}}(R) \xleftarrow{\exp(-\tau \hat{H}) \ (\tau \to \infty)} \Psi(R)$$

but:

sign problem: “converges” to the *bosonic* ground-state!

In practice: **fixed-node (FN) approximation**

$$\Psi_{\text{FN}}(R) \xleftarrow{\exp(-\tau \hat{H}_{\text{FN}}) \ (\tau \to \infty)} \Psi(R)$$

$E_{\text{DMC}} \geq E_{\text{fermionic gs}}$ diffusion with nodes of $\Psi(R)$ fixed
Standard Jastrow-Slater wave functions

\[\psi(R, p) = J(R, \alpha) \sum_m c_m \Phi_m(R) \]

- \(J(R, \alpha) \): **Jastrow factor** = exponential of a function depending explicitly on e-n and e-e distances
 \[\implies \text{short-range weak/dynamic correlation} \]

- \(\sum_m c_m \Phi_m(R) \): linear combination of **Slater determinants** or **CSFs** of given spatial and spin symmetry
 \[\implies \text{long-range strong/static correlation} \]
Standard Jastrow-Slater wave functions

\[\Psi(R, p) = J(R, \alpha) \sum_m c_m \Phi_m(R) \]

- \(J(R, \alpha) \): **Jastrow factor** = exponential of a function depending explicitly on e-n and e-e distances
 \[\implies \text{short-range weak/dynamic correlation} \]

- \(\sum_m c_m \Phi_m(R) \): linear combination of Slater determinants or CSFs of given spatial and spin symmetry
 \[\implies \text{long-range strong/static correlation} \]

Slater determinants made of orbitals expanded on a Slater basis:

\[\phi_k(r) = \sum_{\mu} \lambda_{k\mu} \chi_\mu(r) \]

\[\chi(r) = N(\zeta) r^{n-1} e^{-\zeta r} S_{l,m}(\theta, \phi) \]
Standard Jastrow-Slater wave functions

\[\psi(R, p) = J(R, \alpha) \sum_m c_m \Phi_m(R) \]

- \(J(R, \alpha) \): **Jastrow factor** = exponential of a function depending explicitly on e-n and e-e distances
 \(\implies \) **short-range weak/dynamic correlation**

- \(\sum_m c_m \Phi_m(R) \): **linear combination of Slater determinants or CSFs** of given spatial and spin symmetry
 \(\implies \) **long-range strong/static correlation**

Slater determinants made of orbitals expanded on a Slater basis:

\[\phi_k(r) = \sum_\mu \lambda_{k\mu} \chi_\mu(r) \]

\[\chi(r) = N(\zeta) r^{n-1} e^{-\zeta r} S_{l,m}(\theta, \phi) \]

Parameters to optimize \(p = \{ \alpha, c, \lambda, \zeta \} \): Jastrow parameters \(\alpha \), CSF coefficients \(c \), orbital coefficients \(\lambda \) and basis exponents \(\zeta \)
Outline

1. Quantum Monte Carlo (QMC) in a nutshell

2. Wave function optimization

3. Calculation of excited states

4. Symmetry breaking

5. New forms of wave functions
"Linear" optimization method

Wave function is linearly expanded in $\Delta p = p - p^0$:

$$|\psi^{(1)}(p)\rangle = |\psi_0\rangle + \sum_j \Delta p_j |\psi_j\rangle$$

where $|\psi_0\rangle = |\psi(p^0)\rangle$ and $|\psi_j\rangle = \left. \frac{\partial |\psi(p)\rangle}{\partial p_j} \right|_{p=p^0}$

Toulouse, Umrigar, JCP, 2007
Umrigar, Toulouse, Filippi, Sorella, Hennig, PRL, 2007
Toulouse, Umrigar, JCP, 2008
“Linear” optimization method

