

Tackling two aspects of basis-set incompleteness: Short-range correlation and continuum states

Julien Toulouse Laboratoire de Chimie Théorique Sorbonne Université and CNRS, Paris, France Institut Universitaire de France

CEISAM, Nantes Université, Nantes May 2023

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_nantes_23.pdf

▶ The space of one-electron states $\mathfrak{H} = L^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}, \mathbb{C})$ and the space of *N*-electron

states $\mathcal{H} = \bigwedge^N \mathfrak{H}$ are **infinite-dimensional** Hilbert spaces.

- ► The space of one-electron states $\mathfrak{H} = \mathcal{L}^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}, \mathbb{C})$ and the space of *N*-electron states $\mathcal{H} = \bigwedge^N \mathfrak{H}$ are **infinite-dimensional** Hilbert spaces.
- ▶ In practice, we use a **finite one-electron basis set** $\mathcal{B} = \{\chi_{\nu}\}_{\nu=1,...,M}$ to span the one-electron space $\mathfrak{H}^{\mathcal{B}} = span(\mathcal{B})$ and the *N*-electron space $\mathcal{H}^{\mathcal{B}} = \bigwedge^{N} \mathfrak{H}^{\mathcal{B}}$, and we must try to approach the **complete-basis-set (CBS) limit** $M \to \infty$.

- ► The space of one-electron states $\mathfrak{H} = L^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}, \mathbb{C})$ and the space of *N*-electron states $\mathcal{H} = \bigwedge^N \mathfrak{H}$ are **infinite-dimensional** Hilbert spaces.
- ▶ In practice, we use a **finite one-electron basis set** $\mathcal{B} = \{\chi_{\nu}\}_{\nu=1,...,M}$ to span the one-electron space $\mathfrak{H}^{\mathcal{B}} = \operatorname{span}(\mathcal{B})$ and the *N*-electron space $\mathcal{H}^{\mathcal{B}} = \bigwedge^{N} \mathfrak{H}^{\mathcal{B}}$, and we must try to approach the **complete-basis-set (CBS) limit** $M \to \infty$.
- ▶ In the molecular electronic Hamiltonian

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \boldsymbol{\nabla}_{\mathbf{r}_{i}}^{2} + \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\i\neq j}}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} - \sum_{i=1}^{N} \sum_{\alpha=1}^{N_{\mathsf{nucl}}} \frac{Z_{\alpha}}{|\mathbf{r}_{i} - \mathbf{R}_{\alpha}|}$$

- ► The space of one-electron states $\mathfrak{H} = L^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}, \mathbb{C})$ and the space of *N*-electron states $\mathcal{H} = \bigwedge^N \mathfrak{H}$ are **infinite-dimensional** Hilbert spaces.
- ▶ In practice, we use a **finite one-electron basis set** $\mathcal{B} = \{\chi_{\nu}\}_{\nu=1,...,M}$ to span the one-electron space $\mathfrak{H}^{\mathcal{B}} = \operatorname{span}(\mathcal{B})$ and the *N*-electron space $\mathcal{H}^{\mathcal{B}} = \bigwedge^{N} \mathfrak{H}^{\mathcal{B}}$, and we must try to approach the **complete-basis-set (CBS) limit** $M \to \infty$.
- ► In the molecular electronic Hamiltonian

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \boldsymbol{\nabla}_{\mathbf{r}_{i}}^{2} + \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1\\i \neq j}}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} - \sum_{i=1}^{N} \sum_{\alpha=1}^{N_{\mathsf{nucl}}} \frac{Z_{\alpha}}{|\mathbf{r}_{i} - \mathbf{R}_{\alpha}|}$$

► The Coulomb electron-electron interaction is singular as $|\mathbf{r}_i - \mathbf{r}_j| \rightarrow 0$, leading to the "electron-electron cusp" (derivative discontinuity) in the eigenfunctions

⇒ Slow basis convergence of energies and many properties due to short-range correlation

- ► The space of one-electron states $\mathfrak{H} = \mathcal{L}^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}, \mathbb{C})$ and the space of *N*-electron states $\mathcal{H} = \bigwedge^N \mathfrak{H}$ are **infinite-dimensional** Hilbert spaces.
- ▶ In practice, we use a **finite one-electron basis set** $\mathcal{B} = \{\chi_{\nu}\}_{\nu=1,...,M}$ to span the one-electron space $\mathfrak{H}^{\mathcal{B}} = \operatorname{span}(\mathcal{B})$ and the *N*-electron space $\mathcal{H}^{\mathcal{B}} = \bigwedge^{N} \mathfrak{H}^{\mathcal{B}}$, and we must try to approach the **complete-basis-set (CBS) limit** $M \to \infty$.
- ► In the molecular electronic Hamiltonian

$$\hat{H} = -\frac{1}{2}\sum_{i=1}^{N} \boldsymbol{\nabla}_{\mathbf{r}_{i}}^{2} + \frac{1}{2}\sum_{i=1}^{N}\sum_{\substack{j=1\\i\neq j}}^{N} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} - \sum_{i=1}^{N}\sum_{\alpha=1}^{N} \frac{Z_{\alpha}}{|\mathbf{r}_{i} - \mathbf{R}_{\alpha}|}$$

► The Coulomb electron-electron interaction is singular as $|\mathbf{r}_i - \mathbf{r}_j| \rightarrow 0$, leading to the "electron-electron cusp" (derivative discontinuity) in the eigenfunctions

\Longrightarrow Slow basis convergence of energies and many properties due to short-range correlation

