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Importance of special relativity in electronic-structure theory

» It is known that special relativity effects can strongly influence physical and chemical
properties of heavy elements.
Pyykkd, Annu. Rev. Phys. Chem., 2012

» A simple explanation: the average electron velocity in hydrogen-like atoms

can be a significant fraction of the speed of light ¢ &~ 137 a.u. for large Z.

» Two striking examples:
o Gold would not be yellow without relativity!

Relativity reduces the 5d — 6s excitation energy from 3.6 eV (UV) to 2 eV (Vis)
Romaniello, de Boeij, JCP, 2005

o Lead-acid batteries would not work without relativity!
Pb 4+ PbO> + 2H,504 — 2PbS0O4 + 2H,0
Relativity increases the electromotive force from 0.39 V to 2.13 V due to

destabilization of PbO,
Ahuja, Blomqvist, Larsson, Pyykkd, Zaleski-Ejgierd, PRL, 2011
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One-electron Dirac equation

» We start with the one-electron Dirac equation with a potential v: .
(Do + v(F)) ¥p(F) = ep1pp(F)
on the Hilbert space L?(R3, C*) with the 4 x 4 free Dirac Hamiltonian PS
Dy = ca - g+ Bmc’ wel L
where p = —iV is the momentum operator, and & = (a1, a2, a3) and et i
3 are the 4 x 4 Dirac matrices
d=(?§&>a"“’=(5i 9:2) NS
and & = (o1, 02,03) are the 2 x 2 Pauli matrices.

» We will work in a finite-dimensional Hilbert space with IR cutoff L and UV cutoff A:

h = span (r € (=L/2,L/2)° — " | k € (2nZ/L), |k| < /\) ® C*

» The (4-component) eigenfunctions {t,} can be partitioned into
o positive-energy states (PS) {v,},cps <— electrons
o negative-energy states (NS) {1,},ens «— positrons
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No-pair many-electron Dirac-Coulomb-Breit (DCB) Hamiltonian

» In relativistic electronic-structure theory, we normally neglect the negative-energy
(positronic) states, which is called the no-pair approximation.

» We thus work in the Fock space generated by only the positive-energy states and we
introduce the Dirac electron field operator

"/A’-%—(F) = Z BP"!’P(F)

pePS

where {b,} are electron annihilation operators.
» The no-pair many-electron Dirac-Coulomb-Breit (DCB) Hamiltonian is
Fe = 70 4 U 4 W
with the no-pair free-electron and external potential operators
e = / %! (ADo (F)d7 and U = / B (AP (F)d7
and the no-pair Coulomb-Breit two-electron interaction operator

W = / B (R)BL (P )w(Fia) b ()b (7)dFs T

where 1 1 i I
w(i) = — —-b <a pa (T N)0(d ’12)>
r2 2!’12 >
Coulomb Breit
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Beyond the no-pair approximation

» The next challenge in relativistic electronic-structure theory is to go beyond the no-pair
approximation, i.e. to include the quantum-electrodynamics (QED) effect of
vacuum polarization due to virtual electron-positron pairs.

-

e ee

» This is necessary for high accuracy, but also to put relativistic electronic-structure theory
on firmer theoretical grounds.

» How to include QED effects in relativistic electronic-structure theory?
o Highly accurate QED calculations for very few electron systems
E.g., Indelicato, Mohr, Book chapter, 2016

o Model one-electron QED correction potentials for many-electron systems
E.g., Sunaga, Salman, Saue, JCP, 2022

» Here, we explore an effective QED theory, i.e. without photons but with the static
Coulomb-Breit two-particle interaction.
Chaix, Iracane, JPB, 1989; Saue, Visscher, Book chapter, 2003;
Hainzl, Lewin, Séré, Solovej, PRA, 2007; Kutzelnigg, CP, 2012; Liu, Lindgren, JCP, 2013;
Toulouse, SciPost Chem., 2021.
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Effective quantum electrodynamics (1/2)

> We start from the free vacuum state |0) where all the free
negative-energy states are filled (called the “Dirac sea”).

» The Dirac field operator in terms of free electron and positron states PS
{23} is then:
$(7) =D bowp() + Y dup(7)

p€EPS pENS

mc’

2

where {b,} are electron annihilation operators and {d} are positron me
creation operators such that b,|0) = d,|0) = 0.

» We work in the electron-positron Fock space which can be NS
decomposed into charge sectors:

F=EPFn
N

where Fy is the Fock space for N negative charges.

» In Fu, the number of electrons N. and the number of positrons N, are not fixed, but
only the net (opposite) charge N = N. — N, is fixed.
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Effective quantum electrodynamics (2/2)

» The effective QED Hamiltonian is defined as
AH=T+V+W
with the normal-ordered free-particle and external potential operators
T = [ 2] ODeb@] a7 and ¥ = [ N[ B WD) o7
and the normal-ordered Coulomb-Breit two-particle interaction operator

W= %// No [T (R ) (7 )w(Fia )b (7)9b(7) | 47 dFs

» The normal ordering A\g[...] is taken with respect to the free vacuum state |0):

o the annihilation electron and positron operators Bp and ap are put to the right of
the creation electron and positron operators b;ﬂ and dg

o the energy is calculated with respect to the free vacuum state, i.e. (0|H|0) =0

o the Hamiltonian correctly has charge-conjugation symmetry: CH[v]CT = H[—v]
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Relativistic DFT based on effective QED (1/2)

» We can formulate a relativistic density-functional theory (DFT) based on effective
QED in a very similar way to non-relativistic DFT.
Toulouse, SciPost Chem., 2021.