- Wave function is linearly expanded in $\Delta p = p - p^0$:

$$|\psi^{(1)}(p)\rangle = |\psi_0\rangle + \sum_j \Delta p_j |\psi_j\rangle$$

where $|\psi_0\rangle = |\psi(p^0)\rangle$ and $|\psi_j\rangle = \frac{\partial|\psi(p)\rangle}{\partial p_j} \bigg|_{p=p^0}$

- Minimization of energy \Rightarrow generalized eigenvalue equation

$$\min_p \frac{\langle \psi^{(1)} | \hat{H} | \psi^{(1)} \rangle}{\langle \psi^{(1)} | \psi^{(1)} \rangle} \Rightarrow H \cdot \Delta p = E S \cdot \Delta p$$

where $H_{ij} = \langle \psi_i | \hat{H} | \psi_j \rangle$ and $S_{ij} = \langle \psi_i | \psi_j \rangle$

Toulouse, Umrigar, JCP, 2007
Umrigar, Toulouse, Filippi, Sorella, Hennig, PRL, 2007
Toulouse, Umrigar, JCP, 2008
“Linear” optimization method

- Wave function is linearly expanded in $\Delta p = p - p^0$:

$$|\psi^{(1)}(p)\rangle = |\psi_0\rangle + \sum_j \Delta p_j |\psi_j\rangle$$

where $|\psi_0\rangle = |\psi(p^0)\rangle$ and $|\psi_j\rangle = \left. \frac{\partial |\psi(p)\rangle}{\partial p_j} \right|_{p=p^0}$

- Minimization of energy \Rightarrow generalized eigenvalue equation

$$\min_p \frac{\langle \psi^{(1)} | \hat{H} | \psi^{(1)} \rangle}{\langle \psi^{(1)} | \psi^{(1)} \rangle} \Rightarrow \hat{H} \cdot \Delta p = E S \cdot \Delta p$$

where $H_{ij} = \langle \psi_i | \hat{H} | \psi_j \rangle$ and $S_{ij} = \langle \psi_i | \psi_j \rangle$

- Update of parameters: $p^0 \rightarrow p^0 + \Delta p$

Toulouse, Umrigar, JCP, 2007
Umrigar, Toulouse, Filippi, Sorella, Hennig, PRL, 2007
Toulouse, Umrigar, JCP, 2008
Estimators on a finite sample:

$$H_{ij} = \frac{1}{M} \sum_{k=1}^{M} \frac{\psi_i(R_k)}{\psi_0(R_k)} \frac{H(R_k) \psi_j(R_k)}{\psi_0(R_k)}$$,

$$S_{ij} = \frac{1}{M} \sum_{k=1}^{M} \frac{\psi_i(R_k)}{\psi_0(R_k)} \frac{\psi_j(R_k)}{\psi_0(R_k)}$$

non-symmetric!
Estimators on a finite sample:

\[H_{ij} = \frac{1}{M} \sum_{k=1}^{M} \frac{\psi_i(R_k) H(R_k) \psi_j(R_k)}{\psi_0(R_k) \psi_0(R_k)} , \quad S_{ij} = \frac{1}{M} \sum_{k=1}^{M} \frac{\psi_i(R_k) \psi_j(R_k)}{\psi_0(R_k) \psi_0(R_k)} \]

non-symmetric!

\[\implies \text{Zero-variance principle:} \]

If there is some \(\Delta p \) so that \(\psi_0 + \sum_j \Delta p_j \psi_j = \psi_{\text{exact}} \) then

\(\Delta p \) is found from \(H \cdot \Delta p = E S \cdot \Delta p \) with zero variance

In practice, this non-symmetric estimator greatly reduces the fluctuations on \(\Delta p \)

Toulouse, Umrigar, JCP, 2007
Umrigar, Toulouse, Filippi, Sorella, Hennig, PRL, 2007
Toulouse, Umrigar, JCP, 2008
Simultaneous optimization of all parameters

Optimization of 149 parameters = 24 (Jastrow) + 49 (CSF) + 64 (orbitals) + 12 (exponents) for C₂ molecule:

\[
\begin{array}{cccccc}
\text{Energy (Hartree)} & -75.9 & -75.8 & -75.7 & -75.6 & -75.5 \\
\text{Iterations} & 0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