▶ The Coulomb nuclei-electron potential is non-confining, leading to a continuous spectrum with "continuum states" (not belonging to the Hilbert space)

\Longrightarrow Slow or impossible basis convergence of many properties depending on the continuum states

1 Basis-set correction based on DFT for short-range correlation

Basis-set correction based on DFT for short-range correlation with T. Anderson, R. Assaraf, A. Ferté, E. Giner, J. Li, P.-F. Loos, B. Pradines, A. Savin, A. Scemama, D. Traore, C. Umrigar, Y. Yao

2 TDDFT with Robin boundary conditions for continuum states

Slow basis convergence of wave-function theory

> The full-configuration interaction (FCI) ground-state energy in a basis \mathcal{B} is

$$E_{\mathsf{FCI}}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \langle \Psi | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} + \hat{\mathcal{V}}_{\mathsf{ne}} | \Psi
angle$$

where $\mathcal{W}^{\mathcal{B}} = \{ \Psi \in \mathcal{H}^{\mathcal{B}} \mid \langle \Psi | \Psi \rangle = 1 \}.$

Slow basis convergence of wave-function theory

▶ The full-configuration interaction (FCI) ground-state energy in a basis B is

$$E_{\mathsf{FCI}}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \langle \Psi | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi
angle$$

where $\mathcal{W}^{\mathcal{B}} = \{ \Psi \in \mathcal{H}^{\mathcal{B}} \mid \langle \Psi | \Psi \rangle = 1 \}.$

Example of the He atom with the series of basis sets $\mathcal{B} = \text{``cc-pVXZ'':}$

Slow basis convergence of wave-function theory

The full-configuration interaction (FCI) ground-state energy in a basis B is

$$E_{\mathsf{FCI}}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \langle \Psi | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi
angle$$

where $\mathcal{W}^{\mathcal{B}} = \{ \Psi \in \mathcal{H}^{\mathcal{B}} \mid \langle \Psi | \Psi \rangle = 1 \}.$

Example of the He atom with the series of basis sets $\mathcal{B} = \text{``cc-pVXZ'':}$

- ▶ Two main strategies to deal with short-range basis-set incompleteness error:
 - Extrapolation to the CBS limit: $E_{\text{FCI}}^{X} = E_{\text{FCI}}^{\text{CBS}} + c X^{-3}$
 - Explicitly correlated F12 methods (use a two-electron basis depending explicitly on the interelectronic distance)

▶ In standard DFT (complete basis set), the exact ground-state energy is expressed as

$$E_{0} = \min_{\rho \in \mathcal{D}^{CBS}} \left\{ F[\rho] + \int v_{ne}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} \right\}$$

where $\mathcal{D}^{CBS} = \{\rho \mid \exists \Psi \in \mathcal{W}^{CBS} \text{ s.t. } \rho_{\Psi} = \rho\}$ is the set of *N*-representable densities, and $F[\rho]$ is the Levy-Lieb universal density functional

$$\mathcal{F}[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathsf{CBS}} \\ \Psi \to \rho}} \langle \Psi | \, \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi \rangle$$

In standard DFT (complete basis set), the exact ground-state energy is expressed as

$$E_{0} = \min_{\rho \in \mathcal{D}^{\mathsf{CBS}}} \left\{ F[\rho] + \int v_{\mathsf{ne}}(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} \right\}$$

where $\mathcal{D}^{CBS} = \{\rho \mid \exists \Psi \in \mathcal{W}^{CBS} \text{ s.t. } \rho_{\Psi} = \rho\}$ is the set of *N*-representable densities, and $F[\rho]$ is the Levy-Lieb universal density functional

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathsf{CBS}} \\ \Psi \to \rho}} \langle \Psi | \hat{\mathcal{T}} + \hat{W}_{\mathsf{ee}} | \Psi \rangle$$

► For an **incomplete basis set** B, we can define an approximation to the ground-state energy by **restriction to densities representable in** B

$$E_0^{\mathcal{B}} = \min_{\rho \in \mathcal{D}^{\mathcal{B}}} \left\{ F[\rho] + \int v_{\mathsf{ne}}(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} \right\}$$

where $\mathcal{D}^{\mathcal{B}} = \{ \rho \mid \exists \Psi \in \mathcal{W}^{\mathcal{B}} \text{ s.t. } \rho_{\Psi} = \rho \}.$

▶ In standard DFT (complete basis set), the exact ground-state energy is expressed as

$$E_{0} = \min_{\rho \in \mathcal{D}^{\mathsf{CBS}}} \left\{ F[\rho] + \int v_{\mathsf{ne}}(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} \right\}$$

where $\mathcal{D}^{CBS} = \{\rho \mid \exists \Psi \in \mathcal{W}^{CBS} \text{ s.t. } \rho_{\Psi} = \rho\}$ is the set of *N*-representable densities, and $F[\rho]$ is the Levy-Lieb universal density functional

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathsf{CBS}} \\ \Psi \to \rho}} \langle \Psi | \hat{\mathcal{T}} + \hat{W}_{\mathsf{ee}} | \Psi \rangle$$

► For an **incomplete basis set** B, we can define an approximation to the ground-state energy by **restriction to densities representable in** B

$$E_0^{\mathcal{B}} = \min_{
ho \in \mathcal{D}^{\mathcal{B}}} \Big\{ F[
ho] + \int v_{\mathsf{ne}}(\mathbf{r})
ho(\mathbf{r}) \mathsf{d}\mathbf{r} \Big\}$$

where $\mathcal{D}^{\mathcal{B}} = \{ \rho \mid \exists \Psi \in \mathcal{W}^{\mathcal{B}} \text{ s.t. } \rho_{\Psi} = \rho \}.$

▶ The restriction on densities representable in *B* is **much weaker** that the restriction on wave functions representable in *B*, so we expect

$$E_{\text{FCI}}^{\mathcal{B}} \gg E_0^{\mathcal{B}} \gtrsim E_0$$

• We then decompose the universal density functional $F[\rho]$ as

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathcal{B}} \\ \Psi \to \rho}} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle + \overline{\mathcal{E}}^{\mathcal{B}}[\rho]$$

where $\overline{E}^{\mathcal{B}}[n]$ is a complementary density functional correcting for the basis-set restriction on the wave function.

