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The roots of basis-set incompleteness evil

� The space of one-electron states H = L2(R3 × {↑, ↓},C) and the space of N-electron

states H =
∧N

H are infinite-dimensional Hilbert spaces.
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� The Coulomb electron-electron interaction is singular as |ri − rj | → 0, leading to the
“electron-electron cusp” (derivative discontinuity) in the eigenfunctions

=⇒ Slow basis convergence of energies and many properties due to short-range
correlation
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� The Coulomb electron-electron interaction is singular as |ri − rj | → 0, leading to the
“electron-electron cusp” (derivative discontinuity) in the eigenfunctions

=⇒ Slow basis convergence of energies and many properties due to short-range
correlation

� The Coulomb nuclei-electron potential is non-confining, leading to a continuous spectrum
with“continuum states” (not belonging to the Hilbert space)

=⇒ Slow or impossible basis convergence of many properties depending on the
continuum states
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Outline

1 Basis-set correction based on DFT for short-range correlation

2 TDDFT with Robin boundary conditions for continuum states
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Outline

with T. Anderson, R. Assaraf, A. Ferté, E. Giner, J. Li, P.-F. Loos,
B. Pradines, A. Savin, A. Scemama, D. Traore, C. Umrigar, Y. Yao

1 Basis-set correction based on DFT for short-range correlation

2 TDDFT with Robin boundary conditions for continuum states
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Slow basis convergence of wave-function theory

� The full-configuration interaction (FCI) ground-state energy in a basis B is

E
B
FCI = min

Ψ∈WB

〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

where WB = {Ψ ∈ HB | 〈Ψ|Ψ〉 = 1}.
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� Two main strategies to deal with short-range basis-set incompleteness error:

� Extrapolation to the CBS limit: EX
FCI = ECBS

FCI + c X−3

� Explicitly correlated F12 methods (use a two-electron basis depending explicitly on the
interelectronic distance)
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Wave-function theory with DFT basis correction (1/2)

� In standard DFT (complete basis set), the exact ground-state energy is expressed as

E0 = min
ρ∈DCBS

{

F [ρ] +

∫

vne(r)ρ(r)dr
}

where DCBS = {ρ | ∃Ψ ∈ WCBS s.t. ρΨ = ρ} is the set of N-representable densities, and
F [ρ] is the Levy-Lieb universal density functional

F [ρ] = min
Ψ∈WCBS

Ψ→ρ

〈Ψ|T̂ + Ŵee|Ψ〉
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� For an incomplete basis set B, we can define an approximation to the ground-state
energy by restriction to densities representable in B

E
B
0 = min

ρ∈DB

{

F [ρ] +

∫

vne(r)ρ(r)dr
}

where DB = {ρ | ∃Ψ ∈ WB s.t. ρΨ = ρ}.
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F [ρ] +

∫

vne(r)ρ(r)dr
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where DB = {ρ | ∃Ψ ∈ WB s.t. ρΨ = ρ}.
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Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018
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Wave-function theory with DFT basis correction (2/2)

� We then decompose the universal density functional F [ρ] as

F [ρ] = min
Ψ∈WB

Ψ→ρ

〈Ψ|T̂ + Ŵee|Ψ〉+ Ē
B[ρ]

where ĒB[n] is a complementary density functional correcting for the basis-set
restriction on the wave function.

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018
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〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉+ Ē
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� We can also add the DFT basis correction to any approximate wave-function theory
(WFT) method:
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Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018
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The complementary basis-correction functional ĒB[ρ]

� We need to approximate the complementary basis-correction functional

Ē
B[ρ] = 〈ΨCBS[ρ]|T̂ + Ŵee|Ψ

CBS[ρ]〉 − 〈ΨB[ρ]|T̂ + Ŵee|Ψ
B[ρ]〉

where the wave function ΨB[ρ] is associated with the projected electron-electron
interaction P̂BŴeeP̂B.

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019
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Ē
B[ρ] = 〈ΨCBS[ρ]|T̂ + Ŵee|Ψ
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Ē
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PBE[ρ] =

∫

e
srPBE
c (ρ(r),∇ρ(r), µB(r)) dr

� This approximate basis-correction functional contains the physics of the
electron-electron cusp, automatically adapts to each basis set B, and correctly
vanishes in the CBS limit

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019
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Convergence of the total energy with respect to the basis set

Example of the He atom with the series of basis sets B =“cc-pVXZ”:
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=⇒ Much faster basis-set convergence without altering the CBS limit

Giner, Pradines, Ferté, Assaraf, Savin, Toulouse, JCP, 2018

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019
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Tests on atomization energies

Basis-set convergence of 55 atomization energies (G2 set) with cc-pVXZ basis sets:

CCSD(T):

CCSD(T)+PBE:

Mean absolute deviation with respect to CBS limit (in kcal/mol):