⇒ Energy converges within error bars in a few iterations

Toulouse, Umrigar, JCP, 2008
Systematic improvement in QMC

For \(\text{C}_2 \) molecule: total energies for a **series of fully optimized Jastrow-Slater wave functions:**

<table>
<thead>
<tr>
<th>Wave function</th>
<th>Energy (Hartree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J*SD</td>
<td>-75.94</td>
</tr>
<tr>
<td>J*CAS(8,5)</td>
<td>-75.92</td>
</tr>
<tr>
<td>J*CAS(8,7)</td>
<td>-75.90</td>
</tr>
<tr>
<td>J*CAS(8,8)</td>
<td>-75.88</td>
</tr>
<tr>
<td>J*RAS(8,26)</td>
<td>-75.84</td>
</tr>
<tr>
<td>J*RAS(8,26)</td>
<td>-75.82</td>
</tr>
</tbody>
</table>

⇒ Systematic improvement in VMC

Toulouse, Umrigar, JCP, 2007
Systematic improvement in QMC

For C_2 molecule: total energies for a series of fully optimized Jastrow-Slater wave functions:

$$\begin{array}{c|c|c|c|c}
\text{Wave function} & \text{exact} & \text{VMC} & \text{DMC} \\
\hline
J^*SD & -75.94 & & \\
J^{CAS}(8,5) & -75.92 & & \\
J^{CAS}(8,7) & -75.9 & & \\
J^{CAS}(8,8) & -75.88 & & \\
J^{RAS}(8,26) & -75.86 & & \\
\end{array}$$

\Rightarrow Systematic improvement in VMC and DMC

Toulouse, Umrigar, JCP, 2007
Dissociation energies of diatomic molecules

Single-determinant (SD) and multideterminant (full valence CAS) wave functions:

![Graph showing the dissociation energies for various diatomic molecules. The graph plots the error on dissociation energy in eV against the molecules Li₂, Be₂, B₂, C₂, N₂, O₂, F₂, and Ne₂. The error values range from -1.5 to 0. The graph indicates that the error generally decreases as the molecule's atomic number increases, with the exception of F₂ and Ne₂.]
Dissociation energies of diatomic molecules

Single-determinant (SD) and multideterminant (full valence CAS) wave functions:

Molecules

Li$_2$, Be$_2$, B$_2$, C$_2$, N$_2$, O$_2$, F$_2$, Ne$_2$

Error on dissociation energy (eV)

VMC J \times SD

DMC J \times SD

Toulouse, Umrigar, JCP, 2008
Dissociation energies of diatomic molecules

Single-determinant (SD) and multideterminant (full valence CAS) wave functions:

![Graph showing dissociation energy errors for various diatomic molecules.](image)

Molecules

Toulouse, Umrigar, JCP, 2008
Dissociation energies of diatomic molecules

Single-determinant (SD) and multideterminant (full valence CAS) wave functions:

\[
\begin{align*}
\text{Li}_2 & \quad -1.5 \\
\text{Be}_2 & \quad -1 \\
\text{B}_2 & \quad -0.5 \\
\text{C}_2 & \quad 0 \\
\text{N}_2 & \quad 0.5 \\
\text{O}_2 & \quad 1 \\
\text{F}_2 & \quad 1.5 \\
\text{Ne}_2 & \quad 2
\end{align*}
\]

Error on dissociation energy (eV)

Molecules

\[
\begin{align*}
\text{VMC J} \times \text{SD} & \quad \text{VMC J} \times \text{CAS} \\
\text{DMC J} \times \text{SD} & \quad \text{DMC J} \times \text{CAS}
\end{align*}
\]

\[\Rightarrow \text{Near chemical accuracy in DMC with Jastrow } \times \text{ CAS}\]

Toulouse, Umrigar, JCP, 2008
1. Quantum Monte Carlo (QMC) in a nutshell
2. Wave function optimization
3. Calculation of excited states
4. Symmetry breaking
5. New forms of wave functions
VMC excited-state calculation with wave-function optimization