• We then decompose the universal density functional $F[\rho]$ as

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathcal{B}} \\ \Psi \to \rho}} \langle \Psi | \hat{T} + \hat{W}_{ee} | \Psi \rangle + \overline{\mathcal{E}}^{\mathcal{B}}[\rho]$$

where $\overline{E}^{\mathcal{B}}[n]$ is a complementary density functional correcting for the basis-set restriction on the wave function.

• The energy $E_0^{\mathcal{B}}$ can then be obtained self-consistently as

$$E_{0}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left\{ \langle \Psi | \hat{T} + \hat{W}_{ee} + \hat{V}_{ne} | \Psi \rangle + \overline{E}^{\mathcal{B}} [\rho_{\Psi}] \right\}$$

• We then decompose the universal density functional $F[\rho]$ as

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathcal{B}} \\ \Psi \to \rho}} \langle \Psi | \hat{T} + \hat{W}_{\text{ee}} | \Psi \rangle + \overline{\mathcal{E}}^{\mathcal{B}}[\rho]$$

where $\overline{E}^{\mathcal{B}}[n]$ is a complementary density functional correcting for the basis-set restriction on the wave function.

• The energy $E_0^{\mathcal{B}}$ can then be obtained **self-consistently** as

$$E_{0}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left\{ \langle \Psi | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi \rangle + \bar{\mathcal{E}}^{\mathcal{B}} [\rho_{\Psi}] \right\}$$

▶ We will consider a non-self-consistent approximation using the FCI wave function:

$$E_{\text{FCI+DFT}}^{\mathcal{B}} = \langle \Psi_{\text{FCI}}^{\mathcal{B}} | \hat{T} + \hat{W}_{\text{ee}} + \hat{V}_{\text{ne}} | \Psi_{\text{FCI}}^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}} [\rho_{\Psi_{\text{FCI}}^{\mathcal{B}}}]$$

• We then decompose the universal density functional $F[\rho]$ as

$$F[\rho] = \min_{\substack{\Psi \in \mathcal{W}^{\mathcal{B}} \\ \Psi \to \rho}} \langle \Psi | \hat{T} + \hat{W}_{\text{ee}} | \Psi \rangle + \overline{\mathcal{E}}^{\mathcal{B}}[\rho]$$

where $\overline{E}^{\mathcal{B}}[n]$ is a complementary density functional correcting for the basis-set restriction on the wave function.

• The energy $E_0^{\mathcal{B}}$ can then be obtained self-consistently as

$$E_{0}^{\mathcal{B}} = \min_{\Psi \in \mathcal{W}^{\mathcal{B}}} \left\{ \langle \Psi | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi \rangle + \bar{\mathcal{E}}^{\mathcal{B}} [\rho_{\Psi}] \right\}$$

▶ We will consider a non-self-consistent approximation using the FCI wave function:

$$E_{\mathsf{FCI+DFT}}^{\mathcal{B}} = \langle \Psi_{\mathsf{FCI}}^{\mathcal{B}} | \hat{T} + \hat{W}_{\mathsf{ee}} + \hat{V}_{\mathsf{ne}} | \Psi_{\mathsf{FCI}}^{\mathcal{B}} \rangle + \bar{E}^{\mathcal{B}} [\rho_{\Psi_{\mathsf{ECI}}^{\mathcal{B}}}]$$

We can also add the DFT basis correction to any approximate wave-function theory (WFT) method:

$$E_{\mathsf{WFT+DFT}}^{\mathcal{B}} = E_{\mathsf{WFT}}^{\mathcal{B}} + \overline{E}^{\mathcal{B}}[\rho_{\Psi_{\mathsf{WFT}}^{\mathcal{B}}}]$$

▶ We need to approximate the complementary basis-correction functional

$$\bar{\boldsymbol{\textit{E}}}^{\mathcal{B}}[\boldsymbol{\rho}] = \langle \Psi^{\mathsf{CBS}}[\boldsymbol{\rho}] | \hat{\boldsymbol{\mathit{T}}} + \hat{W}_{\mathsf{ee}} | \Psi^{\mathsf{CBS}}[\boldsymbol{\rho}] \rangle - \langle \Psi^{\mathcal{B}}[\boldsymbol{\rho}] | \hat{\boldsymbol{\mathit{T}}} + \hat{W}_{\mathsf{ee}} | \Psi^{\mathcal{B}}[\boldsymbol{\rho}] \rangle$$

where the wave function $\Psi^{\mathcal{B}}[\rho]$ is associated with the projected electron-electron interaction $\hat{P}_{\mathcal{B}}\hat{W}_{ee}\hat{P}_{\mathcal{B}}$.