VDZ VTZ VQZ
CCSD(T) 14.29 6.06 2.50
CCSD(T)+PBE 1.96 0.85 0.31

Loos, Pradines, Scemama, Toulouse, Giner, JPCL, 2019 10/24



Tests on dissociation energies of transition metal monoxides

Dissociation energies of transition metal monoxides (ScO, TiO, VO, CrO, MnO, FeO,
CuO) with selected CI calculations with aug-cc-pVXZ basis sets and pseudopotentials:
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Yao, Giner, Anderson, Toulouse, Umrigar, JCP, 2021
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Tests on excitation energies

Valence and Rydberg excitation energies of ethylene calculated by difference of total
energies with aug-cc-pVXZ (AVXZ) basis sets (using a variant of the PBE basis correction
functional depending on the on-top pair density):

=⇒ FCI+PBEot reaches near “chemical accuracy”with AVDZ basis set

Giner, Scemama, Toulouse, Loos, JCP, 2019
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Extension of the basis correction to many-body Green-function theory

� Extension to many-body Green-function theory for GW calculations:

E
B
0 = stat

GB

{

ΩB[GB] + Ē
B[nGB ]

}

=⇒ (GB)−1 = (GB
0 )−1 − ΣB

Hxc[G
B]− V

B[nGB ]

� Example of the calculation of the IP of 20 molecules by the G0W0 method:
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=⇒ The basis correction also accelerates the convergence of G0W0

Loos, Pradines, Scemama, Giner, Toulouse, JCTC, 2020
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Dipole moments

� Calculation of the dipole moment by response to an electric field E :

E
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0 (E) = E
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WFT(E) + Ē

B[ρΨB

WFT
(E)] =⇒ d

B
0 = −
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� Example of calculations on a set of 14 molecules with aug-cc-pVXZ basis sets:
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=⇒ The basis correction also accelerates the convergence of dipole moments

Giner, Traore, Pradines, Toulouse, JCP, 2021

Traore, Toulouse, Giner, JCP, 2022
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Conclusions on the DFT basis-set correction

� Summary:

� DFT basis-set correction which automatically adapts to each basis set
� based on pre-existing short-range correlation functional
� accelerates basis convergence of energies and properties

� Outlook:

� Construction of a more rigorous basis-correction functional
� Extension to linear-response theory
� Extension to density fitting for larger systems

� Implemented in QUANTUM PACKAGE and MOLPRO
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Outline

with E. Cancès, A. Levitt, E. Luppi, K. Schwinn, F. Zapata

1 Basis-set correction based on DFT for short-range correlation

2 TDDFT with Robin boundary conditions for continuum states
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Photoionization spectra from TDDFT/TDHF: The naive way

� We would like to calculate the photoabsorption cross section

σ(ω) = lim
η→0+

4πω

c
Im[α(ω + iη)]

where α(ω) is the dynamic dipole polarizability. For ω ≥ IP, we have photoionization.
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where α(ω) is the dynamic dipole polarizability. For ω ≥ IP, we have photoionization.

� In a finite basis set, the linear-response (adiabatic) TDDFT/TDHF equations are
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A B
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with Aia,jb = (εa − εi )δijδab + 〈aj |f̂Hxc|ib〉 and Bia,jb = 〈ab|f̂Hxc|ij〉.
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� We obtain excitation energies ωn and associated oscillator strengths fn. The
photoabsorption cross section is then

σ(ω) =
2π2

c

∑

n

fn δ(ω − ωn)

� For ω ≥ IP, the photoionization cross section at ω = ωn may be approximated as

σ(ωn) ≈
2π2

c
fn ρDOS(ωn)

where ρDOS(ωn) ≈ 2/(ωn+1 − ωn−1) is an estimate of the density of states at ω = ωn.
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Photoionization spectra of He and Be

� We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical
box Ω, with Dirichlet (zero) boundary conditions.

� TDHF photoionization spectra of the He and Be atoms:
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=⇒ Reasonable spectra for He but it does not work for core ionization in Be

Zapata, Luppi, Toulouse, JCP, 2019
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Sternheimer formulation of linear-response TDDFT/TDHF
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ψi (t) = ĥ[γ(t)]ψi (t) + v̂(t)ψi (t)

where ĥ[γ(t)] is the KS/HF Hamiltonian depending on the density matrix γ(t) and

v̂(t) = −d̂E
(

e−iωt + e+iωt
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is the electric-dipole interaction.

� At first order in the electric field, the perturbed occupied orbitals (in the interaction
picture) are

ψ
(1)
i (t) = ψ

(+)
i (ω)e−iωt + ψ

(−)
i (ω)e+iωt

where the Fourier modes ψ
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� The dynamic dipole polarizability is then obtained as

α(ω) =

N
∑

i=1

〈ψ
(0)
i |d̂ |ψ

(+)
i (ω)〉+ 〈ψ

(−)
i (ω)|d̂ |ψ

(0)
i 〉
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Tackling the continuum with Robin boundary conditions

� For ω ≥ −εi , the first-order perturbed occupied orbital ψ
(+)
i (ω) is a “continuum wave

function” (i.e., not belonging to the Hilbert space).
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(+)
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where ψ̄
(+)
i (r, ω) are chosen as hydrogen-like continuum wave functions.

