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Photoionization cross section

» We consider a N-particle Hamiltonian:
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» The photoionization cross section, corresponding to transitions from the ground state
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A N
where P, =" pip.

» A straightforward calculation is difficult since it involves a sum over all continuum
states!
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Photoionization cross section without explicit continuum states

» We can get rid of the explicit sum over the continuum states
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» We can get rid of the explicit sum over the continuum states
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472 = A PN
=5 30 S VIRV Wi+ B = F)Pulvo

4 i A p
= g0 D (VolPudw + By — H)P.IWo)

re{x,y,z}

» We introduce the operators

A

A=dw+E—H) and B= Y P.AP,
pne{x,y,z}

and the ground-state density matrix
po = [Wo){(Wo|

» We arrive at the following expression for the photoionization cross section
472 A 472 7 7 p
= —Tr[B po] = — drdr B(r,r r,r
o(w) = 5 TH{B ol = 5= [ drd B(e (e )

where B(r,v') = (r|B|r') and po(r',r) = (¥'|po|r).
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Wigner representation of the photoionization cross section

> Let us introduce the Wigner transform of an operator C

(Clw(a.p) = Cula.p) = [ dse ™ (a+3/2(Cla=3/2)

=r =r’

where q = (r +r')/2 € R*" is the average position vector, s =r —r’ € R*" is the
relative position vector, p € R*" is the conjugate momentum vector of s.

Hillery, O'Connell, Scully, Wigner, Phys. Rep., 1984

Ring, Schuck, The Nuclear Many-Body Problem, Springer, 2004

Case, Am. J. Phys., 2008
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» The Wigner transformation preserves the trace of a product of operators, so we have

_ 47 dqdp
o(w) = 3w /RGN (@r)N Bw(a,p)po,w(a, p)

» We have put the photoionization cross section in the form of a phase-space integral.

» So far, everything is exact. We will assume that we know the Wigner function of the
ground state po,w(q, p), and we will now use a semiclassical expansion approximation
for Bw(a,p).
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Semiclassical expansion

» The Wigner transform of a product of operators is given by the
Groenewold/Moyal/star-product formula:

[CDlw(a,p) = Cw(a,p)e"’>" Dw(a,p)

<~ — — — —
where A = Vg4 -V, — V- Vg is the Poisson bracket differential operator.
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where A = Vg4 -V, — Vp - Vg is the Poisson bracket differential operator.
» Using this formula, we find the Wigner transform of B = 2 ez} P.AP,

hZ
Bw(a, p) = P*Aw(a,p) + -D*Aw(a,p)

where P =3V p;and D=3V V,.
» We also find the semiclassical expansion of the Wigner transform of A = §(w + E, — H)

Aw(a,p) = AR (a,p) + * A (a,p) + O(*)
2
where A% (q,p) = d(w + Eo — H(q,p)) and H(q,p) = % 1 V(q)

L

s | ~VaV(a) 9" (w+ £ — H(a,p))

AD(a.p) =

+ 3 ((VaV(@) + (0 Va)*V(@)) 8" (w+ B> — H(a,p))
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Semiclassical expansion of the photoionization cross section

» We obtain the semiclassical expansion of the photoionization cross section (for
h=1):

o(w) = J(O)(w) A 0(2)(w) 4.
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2
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» We have arrived at an approximation to the photoionization cross section that only
requires to know the ground-state Wigner function pow(q, p) but does not require the
calculation of the continuum states.

» Note that it is not a full expansion in powers of & since we do not expand po,w(d, p).
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Hydrogen atom

» We consider the hydrogen atom, i.e. N =1 electron and the Coulomb potential
V(a) =-1/q
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» Surprisingly, the Wigner function of the ground state is not known in a closed form, but
it can be expressed as the integral

1
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Photoionization spectrum of the hydrogen atom

Calculation of 0(®(w) and ¢/®(w) by numerical integration:
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—> As expected, the semiclassical expansion correctly captures the high-energy part
of the spectrum
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where ps w(4g, p,q - p) is the Wigner function associated with the orbital ¢.
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» Finally, 09 (w) and 6/®(w) can be expressed as integrals over 4 variables.
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Photoionization spectrum of the helium atom

Calculation of o(®(w) and an approximation to ¢(®(w) by numerical integration:
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—> Again, the semiclassical expansion correctly captures the high-energy part of the
spectrum
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Conclusions

» Summary:

» We derived semiclassical approximations for photoionization cross sections
» Tests on atoms confirm that they correctly captures the high-energy part of
the spectrum

J. Toulouse, Eur. Phys. J. A 59, 98 (2023)

» Outlook:

> Extension to linear-response TDHF/TDDFT

» Extension to many-body calculations with Monte Carlo integration?

» Extension to other properties such as second-order correlation energy

» Development of hybrid methods: basis set for low-energy part +
semiclassical approximations for high-energy part

’ www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_paris_23.pdf ‘
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