► We need to approximate the complementary basis-correction functional $\overline{\mathcal{E}}^{\mathcal{B}}[\rho] = \langle \Psi^{\mathsf{CBS}}[\rho] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathsf{CBS}}[\rho] \rangle - \langle \Psi^{\mathcal{B}}[\rho] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathcal{B}}[\rho] \rangle$

where the wave function $\Psi^{\mathcal{B}}[\rho]$ is associated with the projected electron-electron interaction $\hat{P}_{\mathcal{B}}\hat{W}_{ee}\hat{P}_{\mathcal{B}}$.

▶ We fit this projected interaction by a long-range interaction

$$\langle \mathbf{r}_1 \uparrow, \mathbf{r}_2 \downarrow | \hat{P}_{\mathcal{B}} \hat{W}_{ee} \hat{P}_{\mathcal{B}} | \mathbf{r}_1 \uparrow, \mathbf{r}_2 \downarrow \rangle \approx \frac{\operatorname{erf}(\mu^{\mathcal{B}}(\mathbf{r}_1) r_{12})}{r_{12}}$$

with a local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$.

► We need to approximate the complementary basis-correction functional $\overline{\mathcal{E}}^{\mathcal{B}}[\rho] = \langle \Psi^{\mathsf{CBS}}[\rho] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathsf{CBS}}[\rho] \rangle - \langle \Psi^{\mathcal{B}}[\rho] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathcal{B}}[\rho] \rangle$

where the wave function $\Psi^{\mathcal{B}}[\rho]$ is associated with the projected electron-electron interaction $\hat{P}_{\mathcal{B}}\hat{W}_{\rm ee}\hat{P}_{\mathcal{B}}$.

▶ We fit this projected interaction by a long-range interaction

$$\langle \mathbf{r}_{1}\uparrow,\mathbf{r}_{2}\downarrow|\hat{P}_{\mathcal{B}}\hat{W}_{\mathrm{ee}}\hat{P}_{\mathcal{B}}|\mathbf{r}_{1}\uparrow,\mathbf{r}_{2}\downarrow\rangle\approx\frac{\mathrm{erf}(\mu^{\mathcal{B}}(\mathbf{r}_{1})r_{12})}{r_{12}}$$

with a local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$.

• The obtained $\mu^{\mathcal{B}}(\mathbf{r})$ is a local measure of the incompleteness of the basis set \mathcal{B} .

► We need to approximate the complementary basis-correction functional $\overline{\mathcal{E}}^{\mathcal{B}}[\rho] = \langle \Psi^{\mathsf{CBS}}[\rho] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathsf{CBS}}[\rho] \rangle - \langle \Psi^{\mathcal{B}}[\rho] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathcal{B}}[\rho] \rangle$

where the wave function $\Psi^{\mathcal{B}}[\rho]$ is associated with the projected electron-electron interaction $\hat{P}_{\mathcal{B}}\hat{W}_{ee}\hat{P}_{\mathcal{B}}$.

▶ We fit this projected interaction by a long-range interaction

$$\langle \mathbf{r}_{1}\uparrow,\mathbf{r}_{2}\downarrow|\hat{P}_{\mathcal{B}}\hat{W}_{\mathrm{ee}}\hat{P}_{\mathcal{B}}|\mathbf{r}_{1}\uparrow,\mathbf{r}_{2}\downarrow\rangle\approx\frac{\mathrm{erf}(\mu^{\mathcal{B}}(\mathbf{r}_{1})\mathbf{r}_{12})}{r_{12}}$$

with a local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$.

- The obtained $\mu^{\mathcal{B}}(\mathbf{r})$ is a local measure of the incompleteness of the basis set \mathcal{B} .
- We can then recycle a short-range PBE density functional developed for this modified electron-electron interaction to build an approximate basis-correction functional

$$\bar{\boldsymbol{E}}_{\mathsf{PBE}}^{\mathcal{B}}[\rho] = \int \boldsymbol{e}_{\mathsf{c}}^{\mathsf{srPBE}}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), \mu^{\mathcal{B}}(\mathbf{r})) \, \mathsf{d}\mathbf{r}$$

 $\blacktriangleright \text{ We need to approximate the complementary basis-correction functional}$ $\overline{\mathcal{E}}^{\mathcal{B}}[\rho] = \langle \Psi^{\mathsf{CBS}}[\rho] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathsf{CBS}}[\rho] \rangle - \langle \Psi^{\mathcal{B}}[\rho] | \hat{\mathcal{T}} + \hat{\mathcal{W}}_{\mathsf{ee}} | \Psi^{\mathcal{B}}[\rho] \rangle$

where the wave function $\Psi^{\mathcal{B}}[\rho]$ is associated with the projected electron-electron interaction $\hat{P}_{\mathcal{B}}\hat{W}_{ee}\hat{P}_{\mathcal{B}}$.

▶ We fit this projected interaction by a long-range interaction

$$\langle \mathbf{r}_{1}\uparrow,\mathbf{r}_{2}\downarrow|\hat{P}_{\mathcal{B}}\hat{W}_{\mathrm{ee}}\hat{P}_{\mathcal{B}}|\mathbf{r}_{1}\uparrow,\mathbf{r}_{2}\downarrow\rangle\approx\frac{\mathrm{erf}(\mu^{\mathcal{B}}(\mathbf{r}_{1})\mathbf{r}_{12})}{r_{12}}$$

with a local range-separation parameter $\mu^{\mathcal{B}}(\mathbf{r})$.