� For non-spherical symmetry, it is extended to nonlocal Robin boundary conditions

∀r ∈ ∂Ω, n(r)·∇ψ
(+)
i (r, ω) =

∫

∂Ω

K̄i (r, r
′;ω)ψ

(+)
i (r′, ω)dr′

where the kernel K̄i (r, r
′;ω) contains information about ψ̄

(+)
i (ω).
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∀r ∈ ∂Ω, n(r)·∇ψ
(+)
i (r, ω) =

∫

∂Ω

K̄i (r, r
′;ω)ψ

(+)
i (r′, ω)dr′

where the kernel K̄i (r, r
′;ω) contains information about ψ̄

(+)
i (ω).

� Using now a basis set in the box, it amounts to using the kinetic integrals

ti,µ,ν(ω) =
1

2

∫

Ω

∇χ∗
µ(r) · ∇χν(r)dr −

1

2

∫

∂Ω2

χ∗
µ(r)K̄i(r, r

′;ω)χν(r
′)drdr′
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Photoionization spectra of Be

� We use a B-spline basis set, i.e. localized piecewise polynomial functions in a spherical
box Ω, with Robin boundary conditions.

� TDHF and TDLDA photoionization spectra of the Be atom:
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=⇒ We can now easily converge the spectra for all frequencies

Schwinn, Zapata, Levitt, Cancès, Luppi, Toulouse, JCP, 2022
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Core resonances in the Be atom

� The 1s → np core excitations are embedded in the continuum of the valence excitations
from the 2s =⇒ they are resonances, i.e. quasi-bound states with finite lifetimes.
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Core resonances in the Be atom

� The 1s → np core excitations are embedded in the continuum of the valence excitations
from the 2s =⇒ they are resonances, i.e. quasi-bound states with finite lifetimes.

� Example of the 1s → 2p core resonance (resonance energy ER and inverse lifetime Γ):

0.0

0.2

0.4

0.6

0.8

1.0

 102  103  104

TDLDA
1s → 2p

P
h

o
to

io
n

iz
a

ti
o

n
 c

ro
s

s
 s

e
c

ti
o

n
 σ

 (
M

b
)

Frequency ω (eV)

0.0

0.2

0.4

0.6

0.8

1.0

 117  118  119

TDHF
1s → 2p

P
h

o
to

io
n

iz
a

ti
o

n
 c

ro
s

s
 s

e
c

ti
o

n
 σ

 (
M

b
)

Frequency ω (eV)

ER (eV) Γ (meV)
TDLDA 103.0 2.3
TDHF 118.3 0.2
TDLRSH 114.8 0.1
Reference 115.5 37

=⇒ Good resonance energy with TDLRSH but much too small inverse lifetime
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TDLDA 103.0 2.3
TDHF 118.3 0.2
TDLRSH 114.8 0.1
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=⇒ Good resonance energy with TDLRSH but much too small inverse lifetime

� The resonance decays via the Auger process

1s2s22p → 1s22p + e

The configuration 1s22p is a double excitation with respect to the ground state 1s22s2

and thus cannot be described by adiabatic TDDFT/TDHF.
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Core resonances in the Li atom

� In Li, due to spin, each 1s → np resonance split in two resonances.
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� Example of the 1s↑ → 2p↑ and 1s↓ → 2p↓ core resonance:
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=⇒ Again, good resonance energies with TDLRSH but unreliable inverse lifetimes
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ER (eV) Γ (meV)

TDLDA 50.3 0.1
TDHF 60.9 0.2
TDLRSH 60.4 0.3
Reference 60.4 9.6

=⇒ Again, good resonance energies with TDLRSH but unreliable inverse lifetimes

� Note that now the resonances decay via the Auger process

1s2s2p → 1s2 + e

which does not invove any double excitation with respect to the ground state 1s22s.

Toulouse, Schwinn, Zapata, Levitt, Cancès, Luppi, JCP, 2022
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Conclusions on TDDFT with Robin boundary conditions

� Summary:

� TDDFT/TDHF with special boundary conditions for describing continuum
states

� It allows calculations of photoionization spectra of atoms, including core
resonances

� TDLRSH gives good resonance energies but unreliable lifetimes

� Outlook:

� Extension to Gaussian basis sets
� Extension to molecules
� Extension to time propagation for nonlinear optical properties

www.lct.jussieu.fr/pagesperso/toulouse/presentations/presentation_nantes_23.pdf
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