- For lowest energy state of a given symmetry: same as ground state calculation
VMC excited-state calculation with wave-function optimization

- For lowest energy state of a given symmetry: same as ground state calculation

- For a state that is not the lowest one in a given symmetry, two strategies:
 - **state-average** approach: minimization of a weighted average of the energies of n states (C. Filippi *et al.*)
 - **state-specific** approach: minimization of the energy of the targeted state by selecting the n^{th} eigenvector Δp in the linear optimization method (Zimmerman, Toulouse, Zhang, Musgrave, Umrigar, JCP, 2009)
Calculation of excited states in QMC

VMC excited-state calculation with wave-function optimization

- For lowest energy state of a given symmetry: same as ground state calculation
- For a state that is not the lowest one in a given symmetry, two strategies:
 - **state-average** approach: minimization of a weighted average of the energies of n states (C. Filippi et al.)
 - **state-specific** approach: minimization of the energy of the targeted state by selecting the n^{th} eigenvector Δp in the linear optimization method (Zimmerman, Toulouse, Zhang, Musgrave, Umrigar, JCP, 2009)

DMC excited-state calculation with VMC-optimized wave function

Fixed-node approximation prevents collapse on the ground state
Adiabatic excitation energies (eV) with full-valence CAS wave functions:

<table>
<thead>
<tr>
<th></th>
<th>VMC</th>
<th>DMC</th>
<th>CR-CC</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A_1</td>
<td>2.550(8)</td>
<td>2.524(4)</td>
<td>2.633</td>
<td></td>
</tr>
<tr>
<td>1B_2</td>
<td>1.460(8)</td>
<td>1.416(4)</td>
<td>1.464</td>
<td>1.415</td>
</tr>
<tr>
<td>1A_1</td>
<td>0.430(8)</td>
<td>0.406(4)</td>
<td>0.430</td>
<td>0.406</td>
</tr>
<tr>
<td>3B_2</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zimmerman, Toulouse, Zhang, Musgrave, Umrigar, JCP, 2009
Gour, Piecuch, Wloch, MP, 2010
Outline

1. Quantum Monte Carlo (QMC) in a nutshell
2. Wave function optimization
3. Calculation of excited states
4. Symmetry breaking
5. New forms of wave functions
Ground-state potential energy curve of C_2 molecule ($^{1}Σ_g^+$)

Jastrow \times single determinant wave function

![Graph showing the ground-state potential energy curve of C_2 molecule. The graph includes a plot of energy (in hartree) against internuclear distance (in bohr). The graph illustrates the Jastrow \times single determinant wave function and compares it with an accurate size-consistency error. The reference is to Toulouse and Umrigar, JCP, 2008.]
Ground-state potential energy curve of C_2 molecule ($^1\Sigma_g^+$)

Jastrow \times single determinant wave function

$$\begin{array}{c}
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
-75.9 & -75.8 & -75.7 & -75.6 & -75.5 & -75.4 \\
\end{array}
\end{array}$$

Internuclear distance (bohr)

- $\text{VMC J} \times \text{SD}$
- $\text{DMC J} \times \text{SD}$

Accurate

\Rightarrow Single-determinant DMC is size consistent but with broken spin symmetry at dissociation, $\langle \Psi_{\text{FN}} | \hat{S}^2 | \Psi_{\text{FN}} \rangle = 2$

Toulouse, Umrigar, JCP, 2008
Ground-state potential energy curve of C$_2$ molecule ($^1\Sigma^+_g$)

Jastrow × multideterminant wave function:

-75.9
-75.8
-75.7
-75.6
-75.5
-75.4

<table>
<thead>
<tr>
<th>Internuclear distance (bohr)</th>
<th>Energy (hartree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>-75.9</td>
</tr>
<tr>
<td>2.0</td>
<td>-75.8</td>
</tr>
<tr>
<td>3.0</td>
<td>-75.7</td>
</tr>
<tr>
<td>4.0</td>
<td>-75.6</td>
</tr>
<tr>
<td>5.0</td>
<td>-75.5</td>
</tr>
<tr>
<td>6.0</td>
<td>-75.4</td>
</tr>
<tr>
<td>7.0</td>
<td>-75.3</td>
</tr>
<tr>
<td>8.0</td>
<td>-75.2</td>
</tr>
<tr>
<td>9.0</td>
<td>-75.1</td>
</tr>
<tr>
<td>10.0</td>
<td>-75.0</td>
</tr>
</tbody>
</table>

VMC J × CAS(8,8)

DMC J × CAS(8,8)

Accurate

⇒ VMC and DMC are now size consistent without symmetry breaking

Toulouse, Umrigar, JCP, 2008
Spatial symmetry breaking in hydrogen rings

For large enough rings, three Hartree-Fock solutions:

- symmetry adapted (SA)
- symmetry broken atom-centered (SB-AC)
- symmetry broken bond-centered (SB-BC)

Which Hartree-Fock wave function should we use in DMC?

DMC total energies with symmetry-adapted (SA) or symmetry-broken (SB) Hartree-Fock wave functions:

![Graph showing total energy vs. number of H atoms for SA, SB-AC, and SB-BC wave functions.]

⇒ Symmetry-adapted wave function has better nodes

Outline

1. Quantum Monte Carlo (QMC) in a nutshell
2. Wave function optimization
3. Calculation of excited states
4. Symmetry breaking
5. New forms of wave functions
Jastrow-Valence-Bond wave functions

\[|\psi_{J \times VB} \rangle = \hat{J} \sum_{m} c_m |\Phi_{VB,m} \rangle \]

where \(|\Phi_{VB,m} \rangle \) are VB structures:

\[|\Phi_{VB,m} \rangle = \prod_{p} \hat{a}_{p \uparrow}^{\dagger} \hat{a}_{p \downarrow}^{\dagger} \prod_{ij} \left(\hat{a}_{i \uparrow}^{\dagger} \hat{a}_{j \downarrow}^{\dagger} - \hat{a}_{i \downarrow}^{\dagger} \hat{a}_{j \uparrow}^{\dagger} \right) \prod_{q} \hat{a}_{q \uparrow}^{\dagger} |\text{vac} \rangle \]

with nonorthogonal active orbitals localized on single atom

\[\implies \text{Compact wave functions from chemical picture} \]
Jastrow-Valence-Bond wave functions

\[|\psi_{J\times VB}\rangle = \hat{J} \sum_m c_m |\Phi_{VB,m}\rangle \]

where \(|\Phi_{VB,m}\rangle \) are \textbf{VB structures}:

\[|\Phi_{VB,m}\rangle = \prod_p \hat{a}_p^{\dagger} \hat{a}_p^{\dagger} \prod_{(ij)} \Big(\hat{a}_{i\uparrow}^{\dagger} \hat{a}_{j\downarrow}^{\dagger} - \hat{a}_{i\downarrow}^{\dagger} \hat{a}_{j\uparrow}^{\dagger} \Big) \prod_q \hat{a}_{q\uparrow}^{\dagger} |\text{vac}\rangle \]

with nonorthogonal active orbitals localized on single atom

\[\rightarrow \text{Compact wave functions from chemical picture} \]

\textbf{Example: } N_2

\[|N \equiv N| \]

Braïda, Toulouse, Caffarel, Umrigar, JCP, 2011
Jastrow-Valence-Bond wave functions

\[|\psi_{J\times\text{VB}}\rangle = \hat{J} \sum_m c_m |\Phi_{\text{VB},m}\rangle \]

where \(|\Phi_{\text{VB},m}\rangle \) are VB structures:

\[|\Phi_{\text{VB},m}\rangle = \prod_p \hat{a}^\dagger_p \hat{a}^\dagger_p \prod_{(ij)} \left(\hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}_i \hat{a}_j - \hat{a}^\dagger_i \hat{a}^\dagger_j \hat{a}_i \hat{a}_j \right) \prod_q \hat{a}^\dagger_q |\text{vac}\rangle \]

with nonorthogonal active orbitals localized on single atom

\[\Rightarrow \text{Compact wave functions from chemical picture} \]