- The obtained μ^B(r) is a local measure of the incompleteness of the basis set B.
- ▶ We can then recycle a **short-range PBE density functional** developed for this modified electron-electron interaction to build an approximate basis-correction functional

$$\bar{\boldsymbol{E}}_{\mathsf{PBE}}^{\mathcal{B}}[\rho] = \int \boldsymbol{e}_{\mathsf{c}}^{\mathsf{srPBE}}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r}), \mu^{\mathcal{B}}(\mathbf{r})) \, \mathsf{d}\mathbf{r}$$

► This approximate basis-correction functional contains the physics of the electron-electron cusp, automatically adapts to each basis set *B*, and correctly vanishes in the CBS limit

Convergence of the total energy with respect to the basis set

Example of the He atom with the series of basis sets $\mathcal{B} = \text{``cc-pVXZ'':}$

 \implies Much faster basis-set convergence without altering the CBS limit

Tests on atomization energies

Basis-set convergence of **55 atomization energies** (G2 set) with cc-pVXZ basis sets: **CCSD(T)**:

Mean absolute deviation with respect to CBS limit (in kcal/mol):

	VDZ	VTZ	VQZ
CCSD(T)	14.29	6.06	2.50
CCSD(T)+PBE	1.96	0.85	0.31

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019

Tests on dissociation energies of transition metal monoxides

Dissociation energies of transition metal monoxides (ScO, TiO, VO, CrO, MnO, FeO, CuO) with selected CI calculations with aug-cc-pVXZ basis sets and pseudopotentials:

Tests on excitation energies

Valence and Rydberg excitation energies of ethylene calculated by difference of total energies with aug-cc-pVXZ (AVXZ) basis sets (using a variant of the PBE basis correction functional depending on the on-top pair density):

 \implies FCI+PBEot reaches near "chemical accuracy" with AVDZ basis set

Giner, Scemama, Toulouse, Loos, JCP, 2019

Extension of the basis correction to many-body Green-function theory

Extension to many-body Green-function theory for GW calculations:

$$E_0^{\mathcal{B}} = \sup_{G^{\mathcal{B}}} \left\{ \Omega^{\mathcal{B}}[G^{\mathcal{B}}] + \bar{E}^{\mathcal{B}}[n_{G^{\mathcal{B}}}] \right\} \implies (G^{\mathcal{B}})^{-1} = (G_0^{\mathcal{B}})^{-1} - \Sigma_{\mathsf{Hxc}}^{\mathcal{B}}[G^{\mathcal{B}}] - V^{\mathcal{B}}[n_{G^{\mathcal{B}}}]$$

► Example of the calculation of the IP of 20 molecules by the G₀W₀ method:

 \implies The basis correction also accelerates the convergence of G_0W_0

Loos, Pradines, Scemama, Giner, Toulouse, JCTC, 2020

Dipole moments

► Calculation of the **dipole moment** by response to an electric field *E*:

$$E_0^{\mathcal{B}}(\mathcal{E}) = E_{\mathsf{WFT}}^{\mathcal{B}}(\mathcal{E}) + \overline{E}^{\mathcal{B}}[\rho_{\Psi_{\mathsf{WFT}}^{\mathcal{B}}(\mathcal{E})}] \implies d_0^{\mathcal{B}} = -\left.\frac{\mathsf{d}E_0^{\mathcal{B}}(\mathcal{E})}{\mathsf{d}\mathcal{E}}\right|_{\mathcal{E}=0}$$

▶ Example of calculations on a set of 14 molecules with aug-cc-pVXZ basis sets:

 \implies The basis correction also accelerates the convergence of dipole moments

Giner, Traore, Pradines, Toulouse, JCP, 2021 Traore, Toulouse, Giner, JCP, 2022

Summary:

- ▶ DFT basis-set correction which automatically adapts to each basis set
- based on pre-existing short-range correlation functional
- accelerates basis convergence of energies and properties

Outlook:

- ▶ Construction of a more rigorous basis-correction functional
- Extension to linear-response theory
- Extension to density fitting for larger systems

Implemented in QUANTUM PACKAGE and MOLPRO

2 TDDFT with Robin boundary conditions for continuum states with E. Cancès, A. Levitt, **E. Luppi**, K. Schwinn, F. Zapata

We would like to calculate the photoabsorption cross section

$$\sigma(\omega) = \lim_{\eta \to 0^+} \frac{4\pi\omega}{c} \mathrm{Im}[\alpha(\omega + \mathrm{i}\eta)]$$

where $\alpha(\omega)$ is the dynamic dipole polarizability. For $\omega \geq IP$, we have **photoionization**.

▶ We would like to calculate the photoabsorption cross section

$$\sigma(\omega) = \lim_{\eta \to 0^+} \frac{4\pi\omega}{c} \text{Im}[\alpha(\omega + i\eta)]$$

where $\alpha(\omega)$ is the dynamic dipole polarizability. For $\omega \geq IP$, we have **photoionization**.

In a finite basis set, the linear-response (adiabatic) TDDFT/TDHF equations are

$$\left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ -\mathbf{B}^* & -\mathbf{A}^* \end{array}\right) \left(\begin{array}{c} \mathbf{X}_n \\ \mathbf{Y}_n \end{array}\right) = \omega_n \left(\begin{array}{c} \mathbf{X}_n \\ \mathbf{Y}_n \end{array}\right)$$

with $A_{ia,jb} = (\varepsilon_a - \varepsilon_i)\delta_{ij}\delta_{ab} + \langle aj|\hat{f}_{Hxc}|ib\rangle$ and $B_{ia,jb} = \langle ab|\hat{f}_{Hxc}|ij\rangle$.