» In effective QED, the ground-state energy for N negative charges is

Ev= min (U|T + W + V|v)
[W)eWwy

where Wy = {|V) € Fn | (V|V) =1}
» Thus, we define the corresponding Levy-Lieb universal density functional as

Fln] = meln (V| T+ W|w)

|W>~»n
where n is the opposite charge density associated with the normal-ordered density
operator A(F) = N {113“(?)113(?)] :
» The exact ground-state energy for N negative charges can then be expressed as

Ev= min (F[n]—|—/v(?)n(?)d?)

where Dy = {n | 3|¥V) € Wy s.t. |¥) ~» n} is the set of N-representable densities.
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Relativistic DFT based on effective QED (2/2)

» We can set up a Kohn-Sham DFT scheme by decomposing the universal functional as
Fln] = mm <<D| T|®) + Enxc[n]
®)ES
|¢)wn

where Sy is the set of all N-electron Slater determinant states and Epxc[n] is a
Hartree-exchange-correlation density functional.

» The exact ground-state energy for N negative charges can then be expressed as

Eu=min ((o|T+V[®)+ Euclne])

» The corresponding Kohn-Sham equations are
(Do + v(7) + viixe(7)) ¥p(7) = €p90p(F)

where viu(F) = dEnxc[n]/dn(F) and the density is written as
N

n(7) = > w! (A$i(7) + " (7)
i=1

where n'P(F) is the vacuum-polarization density

n®(F) = Y Yi(Ave(F) — > ¥p (F)p(P)
pENS pPENS
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How to implement effective QED in practice?

| 2

| 2

Effective QED, like standard QED, suffers from singularities.

In particular, the vacuum-polarization density diverges in the UV limit A — oc.

In standard QED, this divergence can be regularized by using a finite UV cutoff A and
the dependence on the cutoff A is absorbed into a redefinition of the elementary charge.
This is called charge renormalization.

In effective QED, charge renormalization can also be performed in the complete-basis
limit.

Hainzl, Lewin, Séré, Solovej, PRA, 2007

But we do not know yet how to handle the situation in a finite basis!

To progress toward a practical implementation in a finite basis, we will now study a 1D

effective QED model.
Audinet, Toulouse, JCP, 2023
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1D hydrogen-like Dirac equation

» We consider a 1D hydrogen-like Dirac equation with a delta
potential:

(Do — Z6(x)) ¥p(x) = €pthp(x)

on the Hilbert space L*(R,C?) with the 1D 2 x 2 free Dirac
Hamiltonian
Do = co1 px + o3mc?

mc L

where p, = —id/dx is the momentum operator, and o1 and o3 are the
Pauli matrices

(01N gL O
171 0)*™M 7270 -1

Lapidus, AJP, 1983

-mc’

» The delta potential simulates the Coulomb interaction in 1D.
Herrick, Stillinger, PRA, 1975

» The bound and continuum eigenfunctions can be calculated analytically.
Nogami, Beachey, EL, 1986

» There are subtilities on the mathematical interpretation of the delta potential.

Audinet, Morellini, Levitt, Toulouse, in preparation )
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Vacuum-polarization density in a complete basis

» At first order in Z, the (Uehling) vacuum-polarization density is
AP (x) = Z-5(x) + n® ()
mc €

) Zm oo 672mc|x|t
where the regular part is ny&,(x) = —— ————dt.

T J1 tV/t2 -1

» The vacuum-polarization density has a singular delta contribution at the nucleus,
similarly to the 3D case, but with a finite coefficient.

» Vacuum-polarization density n"?(x) for Z=c=m=1:
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Audinet, Toulouse, JCP, 2023; Audinet, Morellini, Levitt, Toulouse, in preparation 16/19



Vacuum-polarization density in a finite basis

» We use a finite plane-wave basis {x € (—L/2,L/2) — % | k € 2nZ/L, |k| < /\} .

» The vacuum-polarization density is calculated from the eigenfunctions at Z and Z = 0:

nP(x) = Yy ()Ps (x) — Y ! (x)ebp(x)

PENS PENS

» Vacuum-polarization density n'P(x) for Z = ¢ = m =1 in the finite basis:

Audinet, Morellini, Levitt,

L=10,A=50 —
04 Exact (L~ o, A — @) ——

0.2

0.0

-0.2

Vacuum-polarization density

-0.4

x

Toulouse, in preparation
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Regularized vacuum-polarization density in a finite basis

» The vacuum-polarization density calculated in the finite basis is regularized in Fourier
space by removing the large-momentum contributions:

M rizea() = F [ (F[01(K) = F 1) (Kmox) ) O(kmax — )]
for some kmax depending on the basis.

» Regularized vacuum-polarization density n'?(x) for Z = ¢ = m = 1 in the finite basis:
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Audinet, Morellini, Levitt, Toulouse, in preparation
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Conclusions

» Summary:

» Effective QED includes electron-positron pairs without photons

» More tractable alternative to standard QED for electronic-structure calculations
» Need to handle singularities in a finite basis for a practical implementation
>

Our 1D model suggests that it can be done

» Outlook:
» Develop relativistic DFT for the 1D effective QED model

» Extension to real 3D systems

www.lct.jussieu.fr/pagesperso/toulouse
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