Example: \(N_2 \)

\[|N \equiv N\rangle \Rightarrow \]

Braïda, Toulouse, Caffarel, Umrigar, JCP, 2011
Jastrow-Valence-Bond wave functions

\[|\psi_{J \times VB}\rangle = \hat{J} \sum_{m} c_m |\Phi_{VB,m}\rangle \]

where \(|\Phi_{VB,m}\rangle \) are VB structures:

\[
|\Phi_{VB,m}\rangle = \prod_{p} \hat{a}^{\dagger}_{p\uparrow} \hat{a}^{\dagger}_{p\downarrow} \prod_{(ij)} \left(\hat{a}^{\dagger}_{i\uparrow} \hat{a}^{\dagger}_{j\downarrow} - \hat{a}^{\dagger}_{i\downarrow} \hat{a}^{\dagger}_{j\uparrow} \right) \prod_{q} \hat{a}^{\dagger}_{q\uparrow} |\text{vac}\rangle
\]

with nonorthogonal active orbitals localized on single atom

\[\rightarrow \text{Compact wave functions from chemical picture}\]

Example: \(N_2 \)

\[|N \equiv N\rangle \Rightarrow \]

Braïda, Toulouse, Caffarel, Umrigar, JCP, 2011
Jastrow-Valence-Bond wave functions

\[|\psi_{J \times VB}\rangle = \hat{J} \sum_{m} c_m |\Phi_{VB,m}\rangle \]

where \(|\Phi_{VB,m}\rangle \) are VB structures:

\[
|\Phi_{VB,m}\rangle = \prod_p \hat{a}^\dagger_p \hat{a}^\dagger_p \prod_{(ij)} (\hat{a}^\dagger_{i\uparrow}\hat{a}^\dagger_{j\downarrow} - \hat{a}^\dagger_{i\downarrow}\hat{a}^\dagger_{j\uparrow}) \prod_{q} \hat{a}^\dagger_{q\uparrow}|vac\rangle
\]

with nonorthogonal active orbitals localized on single atom

\[\rightarrow \text{Compact wave functions from chemical picture} \]

Example: N\(_2\)

\[|N \equiv N| \Rightarrow \begin{array}{c}
\begin{array}{c}
\text{N} \\
\text{N}
\end{array}
\end{array} \leftrightarrow \begin{array}{c}
\begin{array}{c}
\text{N} \\
\text{N}
\end{array}
\end{array} \]

Braïda, Toulouse, Caffarel, Umrigar, JCP, 2011
Jastrow-Valence-Bond wave functions

\[|\psi_{J \times VB}\rangle = \hat{J} \sum_m c_m |\Phi_{VB,m}\rangle \]

where \(|\Phi_{VB,m}\rangle \) are VB structures:

\[|\Phi_{VB,m}\rangle = \prod_p \hat{a}_p^{\uparrow} \hat{a}_p^{\downarrow} \prod_{(ij)} \left(\hat{a}_i^{\uparrow} \hat{a}_j^{\downarrow} - \hat{a}_i^{\downarrow} \hat{a}_j^{\uparrow} \right) \prod_q \hat{a}_q^{\uparrow} |\text{vac}\rangle \]

with nonorthogonal active orbitals localized on single atom

\[\longrightarrow \text{Compact wave functions from chemical picture} \]

**Example: N}_2

\[|N \equiv N\rangle \Rightarrow \]

\[\text{\includegraphics[width=0.2\textwidth]{example1.png}} \quad \leftrightarrow \quad \text{\includegraphics[width=0.2\textwidth]{example2.png}} \quad \leftrightarrow \quad \text{\includegraphics[width=0.2\textwidth]{example3.png}} \quad \leftrightarrow \cdots \]