We would like to calculate the photoabsorption cross section

$$\sigma(\omega) = \lim_{\eta \to 0^+} \frac{4\pi\omega}{c} \mathrm{Im}[\alpha(\omega + \mathrm{i}\eta)]$$

where $\alpha(\omega)$ is the dynamic dipole polarizability. For $\omega \ge IP$, we have **photoionization**.

In a finite basis set, the linear-response (adiabatic) TDDFT/TDHF equations are

$$\left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ -\mathbf{B}^* & -\mathbf{A}^* \end{array}\right) \left(\begin{array}{c} \mathbf{X}_n \\ \mathbf{Y}_n \end{array}\right) = \omega_n \left(\begin{array}{c} \mathbf{X}_n \\ \mathbf{Y}_n \end{array}\right)$$

with $A_{ia,jb} = (\varepsilon_a - \varepsilon_i)\delta_{ij}\delta_{ab} + \langle aj|\hat{f}_{Hxc}|ib\rangle$ and $B_{ia,jb} = \langle ab|\hat{f}_{Hxc}|ij\rangle$.

▶ We obtain excitation energies ω_n and associated oscillator strengths f_n . The photoabsorption cross section is then

$$\sigma(\omega) = \frac{2\pi^2}{c} \sum_n f_n \, \delta(\omega - \omega_n)$$

We would like to calculate the photoabsorption cross section

$$\sigma(\omega) = \lim_{\eta \to 0^+} \frac{4\pi\omega}{c} \text{Im}[\alpha(\omega + i\eta)]$$

where $\alpha(\omega)$ is the dynamic dipole polarizability. For $\omega \ge IP$, we have **photoionization**.

▶ In a finite basis set, the linear-response (adiabatic) TDDFT/TDHF equations are

$$\left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ -\mathbf{B}^* & -\mathbf{A}^* \end{array}\right) \left(\begin{array}{c} \mathbf{X}_n \\ \mathbf{Y}_n \end{array}\right) = \omega_n \left(\begin{array}{c} \mathbf{X}_n \\ \mathbf{Y}_n \end{array}\right)$$

with $A_{ia,jb} = (\varepsilon_a - \varepsilon_i)\delta_{ij}\delta_{ab} + \langle aj|\hat{f}_{Hxc}|ib\rangle$ and $B_{ia,jb} = \langle ab|\hat{f}_{Hxc}|ij\rangle$.

▶ We obtain excitation energies ω_n and associated oscillator strengths f_n . The photoabsorption cross section is then

$$\sigma(\omega) = \frac{2\pi^2}{c} \sum_n f_n \, \delta(\omega - \omega_n)$$

▶ For $\omega \ge IP$, the **photoionization cross section** at $\omega = \omega_n$ may be approximated as

$$\sigma(\omega_n) \approx \frac{2\pi^2}{c} f_n \ \rho_{\text{DOS}}(\omega_n)$$

where $\rho_{\text{DOS}}(\omega_n) \approx 2/(\omega_{n+1} - \omega_{n-1})$ is an estimate of the density of states at $\omega = \omega_n$.

Photoionization spectra of He and Be

- We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical box Ω, with Dirichlet (zero) boundary conditions.
- ▶ TDHF photoionization spectra of the He and Be atoms:

 \implies Reasonable spectra for He but it does not work for core ionization in Be

Zapata, Luppi, Toulouse, JCP, 2019

► Let us look at a **basis-independent** formulation of linear-response TDDFT/TDHF.

- ► Let us look at a **basis-independent** formulation of linear-response TDDFT/TDHF.
- In (adiabatic) TDDFT/TDHF, the occupied orbitals evolve in time according to

$${\mathfrak i} rac{\partial}{\partial t} \psi_i(t) = \hat{h}[\gamma(t)] \psi_i(t) + \hat{{\mathfrak v}}(t) \psi_i(t)$$

where $\hat{h}[\gamma(t)]$ is the KS/HF Hamiltonian depending on the density matrix $\gamma(t)$ and $\hat{v}(t) = -\hat{d}\mathcal{E}\left(e^{-i\omega t} + e^{+i\omega t}\right)$ is the electric-dipole interaction.

- Let us look at a basis-independent formulation of linear-response TDDFT/TDHF.
- ► In (adiabatic) TDDFT/TDHF, the occupied orbitals evolve in time according to

$$\mathbf{i}rac{\partial}{\partial t}\psi_i(t)=\hat{h}[\gamma(t)]\psi_i(t)+\hat{\mathbf{v}}(t)\psi_i(t)$$

where $\hat{h}[\gamma(t)]$ is the KS/HF Hamiltonian depending on the density matrix $\gamma(t)$ and $\hat{v}(t) = -\hat{d}\mathcal{E}\left(e^{-i\omega t} + e^{+i\omega t}\right)$ is the electric-dipole interaction.

At first order in the electric field, the perturbed occupied orbitals (in the interaction picture) are

$$\psi_i^{(1)}(t) = \psi_i^{(+)}(\omega)e^{-\mathrm{i}\omega t} + \psi_i^{(-)}(\omega)e^{+\mathrm{i}\omega t}$$

where the Fourier modes $\psi_i^{(\pm)}(\omega)$ satisfy the **TDDFT/TDHF Sternheimer equations**

$$\left(\pm\omega+\varepsilon_{i}-\hat{h}[\gamma^{(0)}]\right)\psi_{i}^{(\pm)}(\omega)=\left(\hat{\nu}_{\mathsf{Hxc}}^{(\pm)}(\omega)-\hat{d}\right)\psi_{i}^{(0)}$$

- Let us look at a basis-independent formulation of linear-response TDDFT/TDHF.
- ► In (adiabatic) TDDFT/TDHF, the occupied orbitals evolve in time according to

$$\mathbf{i}rac{\partial}{\partial t}\psi_i(t)=\hat{h}[\gamma(t)]\psi_i(t)+\hat{\mathbf{v}}(t)\psi_i(t)$$

where $\hat{h}[\gamma(t)]$ is the KS/HF Hamiltonian depending on the density matrix $\gamma(t)$ and $\hat{v}(t) = -\hat{d}\mathcal{E}\left(e^{-i\omega t} + e^{+i\omega t}\right)$ is the electric-dipole interaction.

At first order in the electric field, the perturbed occupied orbitals (in the interaction picture) are

$$\psi_i^{(1)}(t) = \psi_i^{(+)}(\omega)e^{-\mathrm{i}\omega t} + \psi_i^{(-)}(\omega)e^{+\mathrm{i}\omega t}$$

where the Fourier modes $\psi_i^{(\pm)}(\omega)$ satisfy the **TDDFT/TDHF Sternheimer equations** $\left(\pm\omega+\varepsilon_i-\hat{h}[\gamma^{(0)}]\right)\psi_i^{(\pm)}(\omega) = \left(\hat{v}_{\mathsf{Hxc}}^{(\pm)}(\omega)-\hat{d}\right)\psi_i^{(0)}$

The dynamic dipole polarizability is then obtained as

$$\alpha(\omega) = \sum_{i=1}^{N} \langle \psi_i^{(0)} | \hat{d} | \psi_i^{(+)}(\omega) \rangle + \langle \psi_i^{(-)}(\omega) | \hat{d} | \psi_i^{(0)} \rangle$$

For ω ≥ −ε_i, the first-order perturbed occupied orbital ψ⁽⁺⁾_i(ω) is a "continuum wave function" (i.e., not belonging to the Hilbert space).

- For ω ≥ −ε_i, the first-order perturbed occupied orbital ψ⁽⁺⁾_i(ω) is a "continuum wave function" (i.e., not belonging to the Hilbert space).
- ► Key idea: Expand $\psi_i^{(+)}(\omega)$ in a basis set only in a box Ω and use an analytical asymptotic approximation $\bar{\psi}_i^{(+)}(\omega)$ to it outside the box. Match the two functions on the box surface $\partial\Omega$ by equating the normal logarithmic derivatives.

- For ω ≥ −ε_i, the first-order perturbed occupied orbital ψ⁽⁺⁾_i(ω) is a "continuum wave function" (i.e., not belonging to the Hilbert space).
- ► Key idea: Expand $\psi_i^{(+)}(\omega)$ in a basis set only in a box Ω and use an analytical asymptotic approximation $\bar{\psi}_i^{(+)}(\omega)$ to it outside the box. Match the two functions on the box surface $\partial\Omega$ by equating the normal logarithmic derivatives.
- For spherical symmetry, this leads to local Robin boundary conditions for $\psi_i^{(+)}(\omega)$

$$\forall \mathbf{r} \in \partial \Omega, \ \frac{\mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \psi_i^{(+)}(\mathbf{r}, \omega)}{\psi_i^{(+)}(\mathbf{r}, \omega)} = \frac{\mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \bar{\psi}_i^{(+)}(\mathbf{r}, \omega)}{\bar{\psi}_i^{(+)}(\mathbf{r}, \omega)}$$

where $\bar{\psi}_i^{(+)}(\mathbf{r},\omega)$ are chosen as hydrogen-like continuum wave functions.

- For ω ≥ −ε_i, the first-order perturbed occupied orbital ψ⁽⁺⁾_i(ω) is a "continuum wave function" (i.e., not belonging to the Hilbert space).
- ► Key idea: Expand $\psi_i^{(+)}(\omega)$ in a basis set only in a box Ω and use an analytical asymptotic approximation $\bar{\psi}_i^{(+)}(\omega)$ to it outside the box. Match the two functions on the box surface $\partial\Omega$ by equating the normal logarithmic derivatives.
- For spherical symmetry, this leads to local Robin boundary conditions for $\psi_i^{(+)}(\omega)$

$$\forall \mathbf{r} \in \partial \Omega, \ \frac{\mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \psi_i^{(+)}(\mathbf{r}, \omega)}{\psi_i^{(+)}(\mathbf{r}, \omega)} = \frac{\mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \bar{\psi}_i^{(+)}(\mathbf{r}, \omega)}{\bar{\psi}_i^{(+)}(\mathbf{r}, \omega)}$$

where $\bar{\psi}_i^{(+)}(\mathbf{r},\omega)$ are chosen as hydrogen-like continuum wave functions.

For non-spherical symmetry, it is extended to nonlocal Robin boundary conditions

$$\forall \mathbf{r} \in \partial \Omega, \ \mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \psi_i^{(+)}(\mathbf{r}, \omega) = \int_{\partial \Omega} \bar{K}_i(\mathbf{r}, \mathbf{r}'; \omega) \psi_i^{(+)}(\mathbf{r}', \omega) \mathrm{d}\mathbf{r}'$$

where the kernel $\bar{K}_i(\mathbf{r},\mathbf{r}';\omega)$ contains information about $\bar{\psi}_i^{(+)}(\omega)$.