Braïda, Toulouse, Caffarel, Umrigar, JCP, 2011
Jastrow-Valence-Bond wave functions

\[|\psi_{J\times VB}\rangle = \hat{J} \sum_{m} c_m |\Phi_{VB,m}\rangle \]

where \(|\Phi_{VB,m}\rangle \) are VB structures:

\[|\Phi_{VB,m}\rangle = \prod_p \hat{a}^\dagger_p \hat{a}^\dagger_p \prod_{(ij)} \left(\hat{a}^\dagger_i \hat{a}^\dagger_j - \hat{a}^\dagger_i \hat{a}^\dagger_j \right) \prod_q \hat{a}^\dagger_q |\text{vac}\rangle \]

with nonorthogonal active orbitals localized on single atom

\[\longrightarrow \text{Compact wave functions from chemical picture} \]

Example: \(\text{N}_2 \)

\[|\text{N} \equiv \text{N}| \Rightarrow \]

VB: 27 structures, 16 determinants

CAS: 112 determinants

Braïda, Toulouse, Caffarel, Umrigar, JCP, 2011
Dissociation energies of diatomic molecules with $J \times VB$

Comparison with single-determinant (SD) and full-valence CAS wave functions:

<table>
<thead>
<tr>
<th>Molecule</th>
<th>DMC J*SD</th>
<th>DMC J*VB</th>
<th>DMC J*CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F(_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Error on dissociation energy (eV)

\Rightarrow Compromise between compactness and accuracy

Braïda, Toulouse, Caffarel, Umrigar, JCP, 2011
Dissociation energies of diatomic molecules with $J \times VB$

Comparison with single-determinant (SD) and full-valence CAS wave functions:

![Graph showing error on dissociation energy (eV) for different molecules (C$_2$, N$_2$, O$_2$, F$_2$) using DMC J*SD, DMC J*VB, and DMC J*CAS wave functions.]

\Rightarrow **Compromise between compactness and accuracy**

Braïda, Toulouse, Caffarel, Umrigar, JCP, 2011
Gauss-Slater basis function

\[\chi_{nlm}(r, \zeta) = N_n(\zeta) \, r^{n-1} e^{-\frac{(\zeta r)^2}{1+\zeta r}} \, S_{l,m}(\theta, \phi) \]

- For \(r \ll 1 \), it reduces to a Gaussian function
 \[\chi_{nlm}(r, \zeta) \approx N_n(\zeta) \, r^{n-1} e^{-\zeta^2 r^2} \, S_{l,m}(\theta, \phi) \]
 which is appropriate since no e-n cusp with nondivergent pseudopotentials

- For \(r \gg 1 \), it reduces to a Slater function
 \[\chi_{nlm}(r, \zeta) \approx N_n(\zeta) \, r^{n-1} e^{-\zeta r} \, S_{l,m}(\theta, \phi) \]
 which is the correct asymptotic behavior in finite systems

Petruzielo, Toulouse, Umrigar, JCP, 2011
Petruzielo, Toulouse, Umrigar, JCP, 2010
Atomization energies of 55 molecules (G2 set)

DMC calculations with reoptimized truncated multideterminant CAS wave functions with pseudopotentials and Gauss-Slater basis:

Mean absolute deviation in DMC = 1.2 kcal/mol

Petruzielo, Toulouse, Umrigar, JCP, 2012
Summary

- QMC methods can handle weak and strong correlation
- Efficient wave function optimization method by minimization of VMC energy
- Near chemical accuracy on energy differences
- Calculation of excited states possible
- Must be careful with symmetry breaking in DMC
- Exploration of new forms of compact wave functions

Acknowledgements

R. Assaraf (Paris), B. Braïda (Paris), M. Caffarel (France), C. Filippi (Netherlands), R. Hennig (USA), P. Hoggan (France), C. Musgrave (USA), B. Mussard (Paris), F. Petruzielo (USA), P. Reinhardt (Paris), S. Sorella (Italy), C. Umrigar (USA), P. Zimmerman (USA), Z. Zhang (USA)