- For ω ≥ −ε_i, the first-order perturbed occupied orbital ψ⁽⁺⁾_i(ω) is a "continuum wave function" (i.e., not belonging to the Hilbert space).
- ► Key idea: Expand $\psi_i^{(+)}(\omega)$ in a basis set only in a box Ω and use an analytical asymptotic approximation $\bar{\psi}_i^{(+)}(\omega)$ to it outside the box. Match the two functions on the box surface $\partial\Omega$ by equating the normal logarithmic derivatives.
- For spherical symmetry, this leads to local Robin boundary conditions for $\psi_i^{(+)}(\omega)$

$$\forall \mathbf{r} \in \partial \Omega, \ \frac{\mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \psi_i^{(+)}(\mathbf{r}, \omega)}{\psi_i^{(+)}(\mathbf{r}, \omega)} = \frac{\mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \overline{\psi}_i^{(+)}(\mathbf{r}, \omega)}{\overline{\psi}_i^{(+)}(\mathbf{r}, \omega)}$$

where $\bar{\psi}_i^{(+)}(\mathbf{r},\omega)$ are chosen as hydrogen-like continuum wave functions.

► For non-spherical symmetry, it is extended to nonlocal Robin boundary conditions

$$\forall \mathbf{r} \in \partial \Omega, \ \mathbf{n}(\mathbf{r}) \cdot \boldsymbol{\nabla} \psi_i^{(+)}(\mathbf{r}, \omega) = \int_{\partial \Omega} \bar{K}_i(\mathbf{r}, \mathbf{r}'; \omega) \psi_i^{(+)}(\mathbf{r}', \omega) \mathrm{d}\mathbf{r}'$$

where the kernel $ar{K}_i({f r},{f r}';\omega)$ contains information about $ar{\psi}_i^{(+)}(\omega).$

Using now a basis set in the box, it amounts to using the kinetic integrals

$$t_{i,\mu,\nu}(\omega) = \frac{1}{2} \int_{\Omega} \nabla \chi_{\mu}^{*}(\mathbf{r}) \cdot \nabla \chi_{\nu}(\mathbf{r}) d\mathbf{r} - \frac{1}{2} \int_{\partial \Omega^{2}} \chi_{\mu}^{*}(\mathbf{r}) \bar{K}_{i}(\mathbf{r},\mathbf{r}';\omega) \chi_{\nu}(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$$

Photoionization spectra of Be

- We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical box Ω, with Robin boundary conditions.
- **•** TDHF and TDLDA photoionization spectra of the Be atom:

 \implies We can now easily converge the spectra for all frequencies

Core resonances in the Be atom

▶ The 1s \rightarrow *n*p core excitations are embedded in the continuum of the valence excitations from the 2s \implies they are **resonances**, i.e. **quasi-bound states with finite lifetimes**.

Core resonances in the Be atom

The 1s → np core excitations are embedded in the continuum of the valence excitations from the 2s ⇒ they are resonances, i.e. quasi-bound states with finite lifetimes.

 \implies Good resonance energy with TDLRSH but much too small inverse lifetime

Core resonances in the Be atom

The 1s → np core excitations are embedded in the continuum of the valence excitations from the 2s ⇒ they are resonances, i.e. quasi-bound states with finite lifetimes.

• Example of the 1s \rightarrow 2p core resonance (resonance energy $E_{\rm R}$ and inverse lifetime Γ):

 \implies Good resonance energy with TDLRSH but much too small inverse lifetime

▶ The resonance decays via the Auger process

$$1 \text{s} 2 \text{s}^2 2 \text{p} \rightarrow 1 \text{s}^2 2 \text{p} + \text{e}$$

The configuration $1s^22p$ is a double excitation with respect to the ground state $1s^22s^2$ and thus cannot be described by adiabatic TDDFT/TDHF.

Core resonances in the Li atom

▶ In Li, due to spin, each $1s \rightarrow np$ resonance split in two resonances.

Core resonances in the Li atom

- ▶ In Li, due to spin, each $1s \rightarrow np$ resonance split in two resonances.
- ▶ Example of the $1s_{\uparrow} \rightarrow 2p_{\uparrow}$ and $1s_{\downarrow} \rightarrow 2p_{\bot}$ core resonance:

 \Rightarrow Again, good resonance energies with TDLRSH but unreliable inverse lifetimes

Core resonances in the Li atom

- ▶ In Li, due to spin, each $1s \rightarrow np$ resonance split in two resonances.
- ▶ Example of the $1s_{\uparrow} \rightarrow 2p_{\uparrow}$ and $1s_{\downarrow} \rightarrow 2p_{\downarrow}$ core resonance:

 \implies Again, good resonance energies with TDLRSH but unreliable inverse lifetimes

Note that now the resonances decay via the Auger process

$$1 \text{s} 2 \text{s} 2 \text{p} \rightarrow 1 \text{s}^2 + \text{e}$$

which does not invove any double excitation with respect to the ground state 1s²2s.

Toulouse, Schwinn, Zapata, Levitt, Cancès, Luppi, JCP, 2022

Summary:

- TDDFT/TDHF with special boundary conditions for describing continuum states
- It allows calculations of photoionization spectra of atoms, including core resonances
- ► TDLRSH gives good resonance energies but unreliable lifetimes

Outlook:

- Extension to Gaussian basis sets
- Extension to molecules
- Extension to time propagation for nonlinear optical properties

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_nantes_23.pdf